Local Search for Hitting Set and Set Cover

Sándor Kisfaludi-Bak

Computational Geometry
Summer semester 2020
Overview

- r-divisions in planar graphs
Overview

- r-divisions in planar graphs
- Hitting set and set cover via local search
Overview

- r-divisions in planar graphs
- Hitting set and set cover via local search
- The locality condition
Overview

- r-divisions in planar graphs
- Hitting set and set cover via local search
- The locality condition
- Locality condition for halfspaces
Observation. Given planar graph $G = (V, E)$ and a vertex set $W \subset V$, G has separator of size $O(\sqrt{n})$ s.t. each side has $\leq \frac{36}{37}|W|$ vertices from W.

Proof. Start proof with smallest square that encloses $\geq \frac{|W|}{37}$ disks from W.
Theorem (Frederickson 1987) For any $r \in \mathbb{Z}_+$ and planar graph G, there are $O(n/r)$ vertex sets V_1, V_2, \ldots satisfying

- every edge is induced by some V_i
- $|V_i| \leq r$
- small boundaries: $\partial V_i = V_i \cap (\bigcup_{j \neq i} V_j)$, $|\partial V_i| = O(\sqrt{r})$
- small total boundary set: $\sum_i |\partial V_i| = O(n/\sqrt{r})$
Computing an \(r \)-division

Proof sketch. Use planar separator theorem.

Recursively divide until size \(\leq r \)

\[X := \text{union of separators throughout.} \]

\(V_i \): final group + neighborhood

- group size ✓
- group number ✓
- edge covering ✓
Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

$X :=$ union of separators throughout.

V_i: final group + neighborhood

- group size ✓
- group number ✓
- edge covering ✓
Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

$X :=$ union of separators throughout.

V_i: final group $+$ neighborhood

- group size ✓
- group number ✓
- edge covering ✓

$|W| > r$
Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

$X := \text{union of separators throughout.}$

V_i: final group + neighborhood

group size ✓ group number ✓ edge covering ✓

$|W| > r$
Computing an r-division

Proof sketch. Use planar separator theorem.

Recursively divide until size $\leq r$

$X :=$ union of separators throughout.

V_i: final group + neighborhood

- group size ✓
- group number ✓
- edge covering ✓

Still need $\partial W := W \cap X$ is small!

Idea: if $\partial W > c \sqrt{|W|}$, separate W with balance wrt. ∂W.
Hitting set via local search
(Mustafa–Ray; Chan–Har-Peled 2008)
Hitting set for halfspaces

Hitting set

Given a set $P \subset \mathbb{R}^d$ of points and a set $\mathcal{D} \subset 2^{\mathbb{R}^d}$ of ranges, find minimum size $Q \subset P$ such that all ranges are “hit”: for any $D \in \mathcal{D}$, $D \cap Q \neq \emptyset$.
Hitting set for halfspaces

Hitting set
Given a set \(P \subset \mathbb{R}^d \) of points and a set \(\mathcal{D} \subset 2^{\mathbb{R}^d} \) of ranges, find minimum size \(Q \subset P \) such that all ranges are “hit”: for any \(D \in \mathcal{D}, D \cap Q \neq \emptyset \).

E.g.: hitting disks, hitting triangles, hitting halfspaces in \(\mathbb{R}^3 \)
Hitting set for halfspaces

Hitting set
Given a set \(P \subset \mathbb{R}^d \) of points and a set \(D \subset 2^\mathbb{R}^d \) of ranges, find minimum size \(Q \subset P \) such that all ranges are “hit”: for any \(D \in D \), \(D \cap Q \neq \emptyset \).

E.g.: hitting disks, hitting triangles, hitting halfspaces in \(\mathbb{R}^3 \)

APX-hard even for fat triangles

For each disk \(D \in D \), take ball \(B \) touching \(v \) and \(B \cap H = D \)

Inversion with center \(v \) maps each ball to halfspace.

Point-disk containment is preserved
Local search for hitting set / set cover
Dualized hitting set: find minimum set of halfspaces to hit all points = Geometric Set Cover!
Local search for hitting set / set cover

Dualized hitting set: find minimum set of halfspaces to hit all points = Geometric Set Cover!

Local search:
Given a feasible hitting set Q, a valid local search step removes k elements of Q and adds $k - 1$ other elements so that the result is still a feasible hitting set.

A feasible hitting set Q is k-locally optimal if there are no valid local search steps.
Local search for hitting set / set cover

Dualized hitting set: find minimum set of halfspaces to hit all points = Geometric Set Cover!

Local search:
Given a feasible hitting set Q, a valid local search step removes k elements of Q and adds $k - 1$ other elements so that the result is still a feasible hitting set.

A feasible hitting set Q is k-locally optimal if there are no valid local search steps.

$n = |P|$, $m = |Q|$

Running time of k-local search is $O(n^{2k+1}m)$ (or better)
Local search for hitting set / set cover

Dualized hitting set: find minimum set of halfspaces to hit all points = Geometric Set Cover!

Local search:
Given a feasible hitting set Q, a valid local search step removes k elements of Q and adds $k - 1$ other elements so that the result is still a feasible hitting set.

A feasible hitting set Q is k-locally optimal if there are no valid local search steps.

$n = |P|$, $m = |Q|$

Running time of k-local search is $O(n^{2k+1}m)$ (or better)

Theorem (Mustafa–Ray 2010). There is a $c > 0$ such that the (c/ε^2)-locally optimal hitting set for halfspaces in \mathbb{R}^3 is a $(1 + \varepsilon)$-approximation of the minimum hitting set.
The locality condition
Definition. A range space (P, \mathcal{D}) has the locality condition if for any pair of disjoint sets $R, B \subset P$ there is a planar bipartite graph G between R and B s.t. for any $D \in \mathcal{D}$ intersecting both R and B we have some $uv \in E(G)$ with $u \in D \cap R$ and $v \in D \cap R$.
Locality condition

Definition. A range space \((P, D)\) has the locality condition if for any pair of disjoint sets \(R, B \subset P\) there is a planar bipartite graph \(G\) between \(R\) and \(B\) s.t. for any \(D \in D\) intersecting both \(R\) and \(B\) we have some \(uv \in E(G)\) with \(u \in D \cap R\) and \(v \in D \cap B\).

Example: disks in the plane
\(G\): subgraph of Delaunay triangulation of \(P' = R \cup B\)
Definition. A range space \((P, D)\) has the locality condition if for any pair of disjoint sets \(R, B \subset P\) there is a planar bipartite graph \(G\) between \(R\) and \(B\) s.t. for any \(D \in D\) intersecting both \(R\) and \(B\) we have some \(uv \in E(G)\) with \(u \in D \cap R\) and \(v \in D \cap R\).

Example: disks in the plane

\(G\): subgraph of Delaunay triangulation of \(P' = R \cup B\)

Claim. For any disk \(D \subset \mathbb{R}^2\), \(DT(P')|_{P' \cap D}\) is connected.

For \(u \in D \cap R\) and \(v \in D \cap B\), there is a connecting path in \(DT(D \cap P')\), which contains red-blue edge.
Locality implies larger neighborhoods

Theorem. (P, D) is range space satisfying locality condition, R is optimal hitting set, B is k-locally optimal, and $R \cap B = \emptyset$. Then there is planar $G = (R, B, E)$ s.t. for all $B' \subset B$ with $|B'| \leq k$, we have large neighborhood: $|N(B')| \geq |B'|$
Locality implies larger neighborhoods

Theorem. (P, D) is range space satisfying locality condition, R is optimal hitting set, B is k-locally optimal, and $R \cap B = \emptyset$. Then there is planar $G = (R, B, E)$ s.t. for all $B' \subset B$ with $|B'| \leq k$, we have large neighborhood: $|N(B')| \geq |B'|$

Proof. B and R are both hitting sets

\Rightarrow every range has ≥ 1 pt from both

If $B' \subset B$, then $(B \setminus B') \cup N(B')$ is hitting:

if only B' hits D from B, then some $b \in B'$ has red neighbor hitting D,
otherwise $B \setminus B'$ hits D.
Theorem. \((P, D)\) is range space satisfying locality condition, \(R\) is optimal hitting set, \(B\) is \(k\)-locally optimal, and \(R \cap B = \emptyset\). Then there is planar \(G = (R, B, E)\) s.t. for all \(B' \subset B\) with \(|B'| \leq k\), we have large neighborhood: \(|N(B')| \geq |B'|\)

Proof. \(B\) and \(R\) are both hitting sets

\[\Rightarrow\] every range has \(\geq 1\) pt from both

If \(B' \subset B\), then \((B \setminus B') \cup N(B')\) is hitting:

- if only \(B'\) hits \(D\) from \(B\), then some \(b \in B'\) has red neighbor hitting \(D\),
- otherwise \(B \setminus B'\) hits \(D\).

But for \(|B'| \leq k\) there is no valid local search step.
Local implies larger neighborhoods

Theorem. \((P, \mathcal{D})\) is range space satisfying locality condition, \(R\) is optimal hitting set, \(B\) is \(k\)-locally optimal, and \(R \cap B = \emptyset\). Then there is planar \(G = (R, B, E)\) s.t. for all \(B' \subset B\) with \(|B'| \leq k\), we have large neighborhood: \(|N(B')| \geq |B'|\)

Proof. \(B\) and \(R\) are both hitting sets

\[
\Rightarrow \text{every range has } \geq 1 \text{ pt from both}
\]

If \(B' \subset B\), then \((B \setminus B') \cup N(B')\) is hitting:

- if only \(B'\) hits \(D\) from \(B\), then some \(b \in B'\) has red neighbor hitting \(D\),
- otherwise \(B \setminus B'\) hits \(D\).

But for \(|B'| \leq k\), there is no valid local search step.

If \(R \cap B = I \neq \emptyset\), then let \(\mathcal{D}' = \text{ranges not hit by } I\).

Use the same on \((P \setminus I, \mathcal{D}')\). If \(B_0\) is \((1 + \epsilon)\)-approx on \((P \setminus I, \mathcal{D}')\) \(\rightarrow B_0 \cup I\) is \((1 + \epsilon)\)-approx on \((P, \mathcal{D})\)
B has large neighborhoods only if relatively small

Theorem. Let \(G = (R, B, E) \) bipartite planar, s.t. for every \(B' \subset B \) of size \(|B'| \leq k\), \(|N(B')| \geq |B'| \).
Then \(|B| \leq (1 + c/\sqrt{k})|R|\) for some constant \(c \).
Theorem. Let \(G = (R, B, E) \) bipartite planar, s.t. for every \(B' \subset B \) of size \(|B'| \leq k \), \(|N(B')| \geq |B'| \).
Then \(|B| \leq (1 + c/\sqrt{k})|R| \) for some constant \(c \).

Proof. \(r := |R|, \ b := |B|, \)
Use \(k \)-division of \(G \). \(\rightarrow V_1, V_2, \ldots \)
\(V_i \) has boundary \(V_i \cap (\bigcup_{j \neq i} V_j) \) and interior \(V_i \setminus (\bigcup_{j \neq i} V_j) \).
\(r_i^{\partial}, b_i^{\partial}, r_i^{\text{int}}, b_i^{\text{int}} : \# \text{ red/blue in } V_i \text{ in boundary and interior.} \)
Theorem. Let $G = (R, B, E)$ bipartite planar, s.t.
for every $B' \subset B$ of size $|B'| \leq k$, $|N(B')| \geq |B'|$.
Then $|B| \leq (1 + c/\sqrt{k})|R|$ for some constant c.

Proof. $r := |R|$, $b := |B|$,
Use k-division of G. $\to V_1, V_2, \ldots$
V_i has boundary $V_i \cap (\bigcup_{j \neq i} V_j)$ and interior $V_i \setminus (\bigcup_{j \neq i} V_j)$.
r^∂_i, b^∂_i, r^{int}_i, b^{int}_i : $\#$ red/blue in V_i in boundary and interior.

- $\sum_i (r^\partial_i + b^\partial_i) \leq \gamma (r + b)/\sqrt{k}$ ($\gamma = \text{const}$) (by k-division)
Theorem. Let $G = (R, B, E)$ bipartite planar, s.t.
for every $B' \subset B$ of size $|B'| \leq k$, $|N(B')| \geq |B'|$.
Then $|B| \leq (1 + c/\sqrt{k})|R|$ for some constant c.

Proof. $r := |R|$, $b := |B|$,
Use k-division of G. \rightarrow V_1, V_2, \ldots
V_i has boundary $V_i \cap (\bigcup_{j \neq i} V_j)$ and interior $V_i \setminus (\bigcup_{j \neq i} V_j)$.
$r_i^{\partial}, b_i^{\partial}, r_i^{\text{int}}, b_i^{\text{int}}: \# \text{ red/blue in } V_i \text{ in boundary and interior.}$

- $\sum_i (r_i^{\partial} + b_i^{\partial}) \leq \gamma (r + b)/\sqrt{k}$ \hspace{1cm} ($\gamma = \text{const}$) (by k-division)
- $b_i^{\text{int}} \leq r_i^{\text{int}} + r_i^{\partial}$ \hspace{1cm} ($b_i^{\text{int}} \leq k$ so it has large neighborhood)

\[
b \leq \sum_i (b_i^{\text{int}} + b_i^{\partial}) \leq \sum_i r_i^{\text{int}} + \sum_i (r_i^{\partial} + b_i^{\partial}) \leq r + \gamma (r+b)/\sqrt{k}
\]
Locality condition wrap-up

\[b \leq r + \frac{\gamma (r + b)}{\sqrt{k}} \]

If \(k \geq 4\gamma^2 \), then

\[b \leq r \frac{1 + \gamma/\sqrt{k}}{1 - \gamma/\sqrt{k}} \leq \ldots \leq r(1 + c/\sqrt{k}) \]
Locality condition wrap-up

\[b \leq r + \gamma(r + b)/\sqrt{k} \]

If \(k \geq 4\gamma^2 \), then

\[b \leq r \frac{1 + \gamma/\sqrt{k}}{1 - \gamma/\sqrt{k}} \leq \cdots \leq r(1 + c/\sqrt{k}) \]

Theorem. Locality condition implies PTAS for hitting set with running time \(n^{O(1/\varepsilon^2)} \).

Theorem. Hitting disks with points in \(\mathbb{R}^2 \) has a PTAS with running time \(n^{O(1/\varepsilon^2)} \).
Locality condition for half-spaces
Radon’s theorem

Theorem (Radon, 1921) Any set of \(d + 2\) points in \(\mathbb{R}^d\) can be partitioned into two subsets whose convex hulls intersect.
Radon’s theorem

Theorem (Radon, 1921) Any set of $d + 2$ points in \mathbb{R}^d can be partitioned into two subsets whose convex hulls intersect.

Proof. Let $P = \{p_1, \ldots, p_{d+2}\}$. There exists $\lambda_1, \ldots, \lambda_{d+2}$ not all 0 s.t.

$$ \sum_{i=1}^{d+2} \lambda_i p_i = 0 \quad \text{and} \quad \sum_{i=1}^{d+2} \lambda_i = 0. $$

Let I: indices i where $\lambda_i > 0$. (denote remaining indices by J) Then $\sum_{i \in I} \lambda_i = -\sum_{j \in J} \lambda_j =: \mu$, thus

$$ p' := \sum_{i \in I} \frac{\lambda_i}{\mu} p_i = \sum_{j \in J} \frac{-\lambda_j}{\mu} p_j \in \text{conv}(P|_I) \cap \text{conv}(P|_J) $$
Locality for half-spaces: graph and embedding

Recall: \(R \) and \(B \) disjoint hitting sets for a set \(\mathcal{D} \) of half-spaces. Need bipartite planar graph \(G \) on \(R \cup B \), s.t. for any \(D \in \mathcal{D} \) containing both red and blue, there is an edge induced.
Locality for half-spaces: graph and embedding

Recall: R and B disjoint hitting sets for a set \mathcal{D} of half-spaces. Need bipartite planar graph G on $R \cup B$, s.t. for any $D \in \mathcal{D}$ containing both red and blue, there is an edge induced.

Guess $o \in P$ from hitting set, remove $D \in \mathcal{D}$ that contains o.
\Rightarrow wlog. o outside $\bigcup_{D \in \mathcal{D}} D$
Locality for half-spaces: graph and embedding

Recall: R and B disjoint hitting sets for a set \mathcal{D} of half-spaces. Need bipartite planar graph G on $R \cup B$, s.t. for any $D \in \mathcal{D}$ containing both red and blue, there is an edge induced.

Guess $o \in P$ from hitting set, remove $D \in \mathcal{D}$ that contains o. ⇒ wlog. o outside $\bigcup_{D \in \mathcal{D}} D$

Two stages:

- Add all red-blue edges of $C := \partial \text{conv}(R \cup B)$ to G, triangulate faces of C
- For $p \in (R \cup B) \setminus C$, let p' be point where ray(o, p) exits C Define edges of p via p' in a triangle of C. ⇒ results in planar graph on C
Defining G in a bichromatic triangle

T is a triangle of C.

If T has 1 red and 2 blue corners (1 blue 2 red symmetric)
Defining G in a bichromatic triangle

T is a triangle of C.

If T has 1 red and 2 blue corners (1 blue 2 red symmetric)

Connect each p' to all differently colored corners
Defining G in a bichromatic triangle

T is a triangle of C.

If T has 1 red and 2 blue corners (1 blue 2 red symmetric)

Connect each p' to all differently colored corners
Defining G in a bichromatic triangle

T is a triangle of C. If T has 1 red and 2 blue corners (1 blue 2 red symmetric)

Connect each p' to all differently colored corners
Defining G in a bichromatic triangle

T is a triangle of C.
If T has 1 red and 2 blue corners (1 blue 2 red symmetric)

Connect each p' to all differently colored corners
Defining G in a bichromatic triangle

T is a triangle of C. If T has 1 red and 2 blue corners (1 blue 2 red symmetric)

Connect each p' to all differently colored corners
Defining G in a monochromatic triangle

T
Defining G in a monochromatic triangle

$B_T :=$ blue pts mapped to T

≤ 1 pt in B_T connected to c_1, c_2, c_3; rest connected to two corners
Defining G in a monochromatic triangle

$B_T :=$ blue pts mapped to T

≤ 1 pt in B_T connected to c_1, c_2, c_3; rest connected to two corners
Defining G in a monochromatic triangle

$B_T := \text{blue pts mapped to } T$

$\leq 1 \text{ pt in } B_T \text{ connected to } c_1, c_2, c_3;$

rest connected to two corners
Defining G in a monochromatic triangle

$B_T :=$ blue pts mapped to T
≤ 1 pt in B_T connected to c_1, c_2, c_3; rest connected to two corners

How to select neighboring corners for each $b \in B_T$?

If there is a corner c s.t. there is no halfspace $h \subset \mathbb{R}^3$ containing only b, c among $B_T \cup \{c_1, c_2, c_3, o\}$, then connect b' to other two corners
Defining G in a monochromatic triangle

$B_T := \text{blue pts mapped to } T$

$\leq 1 \text{ pt in } B_T \text{ connected to } c_1, c_2, c_3$;
rest connected to two corners

How to select neighboring corners for each $b \in B_T$?

If there is a corner c s.t. there is no halfspace $h \subset \mathbb{R}^3$
containing only b, c among $B_T \cup \{c_1, c_2, c_3, o\}$, then connect b'
to other two corners

Claim. For all but one $b \in B_T$ there is such a corner.
Corner connections via Radon’s thm

Claim. For all but one $b \in B_T$ there is a corner c s.t. there is no halfspace containing just b, c among $B_T \cup \{o, c_1, c_2, c_3\}$.

Proof. by contradiction:
assume $b_1, b_2 \in B_T$ have no good corner.
There are halfspaces containing exactly
$b_i c_j$ ($i = 1, 2; j = 1, 2, 3$) among $F := \{b_1, b_2, c_1, c_2, c_3\}$
Corner connections via Radon’s thm

Claim. For all but one $b \in B_T$ there is a corner c s.t. there is no halfspace containing just b, c among $B_T \cup \{o, c_1, c_2, c_3\}$.

Proof. by contradiction:
assume $b_1, b_2 \in B_T$ have no good corner.
There are halfspaces containing exactly b_ic_j ($i = 1, 2; j = 1, 2, 3$) among $F := \{b_1, b_2, c_1, c_2, c_3\}$.

F in convex position. Radon thm gives 2:3 partition of F.

There is plane separating b_1, b_2 from corners

\Rightarrow wlog. $\text{conv}(b_1, c_1) \cap \text{conv}(b_2, c_2, c_3) \neq \emptyset$.
Corner connections via Radon’s thm

Claim. For all but one $b \in B_T$ there is a corner c s.t. there is no halfspace containing just b, c among $B_T \cup \{o, c_1, c_2, c_3\}$.

Proof. by contradiction:
assume $b_1, b_2 \in B_T$ have no good corner.
There are halfspaces containing exactly $b_i c_j$ ($i = 1, 2; j = 1, 2, 3$) among $F := \{b_1, b_2, c_1, c_2, c_3\}$

F in convex position. Radon thm gives 2:3 partition of F.

There is plane separating b_1, b_2 from corners
\Rightarrow wlog. $\text{conv}(b_1, c_1) \cap \text{conv}(b_2, c_2, c_3) \neq \emptyset$.

\Rightarrow there is no halfspace containing exactly b_1, c_1
Lemma. Halfspaces have the locality property, and it is witnessed by G.

G is planar bipartite. ✓

Need: any halfspace with red+blue induces some edge.
Lemma. Halfspaces have the locality property, and it is witnessed by G.

G is planar bipartite. ✓

Need: any halfspace with red+blue induces some edge.

- If $D \in \mathcal{D}$ contains red and blue from C, then there is bichromatic triangle ✓
Lemma. Halfspaces have the locality property, and it is witnessed by \(G \).

\(G \) is planar bipartite. ✓

Need: any halfspace with red+blue induces some edge.

• If \(D \in \mathcal{D} \) contains red and blue from \(C \), then there is bichromatic triangle ✓

• Let \(D' \subset D \) be halfspace parallel to \(\partial D \), smallest that contains both red and blue.
 \(D' \) has 1 blue \(b \) on its boundary.
 \(o \not\in D \Rightarrow o \not\in D' \)
 \(D' \) has \(\geq 1 \) corner \(c \) of the triangle of \(b' \).
Lemma. Halfspaces have the locality property, and it is witnessed by G.

G is planar bipartite. ✓
Need: any halfspace with red+blue induces some edge.

- If $D \in \mathcal{D}$ contains red and blue from C, then there is bichromatic triangle ✓

- Let $D' \subset D$ be halfspace parallel to ∂D, smallest that contains both red and blue.
 D' has 1 blue b on its boundary.
 $o \notin D \Rightarrow o \notin D'$
 $\Rightarrow D'$ has ≥ 1 corner c of the triangle of b'.
 If D' contains c, c', then at least one connects to b.
 If D' contains just c, then $bc \in E(G)$ by def of G.

Lemma. Halfspaces have the locality property, and it is witnessed by G.

G construction correctness
Theorem. (Mustafa–Ray 2010) Hitting halfspaces with points in \mathbb{R}^3 has a PTAS with running time $n^{O(1/\varepsilon^2)}$.

Theorem. (Mustafa–Ray 2010) Hitting halfspaces with points in \mathbb{R}^3 has a PTAS with running time $n^{O(1/\varepsilon^2)}$.

- APX-hard in $\mathbb{R}^{\geq 4}$
- Locality condition can be proved for several object types in \mathbb{R}^2, for hitting/covering/packing
 Most general: hitting/covering/packing non-piercing objects
- Analysis is tight: $k = o(1/\varepsilon^2)$ local search doesn’t work
- General lower bounds of $n^{\Omega(1/\varepsilon)}$
Halfspace wrap-up

Theorem. (Mustafa–Ray 2010) Hitting halfspaces with points in \mathbb{R}^3 has a PTAS with running time $n^{O(1/\varepsilon^2)}$.

- APX-hard in $\mathbb{R}^{\geq 4}$
- Locality condition can be proved for several object types in \mathbb{R}^2, for hitting/covering/packing
 - Most general: hitting/covering/packing non-piercing objects
- Analysis is tight: $k = o(1/\varepsilon^2)$ local search doesn’t work
- General lower bounds of $n^{\Omega(1/\varepsilon)}$

Exact has matching lower bound.

Theorem. Hitting set of size k for halfspaces with points in \mathbb{R}^3 can be computed in time $n^{O(\sqrt{k})}$.

In $\mathbb{R}^{\geq 4}$, there is $n^{\Omega(k)}$ lower bound.