
Computational Geometry, SS 2020
Assignment 3

Due: Wednesday 10.6, 8:00 (morning!) CET

Send your solutions in pdf format to:

andre.nusser@mpi-inf.mpg.de

Problem 1. (6 points)
A point (x, y) ∈ R2 dominates (x′, y′) if x > x′ and y > y′. Two points are incompa-
rable if neither point dominates the other. Preprocess a set P of n points into a data
structure which can report in O(log n+k) time the points in P that are incomparable
to a query point (where k is the number of reported points). Your data structure
should fit in O(n) space.

Problem 2. (10 points)
Given a set S of disjoint spheres in R3 with their center and radius, describe a data
structure that can determine the first sphere hit by a vertical ray (i.e., parallel to the
z-axis) shot up from a query point in O(log n) time. The data structure should fit in
O(n3) space.

Problem 3. (8 points)
Develop a sweep algorithm that given a set S of axes-aligned rectangles in the plane
(i.e. Cartesian products of intervals) determines the number of pairs of rectangles in
S that intersect. Be sure to state the invariants of your sweep and the nature of your
sweepline structure and event queue. What running time and space usage can you
achieve?

Problem 4. (8 points)
Develop a data structure that processes a set S of axes-aligned rectangles so that
queries of the following form can be answered quickly: Given an axes-aligned query
rectangle Q what is the area of Q ∩

⋃
S?

1. Can you find a structure that achieves logarithmic query time with, say, quadratic
space?

2. What kind of query time can you achieve with O(n · polylog(n)) space?

Hint: Things may be simpler if you “decompose” each query into simpler queries, all
of the same form.

Problem 5. (8 points)
In class we discussed a method for planar point location (or vertical ray shooting
among non-crossing x-monotone segments) that was based on segment trees. It
processed a query point q by first determining path(q.x) in the segment tree (using x-
comparisons) and then searching for q in each Sv for vertex v on path(q.x). It achieves
a query time Q(n) = O(log2 n) with space S(n) = O(n log n) and preprocessing
P (n) = O(n log n).



Computational Geometry, SS 2020
Assignment 3

Due: Wednesday 10.6, 8:00 (morning!) CET

Earlier in the course we discussed fractional cascading. It is a method that speeds
up searches in sequences of ordered lists by copying (or moving?) every cth element
from on list to the next, where c is some constant.

Try to apply fractional cascading in this context.

1. Can you achieve Q(n) = 2 · log2 n + O(1) ?

2. Can you achieve Q(n) = 3 · log2 n + O(1) while keeping S(n) = O(n log n) ?

3. Can you achieve Q(n) = a · log2 n + O(1) for some a < 3 while keeping S(n) =
O(n log n) ?

For the purposes of this question Q(n) counts the number of x-comparisons and
y-comparisons (i.e. above/below segment comparisons) in a worst case query.

Problem 6. (6 points)
For the purposes of this exercise a standard model query structure for vertical ray
shooting in a set S of non-crossing x-monotone segments is a directed acyclic graph
G with one source. Each sink in G is labelled with a segment in s (the answer when
arriving at that sink); each non-sink node has outdegree 2 with one outgoing edge
labelled with “yes” and the other with “no;” each non-sink node is either labelled
as an x-node, in which case it has an x-comparison key that is the x-coordinate of
some endpoint of a segment in S, or it is labelled as a y-node, in which case it has
y-comparison key that is a segment s ∈ S. Queries are executed in the obvious way.

Prove that any standard model query structure G for the set S of 3n segments
sketched below so that G is a tree must have at least Ω(n log n) nodes.

Problem 7. (no points – just something to think about)
Let G = (V,E) be a graph with n vertices and m edges. Prove that G must contain
an independent set of vertices of size at least

∑
v∈V

1
1+deg(v)

, and show that such a
set can be found in linear time.

Prove that the stated bound is never smaller than n
1+d

, where d is the average degree
in G.


