
Parameterized Algorithms

Dániel Marx Pranabendu Misra Philip Wellnitz
(tutorials)

Lecture #1
May 8, 2020

Can you read this line down here? 1

Classical complexity

A brief review:
We usually aim for polynomial-time algorithms: the worst-case running time is
O(nc), where n is the input size and c is a constant.
Classical polynomial-time algorithms: shortest path, perfect matching, minimum
spanning tree, 2SAT, convex hull, planar drawing, linear programming, etc.
It is unlikely that polynomial-time algorithms exist for NP-hard problems.
Unfortunately, many problems of interest are NP-hard: Hamiltonian Cycle,
3-Coloring, 3SAT, etc.
We expect that these problems can be solved only in exponential time (i.e., O(cn)).

Can we say anything nontrivial about NP-hard problems?

2

Parameterized problems

Main idea
Instead of expressing the running time as a function T (n) of n, we express it as a
function T (n, k) of the input size n and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size n, only for those
where k is small.

What can be the parameter k?
The size k of the solution we are looking for.
The maximum degree ∆ of the input graph.
The dimension d of the point set in the input.
The length L of the strings in the input.
The length ` of clauses in the input Boolean formula.
. . .

3

Parameterized problems

Main idea
Instead of expressing the running time as a function T (n) of n, we express it as a
function T (n, k) of the input size n and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size n, only for those
where k is small.
What can be the parameter k?

The size k of the solution we are looking for.
The maximum degree ∆ of the input graph.
The dimension d of the point set in the input.
The length L of the strings in the input.
The length ` of clauses in the input Boolean formula.
. . .

3

Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm No no(k) algorithm
exists known

4

Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm No no(k) algorithm
exists known

4

Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm No no(k) algorithm
exists known

4

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

5

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

5

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

5

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2

5

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2 ≤ k

Height of the search tree ≤ k ⇒ at most 2k leaves ⇒ 2k · nO(1) time algorithm.

5

Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if there is an f (k)nc

time algorithm for some constant c .

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .

6

Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if there is an f (k)nc

time algorithm for some constant c .

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .

6

More formally

We consider only decision problems here.
Let Σ be a finite alphabet used to encode the inputs

(Σ = {0, 1} for binary encodings)

A parameterized problem is a set P ⊆ Σ∗ × N
P = {(x1, k1), (x2, k2), . . . }

The set P contain the tuples (x , k) where the answer to the question encoded by
(x , k) is yes; k is the parameter
A parameterized problem P is fixed-parameter tractable if there is an algorithm
that, given an input (x , k)

decides if (x , k) belongs to P or not, and
the running time is f (k)nc for some computable function f and constant c .

7

More formally

We consider only decision problems here.
Let Σ be a finite alphabet used to encode the inputs

(Σ = {0, 1} for binary encodings)
A parameterized problem is a set P ⊆ Σ∗ × N

P = {(x1, k1), (x2, k2), . . . }
The set P contain the tuples (x , k) where the answer to the question encoded by
(x , k) is yes; k is the parameter

A parameterized problem P is fixed-parameter tractable if there is an algorithm
that, given an input (x , k)

decides if (x , k) belongs to P or not, and
the running time is f (k)nc for some computable function f and constant c .

7

More formally

We consider only decision problems here.
Let Σ be a finite alphabet used to encode the inputs

(Σ = {0, 1} for binary encodings)
A parameterized problem is a set P ⊆ Σ∗ × N

P = {(x1, k1), (x2, k2), . . . }
The set P contain the tuples (x , k) where the answer to the question encoded by
(x , k) is yes; k is the parameter
A parameterized problem P is fixed-parameter tractable if there is an algorithm
that, given an input (x , k)

decides if (x , k) belongs to P or not, and
the running time is f (k)nc for some computable function f and constant c .

7

FPT techniques

Treewidth

Color coding

Iterative compression

Kernelization

Algebraic techniques

Bounded-depth search trees

8

W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is W[1]-hard, then the
problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:
Finding a clique/independent set of size k .
Finding a dominating set of size k .
Finding k pairwise disjoint sets.
. . .

General principle of hardness
With an appropriate reduction from k-Clique to problem P , we show that if problem
P is FPT, then k-Clique is also FPT.

9

W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is W[1]-hard, then the
problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:
Finding a clique/independent set of size k .
Finding a dominating set of size k .
Finding k pairwise disjoint sets.
. . .

General principle of hardness
With an appropriate reduction from k-Clique to problem P , we show that if problem
P is FPT, then k-Clique is also FPT.

9

Parameterized complexity

Rod G. Downey
Michael R. Fellows

Parameterized
Complexity

Springer 1999

The study of parameterized complexity was initiated by Downey and Fellows in the
early 90s.
First monograph in 1999.
By now, strong presence in most algorithmic conferences.

10

Parameterized Algorithms
Marek Cygan, Fedor V. Fomin,
Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk,
Michał Pilipczuk, Saket Saurabh

Springer 2015

11

Course outline

Basic techniques
bounded search trees
color coding
dynamic programming
iterative compression

Complexity
Kernelization
Treewidth
Advanced topics:

cuts and separators
matroids
algebraic techniques

12

Bounded search tree method

13

Bounded search tree method
Algorithm for Vertex Cover

Main idea: reduce problem instance (x , k) to
solving a bounded number of instances with
parameter < k .
We should be able to solve instance (x , k) in
polynomial time using the solutions of the new
instances.
If the parameter strictly decreases in every
recursive call, then the depth is at most k .

e1 = u1v1

u1 v1

e2 = u2v2
u2 v2 ≤ k

Size of the search tree:
If we branch into c directions: ck .
If we branch into O(k) directions: kO(k) = 2O(k log k).
(If we branch into O(log n) directions: O(n) + 2O(k log k).)

14

Bounded search tree method
Algorithm for Vertex Cover

Main idea: reduce problem instance (x , k) to
solving a bounded number of instances with
parameter < k .
We should be able to solve instance (x , k) in
polynomial time using the solutions of the new
instances.
If the parameter strictly decreases in every
recursive call, then the depth is at most k .

e1 = u1v1

u1 v1

e2 = u2v2
u2 v2 ≤ k

Size of the search tree:
If we branch into c directions: ck .
If we branch into O(k) directions: kO(k) = 2O(k log k).
(If we branch into O(log n) directions: O(n) + 2O(k log k).)

Next: A 1.41k · nO(1) time algorithm for Vertex Cover.
14

Bounded search tree method
Algorithm for Vertex Cover

Main idea: reduce problem instance (x , k) to
solving a bounded number of instances with
parameter < k .
We should be able to solve instance (x , k) in
polynomial time using the solutions of the new
instances.
If the parameter strictly decreases in every
recursive call, then the depth is at most k .

e1 = u1v1

u1 v1

e2 = u2v2
u2 v2 ≤ k

Size of the search tree:
If we branch into c directions: ck .
If we branch into O(k) directions: kO(k) = 2O(k log k).
(If we branch into O(log n) directions: O(n) + 2O(k log k).)

Next: A O∗(1.41k) time algorithm for Vertex Cover.
14

Improved branching for Vertex Cover

If every vertex has degree ≤ 2, then the problem can be solved in polynomial time.
Branching rule:
If there is a vertex v with at least 3 neighbors, then

either v is in the solution,
or every neighbor of v is in the solution.

Crude upper bound: O∗(2k), since the branching rule decreases the parameter.

But it is somewhat better than that, since in the second branch, the parameter
decreases by at least 3.

15

Improved branching for Vertex Cover

If every vertex has degree ≤ 2, then the problem can be solved in polynomial time.
Branching rule:
If there is a vertex v with at least 3 neighbors, then

either v is in the solution, ⇒ k decreases by 1
or every neighbor of v is in the solution. ⇒ k decreases by at least 3

Crude upper bound: O∗(2k), since the branching rule decreases the parameter.

But it is somewhat better than that, since in the second branch, the parameter
decreases by at least 3.

15

Better analysis
Let T (k) be the maximum number of leaves of the search tree if the parameter is at
most k (let T (k) = 1 for k ≤ 0).

T (k) ≤ T (k − 1) + T (k − 3)

There is a standard technique for bounding such functions asymptotically.

We prove by induction that T (k) ≤ ck for some c > 1 as small as possible.

What values of c are good? We need:

ck≥≥≥ck−1 + ck−3

c3 − c2 − 1 ≥ 0

We need to find the roots of the characteristic equation c3 − c2 − 1 = 0.

Note: it is always true that such an equation has a unique positive root.

16

Better analysis
Let T (k) be the maximum number of leaves of the search tree if the parameter is at
most k (let T (k) = 1 for k ≤ 0).

T (k) ≤ T (k − 1) + T (k − 3)

There is a standard technique for bounding such functions asymptotically.

We prove by induction that T (k) ≤ ck for some c > 1 as small as possible.

What values of c are good? We need:

ck≥≥≥ck−1 + ck−3

c3 − c2 − 1 ≥ 0

We need to find the roots of the characteristic equation c3 − c2 − 1 = 0.

Note: it is always true that such an equation has a unique positive root.

16

Better analysis

c3 − c2 − 1 = 0

-3

-2

-1

0

1

2

3

1.4656

c = 1.4656 is a good value ⇒ T (k) ≤ 1.4656k

⇒ We have a O∗(1.4656k) algorithm for Vertex Cover.

17

Better analysis

We showed that if T (k) ≤ T (k − 1) + T (k − 3), then T (k) ≤ 1.4656k holds.

Is this bound tight? There are two questions:
Can the function T (k) be that large?
Yes (ignoring rounding problems).
Can the search tree of the Vertex Cover algorithm be that large?
Difficult question, hard to answer in general.

18

Branching vectors

The branching vector of our O∗(1.4656k) Vertex Cover algorithm was (1, 3).

Example: Let us bound the search tree for the branching vector (2, 5, 6, 6, 7, 7).
(2 out of the 6 branches decrease the parameter by 7, etc.).

The value c > 1 has to satisfy:

ck ≥ ck−2 + ck−5 + 2ck−6 + 2ck−7

c7 − c5 − c2 − 2c − 2 ≥ 0

Unique positive root of the characteristic equation: 1.4483 ⇒ T (k) ≤ 1.4483k .

It is hard to compare branching vectors intuitively.

19

Branching vectors

The branching vector of our O∗(1.4656k) Vertex Cover algorithm was (1, 3).

Example: Let us bound the search tree for the branching vector (2, 5, 6, 6, 7, 7).
(2 out of the 6 branches decrease the parameter by 7, etc.).

The value c > 1 has to satisfy:

ck ≥ ck−2 + ck−5 + 2ck−6 + 2ck−7

c7 − c5 − c2 − 2c − 2 ≥ 0

Unique positive root of the characteristic equation: 1.4483 ⇒ T (k) ≤ 1.4483k .

It is hard to compare branching vectors intuitively.

19

Branching vectors
Example: The roots for branching vector (i , j) (1 ≤ i , j ≤ 6).

T (k) ≤ T (k − i) + T (k − j)⇒ck ≥ ck−i + ck−j

c j − c j−i − 1 ≥ 0

We compute the unique positive root.

1 2 3 4 5 6
1 2.0000 1.6181 1.4656 1.3803 1.3248 1.2852
2 1.6181 1.4143 1.3248 1.2721 1.2366 1.2107
3 1.4656 1.3248 1.2560 1.2208 1.1939 1.1740
4 1.3803 1.2721 1.2208 1.1893 1.1674 1.1510
5 1.3248 1.2366 1.1939 1.1674 1.1487 1.1348
6 1.2852 1.2107 1.1740 1.1510 1.1348 1.1225

20

Example: Triangle Free Deletion

Triangle Free Deletion
Given (G , k), remove at most k vertices to make the graph triangle free.

What is the running time of a simple branching algorithm?

height ≤ k
v3v1

T

v2

The search tree has at most 3k leaves and the work to be done is polynomial at each
step ⇒ O∗(3k) time algorithm.

Note: If the answer is “NO”, then the search tree has exactly 3k leaves.

21

Example: Triangle Free Deletion

Triangle Free Deletion
Given (G , k), remove at most k vertices to make the graph triangle free.

What is the running time of a simple branching algorithm?

height ≤ k
v3v1

T

v2

The search tree has at most 3k leaves and the work to be done is polynomial at each
step ⇒ O∗(3k) time algorithm.

Note: If the answer is “NO”, then the search tree has exactly 3k leaves.

21

Graph modification problems

A general problem family containing tasks of the following type:

Given (G , k), do at most k allowed operations on G to make it have property P.

Allowed operations: vertex deletion, edge deletion, edge addition, . . .
Property P: edgeless, no triangles, no cycles, planar, chordal, regular,
disconnected, . . .

Examples:
Vertex Cover: Delete k vertices to make G edgeless.
Triangle Free Deletion: Delete k vertices to make G triangle free.
Feedback Vertex Set: Delete k vertices to make G acyclic (forest).

22

Hereditary properties

Definition
A graph property P is hereditary or closed under induced subgraphs if whenever
G ∈ P , every induced subgraph of G is also in P.

“removing a vertex does not ruin the property”
(e.g., triangle free, bipartite, planar)

Observation
Every hereditary property P can be characterized by a (finite or infinite) set F of
“minimal bad graphs” or “forbidden induced subgraphs”: G ∈ P if and only if G does
not have an induced subgraph isomorphic to a member of F .

Example: a graph is bipartite if and only if it does not contain an odd cycle as an
induced subgraph.

23

Hereditary properties

Definition
A graph property P is hereditary or closed under induced subgraphs if whenever
G ∈ P , every induced subgraph of G is also in P.

“removing a vertex does not ruin the property”
(e.g., triangle free, bipartite, planar)

Observation
Every hereditary property P can be characterized by a (finite or infinite) set F of
“minimal bad graphs” or “forbidden induced subgraphs”: G ∈ P if and only if G does
not have an induced subgraph isomorphic to a member of F .

Example: a graph is bipartite if and only if it does not contain an odd cycle as an
induced subgraph.

23

Graph properties
all graph properties

hereditary properties

hereditary with finite set of
forbidden induced subgraphs

regular bipartite triangle free connected
planar empty complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

forbidden induced subgraphs

bipartite triangle free connected
planar empty complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite forbidden induced subgraphs

triangle free connected
planar empty complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free
forbidden induced subgraphs

connected
planar empty complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free

connected

forbidden induced subgraphs

planar empty complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free

connected

planar
forbidden induced subgraphs

empty complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free

connected

planar

empty

forbidden induced subgraphs

complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free

connected

planar

empty
complete

forbidden induced subgraphs

acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free

connected

planar

empty
complete

acyclic

forbidden induced subgraphs

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free

connected

planar

empty
complete

acyclic

forbidden induced subgraphs

24

Using finite obstructions

Theorem
If P is hereditary and can be characterized by a finite set F of forbidden induced
subgraphs, then the graph modification problems corresponding to P are FPT.

Proof:
Suppose that every graph in F has at most r vertices. Using brute force, we can
find in time O(nr) a forbidden subgraph (if exists).
If a forbidden subgraph exists, then we have to delete one of the at most r vertices
or add/delete one of the at most

(r
2

)
edges

⇒ Branching factor is a constant c depending on F .
The search tree has at most ck leaves and the work to be done at each node is
O(nr).

25

Graph modification problems

A very wide and active research area in parameterized algorithms.
If the set of forbidden subgraphs is finite, then the problem is immediately FPT
(e.g., Vertex Cover, Triangle Free Deletion). Here the challange is
improving the naive running time.
If the set of forbidden subgraphs is infinite, then very different techniques are
needed to show that the problem is FPT (e.g., Feedback Vertex Set,
Bipartite Deletion, Planar Deletion).

26

Feedback Vertex Set

Feedback Vertex Set:
Given (G , k), find a set S of at most k vertices such that G − S has no cycles.

We allow multiple parallel edges and self loops.
A feedback vertex set is a set that hits every cycle in the graph.

27

Feedback Vertex Set

Feedback Vertex Set:
Given (G , k), find a set S of at most k vertices such that G − S has no cycles.

We allow multiple parallel edges and self loops.
A feedback vertex set is a set that hits every cycle in the graph.

27

Feedback Vertex Set

If we find a cycle, then we have to include at least one of its vertices into the
solution. But the length of the cycle can be arbitrary large!
Main idea: We identify a set of O(k) vertices such that any size-k feedback
vertex set has to contain one of these vertices.
But first: some reductions to simplify the problem.

28

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

If the reduction rules cannot be applied, then every vertex has degree at least 3.

29

Branching

Let G be a graph whose vertices have degree at least 3.
Order the vertices as v1, v2, . . ., vn by decreasing degree
(breaking ties arbitrarily).
Let V3k = {v1, . . . , v3k} be the 3k largest-degree vertices.

Lemma
If G has minimum degree at least 3, then every feedback vertex set S of size at most k
contains a vertex from V3k .

Algorithm:
Apply the reduction rules (poly time) ⇒ graph has minimum degree 3.
For each vertex v ∈ V3k , recurse on the instance (G − v , k − 1).
Running time (3k)k · nO(1) = 2O(k log k) · nO(1).

30

Branching

Let G be a graph whose vertices have degree at least 3.
Order the vertices as v1, v2, . . ., vn by decreasing degree
(breaking ties arbitrarily).
Let V3k = {v1, . . . , v3k} be the 3k largest-degree vertices.

Lemma
If G has minimum degree at least 3, then every feedback vertex set S of size at most k
contains a vertex from V3k .

Algorithm:
Apply the reduction rules (poly time) ⇒ graph has minimum degree 3.
For each vertex v ∈ V3k , recurse on the instance (G − v , k − 1).
Running time (3k)k · nO(1) = 2O(k log k) · nO(1).

30

Proof of the lemma

Lemma
If G has minimum degree at least 3, then every feedback vertex set S of size at most k
contains a vertex from V3k .

d := minimum degree in V3k ,
X = V (G)− (S ∪ V3k).
Total degree of V3k ∪ X : ≥ 3kd + 3|X |
Edges of G [V3k ∪ X]: ≤ 3k + |X | − 1
Total degree of these edges: ≤ 6k + 2|X | − 2

Edges between S and V3k ∪ X :
≤ dk
≥ 3kd + 3|X | − (6k + 2|X | − 2) > 3(d − 2)k

As d ≥ 3, we have 3(d − 2) ≥ d , contradiction.

S

V3k

X

31

Proof of the lemma

Lemma
If G has minimum degree at least 3, then every feedback vertex set S of size at most k
contains a vertex from V3k .

d := minimum degree in V3k ,
X = V (G)− (S ∪ V3k).
Total degree of V3k ∪ X : ≥ 3kd + 3|X |
Edges of G [V3k ∪ X]: ≤ 3k + |X | − 1
Total degree of these edges: ≤ 6k + 2|X | − 2
Edges between S and V3k ∪ X :

≤ dk
≥ 3kd + 3|X | − (6k + 2|X | − 2) > 3(d − 2)k

As d ≥ 3, we have 3(d − 2) ≥ d , contradiction.

S

V3k

X

31

Branching: wrap up

Branching into c directions: O∗(ck) algorithms.
Branching into k directions: O∗(kk) algorithms.
Branching vectors and analysis of recurrences of the form

T (k) = T (k − 1) + 2T (k − 2) + T (k − 3)

Graph modification problems where the graph property can be characterized by a
finite set of forbidden induced subgraphs is FPT.

32

Kernelization

33

Data reductions—with a guarantee

Kernelization is a method for parameterized preprocessing:
We want to efficiently reduce the size of the instance (x , k) to an equivalent instance
with size bounded by f (k).

A basic way of obtaining FPT algorithms:
Reduce the size of the instance to f (k) in polynomial time and then apply any brute
force algorithm to the shrunk instance.

Kernelization is also a rigorous mathematical analysis of efficient preprocessing.

k

x

k ′

x ′

34

Data reductions—with a guarantee

Kernelization is a method for parameterized preprocessing:
We want to efficiently reduce the size of the instance (x , k) to an equivalent instance
with size bounded by f (k).

A basic way of obtaining FPT algorithms:
Reduce the size of the instance to f (k) in polynomial time and then apply any brute
force algorithm to the shrunk instance.

Kernelization is also a rigorous mathematical analysis of efficient preprocessing.

k

x

k ′

x ′ solution

34

Kernel for Vertex Cover

Reduction rules for instance (G , k):
(R1) If v is an isolated vertex, then reduce to (G − v , k).
(R2) If v has degree more than k , then reduce to (G − v , k − 1).

Lemma
If (G , k) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be
applied, then |E (G)| ≤ k2 and |V (G)| ≤ k2 + k .

35

Kernel for Vertex Cover

Reduction rules for instance (G , k):
(R1) If v is an isolated vertex, then reduce to (G − v , k).
(R2) If v has degree more than k , then reduce to (G − v , k − 1).

Lemma
If (G , k) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be
applied, then |E (G)| ≤ k2 and |V (G)| ≤ k2 + k .

35

Kernel for Vertex Cover

Reduction rules for instance (G , k):
(R1) If v is an isolated vertex, then reduce to (G − v , k).
(R2) If v has degree more than k , then reduce to (G − v , k − 1).

Lemma
If (G , k) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be
applied, then |E (G)| ≤ k2 and |V (G)| ≤ k2 + k .

Proof:
Each of the k vertices of the solution can cover at most k edges (by (R2)).
Every vertex of G is either in the solution, or one of the ≤ k neighbors of a vertex
in a solution (by (R1)+(R2)).

35

Kernel for Vertex Cover

Reduction rules for instance (G , k):
(R1) If v is an isolated vertex, then reduce to (G − v , k).
(R2) If v has degree more than k , then reduce to (G − v , k − 1).

Lemma
If (G , k) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be
applied, then |E (G)| ≤ k2 and |V (G)| ≤ k2 + k .

Kernelization for Vertex Cover:
Apply rules (R1) and (R2) exhaustively.
If |E (G)| > k2 or |V (G)| > k2 + k , then we have a no-instance.
Otherwise, we have a kernel of size O(k2).

35

Kernelization: formal definition

Let P ⊆ Σ∗×N be a parameterized probem and f : N→ N a computable function.
A kernel for P of size f is an algorithm that, given (x , k), takes time polynomial
in |x |+ k and outputs an instance (x ′, k ′) such that

(x , k) ∈ P ⇐⇒ (x ′, k ′) ∈ P
|x ′| ≤ f (k), k ′ ≤ f (k).

A polynomial kernel is a kernel whose function f is polynomial.

Which parameterized problems have kernels?

36

Kernelization: formal definition

Let P ⊆ Σ∗×N be a parameterized probem and f : N→ N a computable function.
A kernel for P of size f is an algorithm that, given (x , k), takes time polynomial
in |x |+ k and outputs an instance (x ′, k ′) such that

(x , k) ∈ P ⇐⇒ (x ′, k ′) ∈ P
|x ′| ≤ f (k), k ′ ≤ f (k).

A polynomial kernel is a kernel whose function f is polynomial.
Which parameterized problems have kernels?

36

A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of
arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to f (k) in poly time + brute force
⇒ problem is FPT.

If the problem can be solved in time f (k)|x |O(1):
If |x | ≤ f (k), then we already have a kernel of size f (k).
If |x | ≥ f (k), then we can solve the problem in time f (k)|x |O(1) ≤ |x | · |x |O(1)

(polynomial in |x |) and then output a trivial yes- or no-instance.

The existence of kernels is not a separate question. . .
. . .but the existence of polynomial kernels is a deep and nontrivial topic!

37

A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of
arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to f (k) in poly time + brute force
⇒ problem is FPT.

If the problem can be solved in time f (k)|x |O(1):
If |x | ≤ f (k), then we already have a kernel of size f (k).
If |x | ≥ f (k), then we can solve the problem in time f (k)|x |O(1) ≤ |x | · |x |O(1)

(polynomial in |x |) and then output a trivial yes- or no-instance.

The existence of kernels is not a separate question. . .
. . .but the existence of polynomial kernels is a deep and nontrivial topic!

37

A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of
arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to f (k) in poly time + brute force
⇒ problem is FPT.
If the problem can be solved in time f (k)|x |O(1):

If |x | ≤ f (k), then we already have a kernel of size f (k).
If |x | ≥ f (k), then we can solve the problem in time f (k)|x |O(1) ≤ |x | · |x |O(1)

(polynomial in |x |) and then output a trivial yes- or no-instance.

The existence of kernels is not a separate question. . .
. . .but the existence of polynomial kernels is a deep and nontrivial topic!

37

A surprising equivalence

Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of
arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to f (k) in poly time + brute force
⇒ problem is FPT.
If the problem can be solved in time f (k)|x |O(1):

If |x | ≤ f (k), then we already have a kernel of size f (k).
If |x | ≥ f (k), then we can solve the problem in time f (k)|x |O(1) ≤ |x | · |x |O(1)

(polynomial in |x |) and then output a trivial yes- or no-instance.

The existence of kernels is not a separate question. . .
. . .but the existence of polynomial kernels is a deep and nontrivial topic!

37

Color Coding

38

Why randomized?

A guaranteed error probability of 10−100 is as good as a deterministic algorithm.
(Probability of hardware failure is larger!)
Randomized algorithms can be more efficient and/or conceptually simpler.
Can be the first step towards a deterministic algorithm.

39

Polynomial-time vs. FPT randomization

Polynomial-time randomized algorithms
Randomized selection to pick a typical, unproblematic, average element/subset.
Success probability is constant or at most polynomially small.

Randomized FPT algorithms
Randomized selection to satisfy a bounded number of (unknown) constraints.
Success probability might be exponentially small.

40

Randomization as reduction

Problem A
(what we want to solve)

Randomized magic
Problem B

(what we can solve)

41

Color Coding

k-Path
Input: A graph G , integer k .
Find: A simple path on k vertices.

Note: The problem is clearly NP-hard, as it contains the Hamiltonian Path
problem.

Theorem
k-Path can be solved in time 2O(k) · nO(1).

42

Color Coding

Assign colors from [k] to vertices V (G) uniformly and independently at random.

Check if there is a path colored 1− 2− · · · − k ; output “YES” or “NO”.
If there is no k-path: no path colored 1− 2− · · · − k exists ⇒ “NO”.
If there is a k-path: the probability that such a path is colored 1− 2− · · · − k is k−k

thus the algorithm outputs “YES” with at least that probability.

43

Color Coding

Assign colors from [k] to vertices V (G) uniformly and independently at random.

2

4544

3 3 2

21

Check if there is a path colored 1− 2− · · · − k ; output “YES” or “NO”.
If there is no k-path: no path colored 1− 2− · · · − k exists ⇒ “NO”.
If there is a k-path: the probability that such a path is colored 1− 2− · · · − k is k−k

thus the algorithm outputs “YES” with at least that probability.

43

Color Coding

Assign colors from [k] to vertices V (G) uniformly and independently at random.

2

44

3

54

3 2

21

Check if there is a path colored 1− 2− · · · − k ; output “YES” or “NO”.
If there is no k-path: no path colored 1− 2− · · · − k exists ⇒ “NO”.
If there is a k-path: the probability that such a path is colored 1− 2− · · · − k is k−k

thus the algorithm outputs “YES” with at least that probability.

43

Error probability

Useful fact
If the probability of success is at least p, then the probability that the algorithm does
not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p

)1/p
= 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk repetitions.
Repeating the whole algorithm a constant number of times can make the error
probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the probability of a wrong
answer is at most 1/e100.

44

Error probability

Useful fact
If the probability of success is at least p, then the probability that the algorithm does
not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p

)1/p
= 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk repetitions.
Repeating the whole algorithm a constant number of times can make the error
probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the probability of a wrong
answer is at most 1/e100.

44

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to class k .

45

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to class k .

45

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to class k .

45

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to class k .

45

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to class k .

45

Color Coding

k-PATH

Color Coding
success probability: k−k

Finding a
1− 2− · · · − k colored

path

polynomial-time solvable

46

Improved Color Coding

Assign colors from [k] to vertices V (G) uniformly and independently at random.

2

4544

3 3 2

21

Check if there is a colorful path where each color appears exactly once on the
vertices; output “YES” or “NO”.

47

Improved Color Coding

Assign colors from [k] to vertices V (G) uniformly and independently at random.

2

4544

3 3 2

21

Check if there is a colorful path where each color appears exactly once on the
vertices; output “YES” or “NO”.

If there is no k-path: no colorful path exists ⇒ “NO”.
If there is a k-path: the probability that it is colorful is

k!

kk
>

(k
e)k

kk
= e−k ,

thus the algorithm outputs “YES” with at least that probability.

47

Improved Color Coding

Assign colors from [k] to vertices V (G) uniformly and independently at random.

2

4544

3 3 2

21

Repeating the algorithm 100ek times decreases the error probability to e−100.
How to find a colorful path?

Try all permutations (k! · nO(1) time)
Dynamic programming (2k · nO(1) time)

47

Finding a colorful path
Subproblems:
We introduce 2k · |V (G)| Boolean variables:

x(v ,C) = TRUE for some v ∈ V (G) and C ⊆ [k]
m

There is a path P ending at v such that each color in C appears on P
exactly once and no other color appears.

Answer:
There is a colorful path ⇐⇒ x(v , [k]) = TRUE for some vertex v .

48

Finding a colorful path
Subproblems:
We introduce 2k · |V (G)| Boolean variables:

x(v ,C) = TRUE for some v ∈ V (G) and C ⊆ [k]
m

There is a path P ending at v such that each color in C appears on P
exactly once and no other color appears.

Initialization:
For every v with color r , x(v , {r}) = TRUE.
Recurrence:
For every v with color r and set C ⊆ [k]

x(v ,C) =
∨

u∈N(v)

x(u,C \ {r}).

48

Improved Color Coding

k-PATH

Color Coding
success probability: e−k

Finding a colorful
path

Solvable in time 2k · nO(1)

49

Derandomization

Definition
A family H of functions [n]→ [k] is a k-perfect family of hash functions if for every
S ⊆ [n] with |S | = k , there is an h ∈ H such that h(x) 6= h(y) for any x , y ∈ S , x 6= y .

Theorem
There is a k-perfect family of functions [n]→ [k] having size 2O(k) log n (and can be
constructed in time polynomial in the size of the family).

Instead of trying O(ek) random colorings, we go through a k-perfect family H of
functions V (G)→ [k].

If there is a solution S
⇒ The vertices of S are colorful for at least one h ∈ H
⇒ Algorithm outputs “YES”.
⇒ k-Path can be solved in deterministic time 2O(k) · nO(1).

50

Derandomization

Definition
A family H of functions [n]→ [k] is a k-perfect family of hash functions if for every
S ⊆ [n] with |S | = k , there is an h ∈ H such that h(x) 6= h(y) for any x , y ∈ S , x 6= y .

Theorem
There is a k-perfect family of functions [n]→ [k] having size 2O(k) log n (and can be
constructed in time polynomial in the size of the family).

Instead of trying O(ek) random colorings, we go through a k-perfect family H of
functions V (G)→ [k].

If there is a solution S
⇒ The vertices of S are colorful for at least one h ∈ H
⇒ Algorithm outputs “YES”.
⇒ k-Path can be solved in deterministic time 2O(k) · nO(1).

50

Derandomized Color Coding

k-PATH

k-perfect family
2O(k) log n functions

Finding a colorful
path

Solvable in time 2k · nO(1)

51

Summary

Branching
2O(k) · nO(1) time algorithms for Vertex Cover and Triangle Free Deletion.
2O(k log k)nO(1) time algorithms for Feedback Vertex Set and Closest String

Kernelization
O(k2) kernel for Vertex Cover.

Color Coding
2O(k) · nO(1) (randomized) algorithm for k-Path.

52

The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly
super-

exponential"

Tower of
exponentials

53

