Treewidth: Vol. 2

Dániel Marx

Lecture #8
June 26, 2020
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

Treewidth: width of the best decomposition.
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If \(u \) and \(v \) are neighbors, then there is a bag containing both of them.
2. For every \(v \), the bags containing \(v \) form a connected subtree.

Width of the decomposition: largest bag size \(-1\).

Treewidth: width of the best decomposition.

Each bag is a separator.
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

A subtree communicates with the outside world only via the root of the subtree.
Weighted Max Independent Set and treewidth

Theorem

Given a tree decomposition of width w, Weighted Max Independent Set can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

B_x: vertices appearing in node x.

V_x: vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values $A[v], B[v]$ for each vertex of the graph, we compute $2^{|B_x|} \leq 2^{w+1}$ values for each bag B_x.

$M[x, S]$:
the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.

\[
\begin{align*}
\emptyset & = ? \\
b & = ? \\
c & = ? \\
f & = ? \\
bc & = ? \\
cf & = ? \\
bf & = ? \\
bcf & = ?
\end{align*}
\]
Weighted Max Independent Set and treewidth

Theorem

Given a tree decomposition of width w, Weighted Max Independent Set can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

B_x: vertices appearing in node x.
V_x: vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values $A[v], B[v]$ for each vertex of the graph, we compute $2^{|B_x|} \leq 2^{w+1}$ values for each bag B_x.

$M[x, S]$:
the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.

How to determine $M[x, S]$ if all the values are known for the children of x?
Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

- Logical connectives $\land, \lor, \rightarrow, \neg, =, \neq$
- Quantifiers \forall, \exists over vertex/edge variables
- Predicate $\text{adj}(u, v)$: vertices u and v are adjacent
- Predicate $\text{inc}(e, v)$: edge e is incident to vertex v
- Quantifiers \forall, \exists over vertex/edge set variables
- \in, \subseteq for vertex/edge sets

Example:
The formula

$$\exists C \subseteq V \forall v \in C \exists u_1, u_2 \in C (u_1 \neq u_2 \land \text{adj}(u_1, v) \land \text{adj}(u_2, v))$$

is true on graph G if and only if G has a cycle.
Courcelle’s Theorem

There exists an algorithm that, given a width-w tree decomposition of an n-vertex graph G and an EMSO formula ϕ, decides whether G satisfies ϕ in time $f(w, |\phi|) \cdot n$.

If we can express a property in EMSO, then we immediately get that testing this property is FPT parameterized by the treewidth w of the input graph.

⇒ The following problem are FPT parameterized by treewidth:

- c-Coloring
- Hamiltonian Cycle
- Partition into Triangles
- …
Subgraph Isomorphism

Input: graphs H and G
Find: a subgraph of G isomorphic to H.
Subgraph Isomorphism

Input: graphs H and G
Find: a subgraph of G isomorphic to H.

For each H, we can construct a formula ϕ_H that expresses “G has a subgraph isomorphic to H”.

⇒ By Courcelle’s Theorem, Subgraph Isomorphism can be solved in time $f(H, w) \cdot n$ if G has treewidth at most w.

Theorem

Subgraph Isomorphism is FPT parameterized by combined parameter $k := |V(H)|$ and the treewidth w of G.
Finding tree decompositions

Fixed-parameter tractability:

Theorem [Bodlaender 1996]

There is a $2^{O(w^3)} \cdot n$ time algorithm that finds a tree decomposition of width w (if exists).

Sometimes we can get better dependence on treewidth using approximation.

FPT approximation:

Theorem

There is a $O(3^{3w} \cdot w \cdot n^2)$ time algorithm that finds a tree decomposition of width $4w + 1$, if the treewidth of the graph is at most w.
But first a simple application...
Treewidth — outline

1. Basic algorithms
2. Combinatorial properties
3. Applications

But first a simple application...
Depth-first search (DFS)

Theorem

Finding a cycle of length at least k in a graph is FPT parameterized by k.

Let us start a depth-first search from an arbitrary vertex v. There are two types of edges: tree edges and back edges. If there is a back edge whose endpoints differ by at least $k - 1$ levels \Rightarrow there is a cycle of length at least k. Otherwise, the graph has treewidth at most $k - 2$ and we can solve the problem by applying Courcelle's Theorem. In the second case, a tree decomposition can be easily found: the decomposition has the same structure as the DFS spanning tree and each bag contains the vertex and its $k - 2$ ancestors.
Depth-first search (DFS)

Theorem

Finding a cycle of length \textbf{at least} \(k \) in a graph is FPT parameterized by \(k \).

Let us start a depth-first search from an arbitrary vertex \(v \). There are two types of edges: \textit{tree edges} and \textit{back edges}.

\[\text{If there is a back edge whose endpoints differ by at least } k - 1 \text{ levels} \Rightarrow \text{there is a cycle of length at least } k. \]

Otherwise, the graph has treewidth at most \(k - 2 \) and we can solve the problem by applying Courcelle's Theorem.

In the second case, a tree decomposition can be easily found: the decomposition has the same structure as the DFS spanning tree and each bag contains the vertex and its \(k - 2 \) ancestors.
Depth-first search (DFS)

Theorem

Finding a cycle of length at least k in a graph is FPT parameterized by k.

Let us start a depth-first search from an arbitrary vertex v. There are two types of edges: tree edges and back edges.

- If there is a back edge whose endpoints differ by at least $k - 1$ levels \Rightarrow there is a cycle of length at least k.

![Diagram of depth-first search](image)
Depth-first search (DFS)

Theorem

Finding a cycle of length at least k in a graph is FPT parameterized by k.

Let us start a depth-first search from an arbitrary vertex v. There are two types of edges: tree edges and back edges.

- If there is a back edge whose endpoints differ by at least $k - 1$ levels \Rightarrow there is a cycle of length at least k.
- Otherwise, the graph has treewidth at most $k - 2$ and we can solve the problem by applying Courcelle’s Theorem.

In the second case, a tree decomposition can be easily found: the decomposition has the same structure as the DFS spanning tree and each bag contains the vertex and its $k - 2$ ancestors.
Minor

An operation similar to taking subgraphs:

Definition

Graph H is a **minor** of G ($H \leq G$) if H can be obtained from G by deleting edges, deleting vertices, and contracting edges.
A classical result

Theorem [Kuratowski 1930]

A graph G is planar if and only if G does not contain a subdivision of K_5 or $K_{3,3}$.
A classical result

Theorem [Kuratowski 1930]
A graph G is planar if and only if G does not contain a subdivision of K_5 or $K_{3,3}$.

Theorem [Wagner 1937]
A graph G is planar if and only if G does not contain K_5 or $K_{3,3}$ as minor.

K_5

$K_{3,3}$
Graph Minors Theory

Theory of graph minors developed in the monumental series

Graph Minors I–XXIII.
J. Combin. Theory, Ser. B
1983–2012

- Structure theory of graphs excluding minors (and much more).
- Galactic combinatorial bounds and running times.
- Important early influence for parameterized algorithms.
Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

⇒ If F is a minor of G, then the treewidth of F is at most the treewidth of G.

Fact: For every clique K, there is a bag B with $K \subseteq B$.

Fact: The treewidth of the k-clique is $k - 1$.

Fact: For every $k \geq 2$, the treewidth of the $k \times k$ grid is exactly k.

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.⇒ If F is a minor of G, then the treewidth of F is at most the treewidth of G.

Fact: For every clique K, there is a bag B with $K \subseteq B$.

Fact: The treewidth of the k-clique is $k - 1$.
Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

⇒ If F is a minor of G, then the treewidth of F is at most the treewidth of G.

Fact: For every clique K, there is a bag B with $K \subseteq B$.

Fact: The treewidth of the k-clique is $k - 1$.

Fact: For every $k \geq 2$, the treewidth of the $k \times k$ grid is exactly k.
The Cops and Robber game

Game: k cops try to capture a robber in the graph.

- In each step, (a subset of) the cops can move from vertex to vertex arbitrarily with helicopters.
- The robber moves infinitely fast on the edges, cannot move through the cops staying on the ground, and sees where the cops will land.
The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.
The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.
The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.
The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.
The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.
The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.
The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.
The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.
The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.
The Cops and Robber game

Theorem [Seymour and Thomas 1993]

\[k + 1 \text{ cops can win the game} \iff \text{the treewidth of the graph is at most } k. \]
The Cops and Robber game

Theorem [Seymour and Thomas 1993]

\[k + 1 \text{ cops can win the game} \iff \text{the treewidth of the graph is at most } k. \]

Consequence 1: Algorithms

The winner of the game can be determined in time \(n^{O(k)} \) using standard techniques (there are at most \(n^k \) positions for the cops)

\[\Downarrow \]

For every fixed \(k \), it can be checked in polynomial time if treewidth is at most \(k \).

(But \(f(k) \cdot n^{O(1)} \) algorithms are also known with different techniques!)
The Cops and Robber game

<table>
<thead>
<tr>
<th>Theorem [Seymour and Thomas 1993]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k + 1$ cops can win the game ⇐⇒ the treewidth of the graph is at most k.</td>
</tr>
</tbody>
</table>

Consequence 2: Lower bounds

Exercise 1:
Show that the treewidth of the $k \times k$ grid is at least $k - 1$.
(E.g., robber can win against $k - 1$ cops.)

Exercise 2:
Show that the treewidth of the $k \times k$ grid is at least k.
(E.g., robber can win against k cops.)
Excluded Grid Theorem

If the treewidth of G is $\Omega(k^9 \log k)$, then G has a $k \times k$ grid minor.
Excluded Grid Theorem

If the treewidth of G is $\Omega(k^9 \log k)$, then G has a $k \times k$ grid minor.

A large grid minor is a “witness” that treewidth is large, but the relation is approximate:

- No $k \times k$ grid minor \implies tree decomposition of width $O(k^9 \log k)$
- Tree decomposition of width $< k$ \implies no $k \times k$ grid minor
Excluded Grid Theorem

<table>
<thead>
<tr>
<th>Excluded Grid Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the treewidth of G is $\Omega(k^9 \log k)$, then G has a $k \times k$ grid minor.</td>
</tr>
</tbody>
</table>

Observation: Every planar graph is the minor of a sufficiently large grid.

<table>
<thead>
<tr>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>If H is planar, then every H-minor free graph has treewidth at most $f(H)$.</td>
</tr>
</tbody>
</table>
Planar Excluded Grid Theorem

For planar graphs, we get linear instead of exponential dependence:

Theorem

Every *planar graph* with treewidth at least $5k$ has a $k \times k$ grid minor.

- No $k \times k$ grid minor \implies tree decomposition of width $O(k)$
- Tree decomposition of width $< k$ \implies no $k \times k$ grid minor
Planar Excluded Grid Theorem

For planar graphs, we get linear instead of exponential dependence:

Theorem

Every planar graph with treewidth at least $5k$ has a $k \times k$ grid minor.

Theorem

An n-vertex planar graph has treewidth $O(\sqrt{n})$.
Outerplanar graphs

Definition
A planar graph is **outerplanar** if it has a planar embedding where every vertex is on the infinite face.

Fact
Every outerplanar graph has treewidth at most 2.
k-outerplanar graphs

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition

A planar graph is **k-outerplanar** if it has a planar embedding having at most \(k \) layers.

Fact

Every \(k \)-outerplanar graph has treewidth at most \(3k + 1 \).
k-outerplanar graphs

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition

A planar graph is **k-outerplanar** if it has a planar embedding having at most k layers.

Fact

Every k-outerplanar graph has treewidth at most $3k + 1$.
k-outerplanar graphs

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition

A planar graph is **k-outerplanar** if it has a planar embedding having at most k layers.

Fact

Every k-outerplanar graph has treewidth at most $3k + 1$.
k-outerplanar graphs

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition

A planar graph is **k-outerplanar** if it has a planar embedding having at most k layers.

Fact

Every k-outerplanar graph has treewidth at most $3k + 1$.

```plaintext
Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

**Definition**

A planar graph is **$k$-outerplanar** if it has a planar embedding having at most $k$ layers.

**Fact**

Every $k$-outerplanar graph has treewidth at most $3k + 1$. 
```
k-outerplanar graphs

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition

A planar graph is **k-outerplanar** if it has a planar embedding having at most k layers.

Fact

Every k-outerplanar graph has treewidth at most $3k + 1$.
Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications
 - The shifting technique
 - Bidimensionality
Approximation schemes

Definition

A polynomial-time approximation scheme (PTAS) for a problem P is an algorithm that takes an instance of P and a rational number $\epsilon > 0$,

- always finds a $(1 + \epsilon)$-approximate solution,
- the running time is polynomial in n for every fixed $\epsilon > 0$.

Typical running times: $2^{1/\epsilon} \cdot n$, $n^{1/\epsilon}$, $(n/\epsilon)^2$, n^{1/ϵ^2}.
Approximation schemes

Definition

A polynomial-time approximation scheme (PTAS) for a problem P is an algorithm that takes an instance of P and a rational number $\epsilon > 0$,

- always finds a $(1 + \epsilon)$-approximate solution,
- the running time is polynomial in n for every fixed $\epsilon > 0$.

Typical running times: $2^{1/\epsilon} \cdot n$, $n^{1/\epsilon}$, $(n/\epsilon)^2$, n^{1/ϵ^2}.

Some classical problems that have a PTAS:

- **Independent Set** for planar graphs
- **TSP** in the Euclidean plane
- **Steiner Tree** in planar graphs
- **Knapsack**
Baker’s shifting strategy for PTAS

Theorem
There is a $2^{O(1/\epsilon)} \cdot n$ time PTAS for \textsc{Independent Set} for planar graphs.

Let $D := 1/\epsilon$. For a fixed $0 \leq s < D$, delete every layer L_i with $i = s \pmod{D}$.
Baker’s shifting strategy for PTAS

Theorem

There is a $2^{O(1/\epsilon)} \cdot n$ time PTAS for **Independent Set** for planar graphs.

Let $D := 1/\epsilon$. For a fixed $0 \leq s < D$, delete every layer L_i with $i = s \pmod{D}$.
Baker’s shifting strategy for PTAS

Theorem

There is a $2^{O(1/\epsilon)} \cdot n$ time PTAS for **Independent Set** for planar graphs.

Let $D := 1/\epsilon$. For a fixed $0 \leq s < D$, delete every layer L_i with $i = s \pmod{D}$.
Theorem

There is a $2^{O(1/\epsilon)} \cdot n$ time PTAS for **Independent Set** for planar graphs.

1. Let $D := 1/\epsilon$. For a fixed $0 \leq s < D$, delete every layer L_i with $i = s \pmod{D}$
Baker’s shifting strategy for PTAS

Theorem

There is a $2^{O(1/\epsilon)} \cdot n$ time PTAS for **Independent Set** for planar graphs.

- Let $D := 1/\epsilon$. For a fixed $0 \leq s < D$, delete every layer L_i with $i = s \pmod{D}$.
Theorem

There is a $2^{O(1/\epsilon)} \cdot n$ time PTAS for **Independent Set** for planar graphs.

- Let $D := 1/\epsilon$. For a fixed $0 \leq s < D$, delete every layer L_i with $i = s \pmod{D}$.
- The resulting graph is D-outerplanar, hence it has treewidth at most $3D + 1 = O(1/\epsilon)$.
- Using the $2^{O(tw)} \cdot n$ time algorithm for **Independent Set**, the problem on the D-outerplanar graph can be solved in time $2^{O(1/\epsilon)} \cdot n$.
Baker's shifting strategy for PTAS

Theorem

There is a $2^{O(1/\epsilon)} \cdot n$ time PTAS for **INDEPENDENT SET** for planar graphs.

We do this for every $0 \leq s < D$:
for at least one value of s, we delete
at most $1/D = \epsilon$ fraction of the solution

⇓

We get a $(1 + \epsilon)$-approximate solution.
Baker’s shifting strategy for FPT

Subgraph Isomorphism

Input: graphs H and G

Find: a subgraph G isomorphic to H.

24
Baker’s shifting strategy for FPT

Subgraph Isomorphism

Input: graphs H and G
Find: a subgraph G isomorphic to H.

- For a fixed $0 \leq s < k + 1$, delete every layer L_i with $i = s \pmod{k + 1}$

The resulting graph is k-outerplanar, hence it has treewidth at most $3k + 1$. Using the $f(k, \text{tw}) \cdot n$ time algorithm for Subgraph Isomorphism, the problem can be solved in time $f(k, 3k + 1) \cdot n$. 24
Baker’s shifting strategy for FPT

Subgraph Isomorphism

Input: graphs \(H \) and \(G \)
Find: a subgraph \(G \) isomorphic to \(H \).

- For a fixed \(0 \leq s < k + 1 \), delete every layer \(L_i \) with \(i = s \mod (k + 1) \)

The resulting graph is \(k \)-outerplanar, hence it has treewidth at most \(3k + 1 \).

Using the \(f(k, \text{tw}) \cdot n \) time algorithm for Subgraph Isomorphism, the problem can be solved in time \(f(k, 3k + 1) \cdot n \).
Baker’s shifting strategy for FPT

Subgraph Isomorphism

Input: graphs H and G
Find: a subgraph G isomorphic to H.

- For a fixed $0 \leq s < k + 1$, delete every layer L_i with $i = s \pmod{k + 1}$
Baker’s shifting strategy for FPT

Subgraph Isomorphism

Input: graphs H and G
Find: a subgraph G isomorphic to H.

- For a fixed $0 \leq s < k + 1$, delete every layer L_i with $i = s \pmod{k + 1}$

The resulting graph is k-outerplanar, hence it has treewidth at most $3k + 1$.

Using the $f(k, \text{tw}) \cdot n$ time algorithm for Subgraph Isomorphism, the problem can be solved in time $f(k, 3k + 1) \cdot n$.
Baker’s shifting strategy for FPT

Subgraph Isomorphism

- **Input:** graphs H and G
- **Find:** a subgraph G isomorphic to H.

- For a fixed $0 \leq s < k + 1$, delete every layer L_i with $i = s \pmod{k + 1}$
- The resulting graph is k-outerplanar, hence it has treewidth at most $3k + 1$.
- Using the $f(k, tw) \cdot n$ time algorithm for Subgraph Isomorphism, the problem can be solved in time $f(k, 3k + 1) \cdot n$.
Baker’s shifting strategy for FPT

Subgraph Isomorphism

Input: graphs H and G
Find: a subgraph G isomorphic to H.

We do this for every $0 \leq s < k + 1$:

for at least one value of s, we do not delete
any of the k vertices of the solution

⇓

We find a copy of H in G if there is one.
Baker’s shifting strategy for FPT

Subgraph Isomorphism

- **Input:** graphs H and G
- **Find:** a subgraph G isomorphic to H.

We do this for every $0 \leq s < k + 1$:

- for at least one value of s, we do not delete any of the k vertices of the solution

\[\Downarrow \]

We find a copy of H in G if there is one.
Baker’s shifting strategy for FPT

Subgraph Isomorphism

Input: graphs H and G
Find: a subgraph G isomorphic to H.

We do this for every $0 \leq s < k + 1$: for at least one value of s, we do not delete any of the k vertices of the solution

⇓

We find a copy of H in G if there is one.
Baker’s shifting strategy for FPT

Subgraph Isomorphism

Input: graphs \(H \) and \(G \)

Find: a subgraph \(G \) isomorphic to \(H \).

We do this for every \(0 \leq s < k + 1 \):

- for at least one value of \(s \), we do not delete any of the \(k \) vertices of the solution

\[\downarrow \]

We find a copy of \(H \) in \(G \) if there is one.
Baker's shifting strategy for FPT

Subgraph Isomorphism

Input: graphs H and G
Find: a subgraph G isomorphic to H.

Theorem

Subgraph Isomorphism for planar graphs is FPT parameterized by $k := |V(H)|$.
Baker’s shifting strategy for FPT

- The technique is very general, works for many problems on planar graphs:
 - **Independent Set**
 - **Vertex Cover**
 - **Dominating Set**
 - **k-Path**
 - ...

- More generally: First-Order Logic problems.

- But for some of these problems, much better techniques are known (see the following slides).
Square root phenomenon

Most NP-hard problems (e.g., \textbf{3-Coloring}, \textbf{Independent Set}, \textbf{Hamiltonian Cycle}, \textbf{Steiner Tree}, etc.) remain NP-hard on planar graphs.\footnote{Notable exception: \textbf{Max Cut} is in P for planar graphs.}
Square root phenomenon

Most NP-hard problems (e.g., \textsc{3-Coloring}, \textsc{Independent Set}, \textsc{Hamiltonian Cycle}, \textsc{Steiner Tree}, etc.) remain NP-hard on planar graphs.\footnote{Notable exception: \textsc{Max Cut} is in P for planar graphs.}

The running time is still exponential, but significantly smaller:

\[
\begin{align*}
2^{O(n)} & \Rightarrow 2^{O(\sqrt{n})} \\
2^{O(k)} \cdot n^{O(1)} & \Rightarrow 2^{O(\sqrt{k})} \cdot n^{O(1)}
\end{align*}
\]

Example: A planar \(n\)-vertex graph has treewidth \(2^{O(\sqrt{n})}\) \(\Rightarrow\) \textsc{3-Coloring} can be solved in time \(2^{O(\sqrt{n})}\) in planar graphs.
Theorem

Vertex Cover can be solved in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$ in planar graphs.

We need two facts:
- Removing an edge, removing a vertex, contracting an edge cannot increase the vertex cover number.
- **Vertex Cover** can be solved in time $2^w \cdot n^{O(1)}$ if a tree decomposition of width w is given.
Vertex Cover

Observation: If the treewidth of a planar graph G is at least $5\sqrt{2}k$

\Rightarrow It has a $\sqrt{2}k \times \sqrt{2}k$ grid minor (Planar Excluded Grid Theorem)

\Rightarrow The grid has a matching of size k

\Rightarrow Vertex cover size is at least k in the grid.

\Rightarrow Vertex cover size is at least k in G.
Vertex Cover

Observation: If the treewidth of a planar graph G is at least $5\sqrt{2k}$

\Rightarrow It has a $\sqrt{2k} \times \sqrt{2k}$ grid minor (Planar Excluded Grid Theorem)

\Rightarrow The grid has a matching of size k

\Rightarrow Vertex cover size is at least k in the grid.

\Rightarrow Vertex cover size is at least k in G.

We use this observation to solve **Vertex Cover** on planar graphs:

- If treewidth is at least $5\sqrt{2k}$: we answer “vertex cover is $\geq k$.”

- If treewidth is less than $5\sqrt{2k}$, then we can solve the problem in time $2^{O(5\sqrt{2k})} \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$.
Vertex Cover

Observation: If the treewidth of a planar graph G is at least $5\sqrt{2k}$

\Rightarrow It has a $\sqrt{2k} \times \sqrt{2k}$ grid minor (Planar Excluded Grid Theorem)

\Rightarrow The grid has a matching of size k

\Rightarrow Vertex cover size is at least k in the grid.

\Rightarrow Vertex cover size is at least k in G.

We use this observation to solve **Vertex Cover** on planar graphs:

- Set $w := 5\sqrt{2k}$.
- Find a 4-approximate tree decomposition.
 - If treewidth is at least w: we answer “vertex cover is $\geq k$.”
 - If we get a tree decomposition of width $4w$, then we can solve the problem in time $2^{O(w)} \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$.

![Grid minor diagram](image-url)
Bidimensionality

A powerful framework for efficient algorithms on planar graphs.

Setup:

- Let $x(G)$ be some graph invariant (i.e., an integer associated with each graph).
- Given G and k, we want to decide if $x(G) \leq k$ (or $x(G) \geq k$).
- Typical examples:
 - Maximum independent set size.
 - Minimum vertex cover size.
 - Length of the longest path.
 - Minimum dominating set size.
 - Minimum feedback vertex set size.

Bidimensionality

For many natural invariants, we can do this in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$ on planar graphs.
Bidimensionality

Definition

A graph invariant $x(G)$ is **minor-bidimensional** if

- $x(G') \leq x(G)$ for every minor G' of G, and

- If G_k is the $k \times k$ grid, then $x(G_k) \geq ck^2$
 (for some constant $c > 0$).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.
Bidimensionality

Definition
A graph invariant \(x(G) \) is **minor-bidimensional** if
- \(x(G') \leq x(G) \) for every minor \(G' \) of \(G \), and
- If \(G_k \) is the \(k \times k \) grid, then \(x(G_k) \geq ck^2 \)
 (for some constant \(c > 0 \)).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.
Bidimensionality

Definition

A graph invariant $x(G)$ is **minor-bidimensional** if

- $x(G') \leq x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \geq ck^2$ (for some constant $c > 0$).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.
Bidimensionality (cont.)

We can answer “$x(G) \geq k$?” for a minor-bidimensional invariant the following way:

- Set $w := c\sqrt{k}$ for an appropriate constant c.
- Use the 4-approximation tree decomposition algorithm.
 - If treewidth is at least w: $x(G)$ is at least k.
 - If we get a tree decomposition of width $4w$, then we can solve the problem using dynamic programming on the tree decomposition.

Running time:

- If we can solve the problem on tree decomposition of width w in time $2^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k})} \cdot n^{O(1)}$.
- If we can solve the problem on tree decomposition of width w in time $w^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k \log k})} \cdot n^{O(1)}$.
Contraction bidimensionality

Definition

A graph invariant \(x(G) \) is **minor-bidimensional** if

- \(x(G') \leq x(G) \) for every minor \(G' \) of \(G \), and

- If \(G_k \) is the \(k \times k \) grid, then \(x(G_k) \geq ck^2 \)

(For some constant \(c > 0 \)).

Exercise: **Dominating Set** is **not** minor-bidimensional.
Contraction bidimensionality

Definition

A graph invariant $x(G)$ is **minor-bidimensional** if

- $x(G') \leq x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \geq ck^2$ (for some constant $c > 0$).

Exercise: Dominating Set is not minor-bidimensional.

We fix the problem by allowing only contractions but not edge/vertex deletions.
Every planar graph with treewidth at least $5k$ can be contracted to a partially triangulated $k \times k$ grid.
Definition

A graph invariant $x(G)$ is **contraction-bidimensional** if

- $x(G') \leq x(G)$ for every contraction G' of G, and
- If G_k is a $k \times k$ partially triangulated grid, then $x(G_k) \geq ck^2$ (for some $c > 0$).
Contraction bidimensionality

Definition
A graph invariant \(x(G) \) is **contraction-bidimensional** if

- \(x(G') \leq x(G) \) for every contraction \(G' \) of \(G \), and
- If \(G_k \) is a \(k \times k \) partially triangulated grid, then \(x(G_k) \geq ck^2 \) (for some \(c > 0 \)).

Example: **minimum dominating set**, **maximum independent set** are contraction-bidimensional.
Contraction bidimensionality

Definition

A graph invariant $x(G)$ is **contraction-bidimensional** if

- $x(G') \leq x(G)$ for every contraction G' of G, and
- If G_k is a $k \times k$ partially triangulated grid, then $x(G_k) \geq ck^2$ (for some $c > 0$).

Example: minimum dominating set, **maximum independent set** are contraction-bidimensional.
Bidimensionality for Dominating Set

The size of a minimum dominating set is a contraction bidimensional invariant: we need at least \((k - 2)^2 / 9\) vertices to dominate all the internal vertices of a partially triangulated \(k \times k\) grid (since a vertex can dominate at most 9 internal vertices).

Theorem

Given a tree decomposition of width \(w\), Dominating Set can be solved in time \(3^w \cdot w^{O(1)} \cdot n^{O(1)}\).

Solving Dominating Set on planar graphs:

- Set \(w := 5(3\sqrt{k} + 2)\).
- Use the 4-approximation tree decomposition algorithm.
 - If treewidth is at least \(w\): we answer 'dominating set is \(\geq k\)'.
 - If we get a tree decomposition of width \(4w\), then we can solve the problem in time \(3^w \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}\).
The race for better FPT algorithms

Single exponential

"Slightly super-exponential"

Double exponential

Tower of exponentials

Subexponential
Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no $2^{o(n+m)}$-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to **Vertex Cover**:

\[x_1 \bar{x}_1 \quad x_2 \bar{x}_2 \quad x_3 \bar{x}_3 \quad x_4 \bar{x}_4 \]

\[\begin{array}{cccc}
\triangle & \triangle & \triangle & \triangle \\
\end{array} \]
Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no $2^{o(n+m)}$-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:

formula is satisfiable \iff there is a vertex cover of size $n + 2m$
Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no \(2^{o(n+m)}\)-time algorithm for \(n\)-variable \(m\)-clause 3SAT.

The textbook reduction from 3SAT to **Vertex Cover**:

<table>
<thead>
<tr>
<th>3SAT formula (\phi)</th>
<th>Graph (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) variables (m) clauses</td>
<td>(O(n + m)) vertices (O(n + m)) edges</td>
</tr>
</tbody>
</table>

\[v_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5 \quad v_6 \]

\[C_1 \quad C_2 \quad C_3 \quad C_4 \]
Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no $2^{o(n+m)}$-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:

3SAT formula ϕ

n variables

m clauses

\Rightarrow

Graph G

$O(n + m)$ vertices

$O(n + m)$ edges

Corollary

Assuming ETH, there is no $2^{o(n)}$ algorithm for Vertex Cover on an n-vertex graph.
Lower bounds based on ETH

Exponential Time Hypothesis (ETH) + Sparsification Lemma

There is no $2^{o(n+m)}$-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to Vertex Cover:

3SAT formula ϕ
- n variables
- m clauses

\Rightarrow

Graph G
- $O(n + m)$ vertices
- $O(n + m)$ edges

Corollary

Assuming ETH, there is no $2^{o(k)} \cdot n^{O(1)}$ algorithm for Vertex Cover.
Other problems

There are polytime reductions from 3SAT to many problems such that the reduction creates a graph with $O(n + m)$ vertices/edges.

Consequence: Assuming ETH, the following problems cannot be solved in time $2^{o(n)}$ and hence in time $2^{o(k)} \cdot n^{O(1)}$ (but $2^{O(k)} \cdot n^{O(1)}$ time algorithms are known):

- Vertex Cover
- Longest Cycle
- Feedback Vertex Set
- Multiway Cut
- Odd Cycle Transversal
- Steiner Tree
- …
Lower bounds based on ETH

What about **3-Coloring** on planar graphs?

The textbook reduction from **3-Coloring** to **Planar 3-Coloring** uses a “crossover gadget” with 4 external connectors:

- In every 3-coloring of the gadget, opposite external connectors have the same color.
- Every coloring of the external connectors where the opposite vertices have the same color can be extended to the whole gadget.
- If two edges cross, replace them with a crossover gadget.
Lower bounds based on ETH

What about \textsc{3-Coloring} on planar graphs?

The textbook reduction from \textsc{3-Coloring} to \textsc{Planar 3-Coloring} uses a “crossover gadget” with 4 external connectors:

- In every 3-coloring of the gadget, opposite external connectors have the same color.
- Every coloring of the external connectors where the opposite vertices have the same color can be extended to the whole gadget.
- If two edges cross, replace them with a crossover gadget.
Lower bounds based on ETH

What about \textsc{3-Coloring} on planar graphs?

The textbook reduction from \textsc{3-Coloring} to \textsc{Planar 3-Coloring} uses a “crossover gadget” with 4 external connectors:

- In every 3-coloring of the gadget, opposite external connectors have the same color.
- Every coloring of the external connectors where the opposite vertices have the same color can be extended to the whole gadget.
- If two edges cross, replace them with a crossover gadget.
Lower bounds based on ETH

- The reduction from 3-Coloring to Planar 3-Coloring introduces $O(1)$ new edges/vertices for each crossing.
- A graph with m edges can be drawn with $O(m^2)$ crossings.

<table>
<thead>
<tr>
<th>3SAT formula ϕ</th>
<th>Graph G</th>
<th>Planar graph G'</th>
</tr>
</thead>
<tbody>
<tr>
<td>n variables</td>
<td>$O(m)$ vertices</td>
<td>$O(m^2)$ vertices</td>
</tr>
<tr>
<td>m clauses</td>
<td>$O(m)$ edges</td>
<td>$O(m^2)$ edges</td>
</tr>
</tbody>
</table>

Corollary

Assuming ETH, there is no $2^{o(\sqrt{n})}$ algorithm for 3-Coloring on an n-vertex planar graph G.
Consequence: Assuming ETH, there is no $2^{o(\sqrt{n})}$ time algorithm on n-vertex planar graphs for

- Independent Set
- Dominating Set
- Vertex Cover
- Hamiltonian Path
- Feedback Vertex Set
- ...
Lower bounds for planar problems

Consequence: Assuming ETH, there is no $2^{o(\sqrt{k})} \cdot n^{O(1)}$ time algorithm on planar graphs for

- **Independent Set**
- **Dominating Set**
- **Vertex Cover**
- **Path**
- **Feedback Vertex Set**
- ...
Treewidth — summary

- Notion of treewidth: widely used in graph theory and parameterized algorithms.
- Efficient algorithms parameterized by treewidth.
- Applications e.g. to planar graphs.
Treewidth

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

Treewidth: width of the best decomposition.