
Karl Bringmann and Vasileios Nakos Summer 2020

Sublinear Algorithms, Exercise Sheet 1
www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer20/sublinear-algorithms/

Total Points: 40 Due: Friday, May 22, 2020

You are allowed to collaborate on the exercise sheets, but you have to write down a solution on your own, using
your own words. Please indicate the names of your collaborators for each exercise you solve. Further, cite
all external sources that you use (books, websites, research papers, etc.).

You need to collect at least 50% of all points on exercise sheets to be admitted to the exam.

Exercise 1 10 points
Consider the following multiplicative version of the Chernoff bound:

Lemma (Chernoff Bound). Let X1, . . . , Xn be independent random variables taking values in {0, 1},
and let X =

∑
iXi. Then for all 0 ≤ ε ≤ 1 we have

P
[
|X − E[X]| > εE[X]

]
< 2 exp

(
− ε2 E[X]

3

)
.

Use this lemma to design an algorithm for the following problem: Given an array A of length n filled
with zeros and ones, and given an integer k, the task is to check whether the number of ones in A
approximately exceeds k. More precisely: If there are < (1− ε)k ones you should output “less”, and
if there are > (1 + ε)k ones you should output “more”; if neither is the case, we do not care about
the output. Your algorithm is supposed to be correct with probability 1− δ and you should access A
in at most O(n/k · ε−2 log δ−1) positions.

Exercise 2 5 + 5 points
Let X1, . . . , Xn be 4-wise independent random variables with expectation E[Xi] = 0 for all i. Prove
the following statements:

1. E
[(∑

i

Xi

)4]
=
∑
i

E[X4
i] + 6

∑
i<j

E[X2
i]E[X2

j].

2. P
[∣∣∣∑

i

Xi

∣∣∣ ≥ t] ≤ E
[
(
∑

iXi)
4
]

t4
.

Exercise 3 10 points
Recall the streaming problem of computing a median element from the previous exercise sheet. The
following algorithm solves this problem exactly in the three-pass streaming model – that is, we are
allowed to scan through the stream three times in the same order. We assume that the stream consists
of m distinct elements over the universe [n].

First pass: Sample and store every incoming element with probability 1/
√
m. Let r denote the

number of samples and write a1, . . . , ar for the sampled elements in sorted order. We write
Ai = {ai, . . . , ai+1 − 1} for 1 ≤ i ≤ r − 1 and set A0 = {1, . . . , a1 − 1} and Ar = {ar, . . . , n}.

1

www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer20/sublinear-algorithms/

Second pass: We maintain counters c0, . . . , cr to keep track of the number of stream elements falling
into the intervals A0, . . . , Ar, respectively. After this pass, we compute the (unique) index k with∑k

i=0 ci ≤ dm/2e <
∑k+1

i=0 ci.

Third pass: Store all stream elements lying in the interval Ak. After this pass, sort these elements
and report the (dm/2e −

∑k
i=0 ci)-th smallest such element.

Convince yourself that the algorithm indeed computes a median element. Then prove that with
probability 0.99, the algorithm uses at most O(

√
m log n) bits of space.

Exercise 4 10 points
In the lecture, Morris’ algorithm was presented as a solution for the approximate counting problem: It
returns a (1+ε)-approximation with probability 2

3 and uses O(ε−2 log log(ε−1n)) bits of space. Modify
Morris’ algorithm and improve the space usage to O(log ε−1+ log log n) bits (which is best-possible).

Hint: As opposed to incrementing the counter X with probability 2−X , increment with probability
(1 + γ)−X instead, for some reasonable γ < 1.

2

