A Mathematical Background

A. 1 Calculus

In this appendix, we state some basic results from calculus used in various places throughout the text. We refer the reader to Ross [1] for a systematic derivation of these results.
Theorem A. 1 (Fundamental Theorem of Calculus I, cf. Ross [1] §34.1). Suppose f is continuous on the interval $[a, b]$ and differentiable on (a, b). If f^{\prime} is integrable on [$a, b]$, then

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

Theorem A. 2 (Fundamental Theorem of Calculus II, cf. Ross [1] §34.3). Suppose f is an integrable function on $[a, b]$. Then for $x \in[a, b]$, define

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Then F is continuous on $[a, b]$. If f is continuous at $x_{0} \in[a, b]$, then F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
Theorem A. 3 (Change of Variables Formula, cf. Ross [1] §34.4). Suppose u is a continuously differentiable function on an open interval J. Let I be an open interval such that $u(x) \in I$ for all $x \in J$. If f is continuous on I, then $f \circ u$ is continuous on J and

$$
\int_{a}^{b}(f \circ u)(x) \cdot u^{\prime}(x) d x=\int_{u(a)}^{u(b)} f(u) d u
$$

Lemma A.4. For $k \in \mathbb{N}$, let $\mathcal{F}=\left\{f_{i} \mid i \in[k]\right\}$, where each $f_{i}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ is differentiable, and $\left[t_{0}, t_{1}\right] \subset \mathbb{R}$. Define $F:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}$ by $F(t):=\max _{i \in[k]}\left\{f_{i}(t)\right\}$. Suppose \mathcal{F} has the property that for every i and t, if $f_{i}(t)=F(t)$, then $\frac{d}{d t} f_{i}(t) \leq r$. Then for all $t \in\left[t_{0}, t_{1}\right]$, we have $F(t) \leq F\left(t_{0}\right)+r\left(t-t_{0}\right)$.

Proof. We prove the stronger claim that for all a, b satisfying $t_{0} \leq a<b \leq t_{1}$, we have

$$
\begin{equation*}
\frac{F(b)-F(a)}{b-a} \leq r \tag{A.1}
\end{equation*}
$$

To this end, suppose to the contrary that there exist $a_{0}<b_{0}$ satisfying $\left(F\left(b_{0}\right)-\right.$ $\left.F\left(a_{0}\right)\right) /\left(b_{0}-a_{0}\right) \geq r+\varepsilon$ for some $\varepsilon>0$. We define a sequence of nested intervals $\left[a_{0}, b_{0}\right] \supset\left[a_{1}, b_{1}\right] \supset \cdots$ as follows. Given $\left[a_{j}, b_{j}\right]$, let $c_{j}=\left(b_{j}+a_{j}\right) / 2$ be the midpoint of a_{j} and b_{j}. Observe that

$$
\frac{F\left(b_{j}\right)-F\left(a_{j}\right)}{b_{j}-a_{j}}=\frac{1}{2} \frac{F\left(b_{j}\right)-F\left(c_{j}\right)}{b_{j}-c_{j}}+\frac{1}{2} \frac{F\left(c_{j}\right)-F\left(a_{j}\right)}{c_{j}-a_{j}} \geq r+\varepsilon
$$

so that

$$
\frac{F\left(b_{j}\right)-F\left(c_{j}\right)}{b_{j}-c_{j}} \geq r+\varepsilon \quad \text { or } \quad \frac{F\left(c_{j}\right)-F\left(a_{j}\right)}{c_{j}-a_{j}} \geq r+\varepsilon
$$

If the first inequality holds, define $a_{j+1}=c_{j}, b_{j+1}=b_{j}$, and otherwise define $a_{j+1}=$ $a_{j}, b_{j}=c_{j}$. From the construction of the sequence, it is clear that for all j we have

$$
\begin{equation*}
\frac{F\left(b_{j}\right)-F\left(a_{j}\right)}{b_{j}-a_{j}} \geq r+\varepsilon \tag{A.2}
\end{equation*}
$$

Observe that the sequences $\left\{a_{j}\right\}_{j=0}^{\infty}$ and $\left\{b_{j}\right\}_{j=0}^{\infty}$ ar both bounded and monotonic, hence convergent. Further, since $b_{j}-a_{j}=\frac{1}{2^{j}}\left(b_{0}-a_{0}\right)$, the two sequences share the same limit.
Define

$$
c:=\lim _{j \rightarrow \infty} a_{j}=\lim _{j \rightarrow \infty} b_{j}
$$

and let $f \in \mathcal{F}$ be a function satisfying $f(c)=F(c)$. By the hypothesis of the lemma, we have $f^{\prime}(c) \leq r$, so that

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(h)}{h} \leq r .
$$

Therefore, there exists some $h>0$ such that for all $t \in[c-h, c+h], t \neq c$, we have

$$
\frac{f(t)-f(c)}{t-c} \leq r+\frac{1}{2} \varepsilon .
$$

Further, from the definition of c, there exists $N \in \mathbb{N}$ such that for all $j \geq N$, we have $a_{j}, b_{j} \in[c-h, c+h]$. In particular this implies that for all sufficiently large j, we have

$$
\begin{align*}
& \frac{f(c)-f\left(a_{j}\right)}{c-a_{j}} \leq r+\frac{1}{2} \varepsilon \tag{A.3}\\
& \frac{f\left(b_{j}\right)-f(c)}{b_{j}-c} \leq r+\frac{1}{2} \varepsilon . \tag{A.4}
\end{align*}
$$

Since $f\left(a_{j}\right) \leq F\left(a_{j}\right)$ and $f(c)=F(c)$, (A.3) implies that for all $j \geq N$,

$$
\frac{F(c)-F\left(a_{j}\right)}{c-a_{j}} \leq r+\frac{1}{2} \varepsilon .
$$

However, this expression combined with with (A.2) implies that for all $j \geq N$

$$
\begin{equation*}
\frac{F\left(b_{j}\right)-F(c)}{b_{j}-c} \geq r+\varepsilon \tag{A.5}
\end{equation*}
$$

Since $F(c)=f(c)$, the previous expression together with (A.4) implies that for all $j \geq N$ we have $f\left(b_{j}\right)<F\left(b_{j}\right)$.

For each $j \geq N$, let $g_{j} \in \mathcal{F}$ be a function such that $g_{j}\left(b_{j}\right)=F\left(b_{j}\right)$. Since \mathcal{F} is finite, there exists some $g \in \mathcal{F}$ such that $g=g_{j}$ for infinitely many values j. Let $j_{0}<j_{1}<\cdots$ be the subsequence such that $g=g_{j_{k}}$ for all $k \in \mathbb{N}$. Then for all j_{k}, we have $F\left(b_{j_{k}}\right)=g\left(b_{j_{k}}\right)$. Further, since F and g are continuous, we have

$$
g(c)=\lim _{k \rightarrow \infty} g\left(b_{j_{k}}\right)=\lim _{k \rightarrow \infty} F\left(b_{j_{k}}\right)=F(c)=f(c)
$$

By (A.5), we therefore have that for all k

$$
\frac{g\left(b_{j_{k}}\right)-g(c)}{b_{j_{k}}-c}=\frac{F\left(b_{j}\right)-F(c)}{b_{j}-c} \geq r+\varepsilon
$$

However, this final expression contradicts the assumption that $g^{\prime}(c) \leq r$. Therefore, (A.1) holds, as desired.

