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Learning Goals
In this chapter, we study how Byzantine faults, i.e., components that may behave
in any possible way due to failure or corruption, affect whether synchronization
can be achieved among the correct nodes of a network [5]. We consider the
same model as in the previous chapters – nodes have local clock sources of
bounded drift and messages have bounded delay – and in addition, to simplify
the discussions, we focus in this chapter on fully connected networks. We prove
that synchronization cannot be achieved in 𝑛-node networks with 𝑓 ≥ 𝑛

3 faults.
This bound is tight: we present a simple variant of the algorithm by Srikanth and
Toueg [6] that solves the pulse synchronization task, in which the correct nodes
generate synchronized (clock) pulses in a regular fashion. As will be discussed,
pulse synchronization is essentially the same as clock synchronization, to which
the same bounds on the number of sustainable Byzantine faults apply. We
choose this variant of the clock synchronization problem here, as it naturally
lends itself to simulating lock-step execution. We discuss an implementation of
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the presented pulse synchronization algorithm and use it to simulate lock-step
execution in detail.

The possible primary learning objectives of this chapter are:
• The concept of Byzantine faults and its relevance (Section 9.2).
• Relation between pulse and clock synchronization (Section 9.3).
• Limits on the number of Byzantine faults that can be tolerated (Sections 9.2,

9.4, and 9.5).
• Simulation of lock-step execution in face of Byzantine faults (Sections 9.3.2,

9.5, and 9.6).
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9.1 Overview

As shown in Chapter 7, the possibility of a crash fault renders the simulation of
SMP in AMP given in Chapter 6 impossible. This prompted us to equip nodes
with local clock sources of bounded drift and ensure that communication delays
satisfy known bounds. However, the synchronization techniques from Chapter 7
are inherently limited to handling benign faults only, as all information is
assumed to be correct.

E9.1 Recall the algorithms from Chapter 7 and think of ways they could break due to
non-crash faults.

It is not hard to argue that assuming crash faults is too optimistic. But which
fault model to use?

E9.2 Consider modes of failure against which one might want to protect the system.

E9.3 Think about the pros and cons of deriving fault models from studying and taking
measurements of physical implementations.

Preparing for typical faults is insufficient for large or high-reliability systems,
as this is likely to result in algorithms that may fail due to a single “atypical”
fault. In addition, only substantial restrictions of the fault model that can be
exploited by algorithms are going to be useful. These considerations motivate
to study the extreme case of Byzantine faults, where no restrictions are put on
the behavior of faulty nodes (except for an inability to cause other components
to also violate their specification). This fault model and the underlying rationale
are discussed in more detail in Section 9.2.

Definition 9.1 (Byzantine Faults). A Byzantine faulty node is a node that may
behave arbitrarily. That is, such a node does not need to follow any algorithm
prescribed by the system designer. An algorithm is resilient to 𝑓 Byzantine
faults if its performance guarantees hold for any execution in which there are
at most 𝑓 Byzantine faulty nodes. In the following, for a network 𝐺 = (𝑉, 𝐸)
and a set 𝐹 ⊆ 𝑉 of faulty nodes, we denote by 𝑉𝑔 = 𝑉 \ 𝐹 the set of correct
nodes.

Unsurprisingly, there are limits on the amount of Byzantine faults that can
be sustained. The reader should find it intuitive that a node with a majority of
faulty neighbors cannot (reliably) stay synchronized to the other correct nodes
in the system.

Theorem 9.2. Fix any network of 𝑛 ≥ 3 nodes with a node of degree at most 2 𝑓 .
Then, for any clock synchronization algorithm with non-trivial progress guar-
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antee (Definition 7.10), there is an execution on this network with unbounded
skew.

E9.4 Spend a few minutes to think about how this theorem might be proven.

Recall that our goal in this chapter is to understand how many Byzantine
faults can be sustained, which we want to express as a function of 𝑛. The above
theorem establishes that, in particular, 𝑓 < 𝑛

2 , and that 𝑓 ∈ Θ(𝑛) necessitates
node degrees in Θ(𝑛). With this in mind, we restrict our attention to fully
connected networks throughout this and some subsequent chapters. However,
note that it is meaningful to study fault-tolerance in networks with smaller
degrees, as low-degree topologies scale much better with 𝑛. Especially when
faulty nodes are not chosen adversarially, but rather distributed at random, a
fairly large fraction of faulty nodes can be sustained even with small degrees.

In this chapter, we study a variant of clock synchronization known as pulse
synchronization.

Definition 9.5. [Pulse Synchronization] In pulse synchronization, for each
𝑖 ∈ N, every (non-faulty) node 𝑣 ∈ 𝑉𝑔 generates pulse 𝑖 exactly once. Let
𝑝𝑣,𝑖 denote the time when 𝑣 generates the 𝑖-th pulse. We require that there are
S, 𝑃min, 𝑃max ∈ R+ satisfying
1. sup𝑖∈N,𝑣,𝑤∈𝑉𝑔

{|𝑝𝑣,𝑖 − 𝑝𝑤,𝑖 |} = S (skew).
2. inf𝑖∈N{min𝑣∈𝑉𝑔 {𝑝𝑣,𝑖+1} −max𝑣∈𝑉𝑔 {𝑝𝑣,𝑖}} ≥ 𝑃min (minimum period).
3. sup𝑖∈N{max𝑣∈𝑉𝑔 {𝑝𝑣,𝑖+1} −min𝑣∈𝑉𝑔 {𝑝𝑣,𝑖}} ≤ 𝑃max (maximum period).
This task, which is discussed in more detail in Section 9.3, requires correct

nodes to generate synchronized local events, pulses, with small skew and lower
and upper bounds on their frequency. It is tailored specifically to making
simulation of lock-step execution easy.

Theorem 9.7. Suppose that nodes 𝑣 ∈ 𝑉𝑔 run Algorithm 9 alongside a pulse
synchronization algorithm and that the constraints given by Equations (9.1)
to (9.4) are satisfied. Then the compound algorithm simulates lock-step
execution of the algorithm described by the subroutines state(𝑠, 𝑚in) and
msg(𝑠, 𝑚in, 𝑖) (plus the initial states) at a rate of one round per pulse, i.e.,
at least one round per 𝑃max time.

Pulse synchronization appears to demand less than clock synchronization
problem: pulse synchronization imposes constraints only on the discrete pulse
events, whereas clock synchronization has similar requirements on the contin-
uous logical clocks at all times. However, as we will show, the two tasks are
essentially the same. Concretely, we will show that an algorithm for one can
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be used to derive a solution for the other without additional communication or
significant computational overhead.

Theorem 9.8. Assume that for 𝑇 > G, the nodes in 𝑉𝑔 run a clock synchro-
nization algorithm with global skew G, minimum clock rate 1, and maximum
clock rate 𝛽. By adding only local computations to the algorithm, we can solve
pulse synchronization with S = G, 𝑃min = 𝑇 −G

𝛽 , and 𝑃max = 𝑇 + G.
In the above theorem, the additional local computation is limited to ensuring

that for each 𝑖 ∈ N the node generates a pluse at logical times 𝑖𝑇 . More is
required for the opposite direction. Roughly speaking, we increase the logical
clock value by 𝜗𝑃max per pulse, using the hardware clock as reference in
between pulses. However, because pulses may be as close in time as 𝑃min, the
logical clock value may be up to 𝜗𝑃max − 𝑃min too small at a pulse. This is
handled by increasing the logical clock faster than the hardware clock for 𝑃min
local time, spreading out the increase as much as possible while guaranteeing
that the deficit is removed before the next pulse occurs.

Theorem 9.11. Suppose the nodes in𝑉𝑔 run a pulse synchronization algorithm
with skew S, minimum period 𝑃min, and maximum period 𝑃max. Furthermore,
assume that node 𝑣 ∈ 𝑉𝑔 generates its first pulse at real time 𝑝𝑣,0 ∈ [−S, 0].
By adding only local computations to the algorithm, we can solve clock syn-
chronization with global skew (𝜗 − 1)𝑃max + 𝛽S, minimum clock rate 1, and
maximum clock rate 𝛽 := 𝜗2𝑃max

𝑃min
.

After establishing the above equivalence, the chapter focuses on determining
for which number 𝑓 of faulty nodes the two problems can be solved. First,
we prove that no algorithm can solve pulse synchronization in the presence
of 𝑓 ≥ 𝑛

3 Byzantine faults. This is shown in Section 9.4 by invoking a more
elaborate indistinguishability argument. For an arbitrary given algorithm, we
assume towards contradiction that it is correct. We then construct a sequence
of executions (E𝑖)𝑖∈N0 in which pulses are generated faster in E𝑖+1 than in E𝑖 .
However, for sufficiently large 𝑖 this implies the contradiction that any possible
upper bound on the frequency at which pulses are generated must be violated.

Theorem 9.13. Pulse synchronization is impossible if 3 ≤ 𝑛 ≤ 3 𝑓 .

E9.5 Figure out why this impossibility does not hold for 𝑛 = 2.

This bound is not coincidental: it can be precisely matched. We show this by
presenting an algorithm based on what we refer to as propose-pull voting, which
appears in many variants in synchronization primitives resilient to Byzantine
faults.The technique was introduced by Srikanth and Toueg [6], who solve the
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pulse synchronization task formalized in Section 9.3. The idea is that, after
being initialized to some starting state, nodes will “propose” to generate a
pulse after some local time has passed. When a node has received respective
messages for pulse 1 from 𝑛 − 𝑓 different nodes (counting itself as well), it
generates pulse 1. However, alone this rule risks that some nodes are “left
behind,” as some of these 𝑛− 𝑓 supporting nodes may have been faulty and not
sent respective messages to other nodes. That is where the “pulling” comes in:
receiving messages for pulse 1 from 𝑛−2 𝑓 ≥ 𝑓 +1 different nodes will prompt
a node to send messages for pulse 1, too. By using pulse 𝑖 to “re-initialize”
the system for pulse 𝑖 + 1, this mechanism can be used to inductively generate
pulses for each 𝑖 ∈ N with suitable period and skew bounds.

E9.6 Argue that if some correct nodes generates pulse 𝑖, all of the at least 𝑛− 𝑓 correct
nodes generate pulse 𝑖 within 2𝑑 time, where 𝑑 is the maximum end-to-end delay.

The frequency at which pulses are generated can be controlled by adjusting
the local time span between a node generating pulse 𝑖 and proposing pulse 𝑖 + 1
on its own.

Theorem 9.17. Suppose 3 𝑓 < 𝑛, 𝐻𝑣 (0) ∈ [0, 𝐻0) for all 𝑣 ∈ 𝑉 and some
known 𝐻0 ∈ R+, and choose any 𝑇 ≥ 3𝜗𝑑. Then we can solve the pulse
synchronization problem with S = 2𝑑, 𝑃min = 𝑇 , and 𝑃max = 𝜗𝑇 + (5 + 2(𝜗 −
1))𝑑, where each node generates its first pulse by time 𝐻0 + (𝜗 − 1)𝑇 + (3 +
2(𝜗 − 1))𝑑.

Our variant of the Srikanth-Toueg algorithm is phrased in terms of a simple
state machine each node implements. This paves the way to a hardware-level
implementation discussed in Section 9.6. ?? derives an implementation that
can simulate lock-step execution of an arbitrary distributed algorithm.

9.2 Byzantine Faults

A Byzantine faulty node (process, link, etc.) is one that may misbehave in an
arbitrary way. This includes behavior that appears to be consistent with that
of a correct node for a long time, only to violate the protocol at the worst
possible time, as well as collusion among faulty nodes, i.e., “teamwork” to
bring down the system as a whole. The term was coined by Pease, Shostak,
and Lamport [5], alluding to the idea that in the final days of the Byzantine
empire, corruption was so widespread that the generals of an army would have
to use decision procedures that succeed even in the presence of (a minority of)
conspiring traitors.
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We must stress that our point of view throughout this book is not that we
assume that there is an adversarial mastermind trying to orchestrate the downfall
of our computing systems. While this is a suitable mindset for making a system
secure, our main motivation is different: we want that our systems withstand
as many fault patterns and unexpected faults as possible.

E9.7 Think about advantages this rather harsh fault model might provide even without
an organized attack on the system.

The practical benefits of this strategy are several:

Coverage: Allowing any behavior of a component removes the need to develop a more
detailed fault model and/or reliable components. Being prepared for anything
means to be, in particular, prepared for the faults that occur in practice, without
the need to figure out what these are in advance. This advantage should not
be underestimated, as in large or complex systems it can be a great challenge
to track down the cause of a system failure!

Testing: A related advantage is to reduce the burden of verifying that an assumed
failure model is realistic. While developing a suitable fault model may
succeed based on explorative observations and intuition, verification may
require extensive experiments. Especially when high reliability is required,
testing may become prohibitively expensive. In order to verify a mean time
between failures of years, running an experiment takes too long. This implies
that any practical test must itself rely on further model assumptions, which
get more complex – and thus possibly less reliable – if the assumed fault
model is more complex. To make things worse, testing may be an ongoing
effort, as the possibility of changes in conditions for production or operation
must be considered. For Byzantine faults, all these efforts are limited to
ensuring a sufficiently small overall failure rate and that faults are contained,
which is discussed in Section 9.2.1.

Scalability: Increasing system size or lifetime increases the likelihood of rare faults. A
failure rate of 10−10 may appear small, but is clearly insufficient when it
specifies the probability of failure per pulse of a system clock: at 3 GHz, this
equates failure within seconds! Similarly, the probability that an individual
transistor is not working after production of a chip is very small, yet we can
be essentially certain that some of the huge number of transistors on a chip
are faulty.

Reusability: All of the above challenges have to be overcome for every generation of a chip.
Having a catch-all solution covering most conveivable faults can reduce time
and effort for adapting solutions to the next generation – or even transferring
them to a completely different setting – greatly.
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The elephant in the room is, of course, that these considerable benefits of the
fault model stand against its obvious downside: The fault model may be overly
pessimistic, resulting in waste of resources or impossibility results that have
an, at best, tenuous connection to reality. Any designer is well-advised to
bear this issue in mind, and carefully contemplate which fault model to use.
Accordingly, it is crucial to understand the cost at which the above advantages
come, so we can make an informed decision regarding when to opt for more
restrictive fault models. In reality, such considerations are likely to result in
Byzantine fault-tolerance – and the redundancy it entails – being applied to
critical subsystems only.

At first glance, it may be surprising that studying Byzantine faults is worth-
while even in cases where, ultimately, we opt for a more restrictive fault model.
The reason is that lower bounds and impossibility results demonstrating the
limitations imposed by the fault model frequently also reveal what exactly pre-
vents us from achieving better results. Based on such insights, we can find
minimal (and, accordingly, more likely still realistic) restrictions to the fault
model enabling solutions with better guarantees. Several examples for this
can be extracted from this chapter. As already mentioned, we will see that
restricting the number 𝑓 of Byzantine faults in an 𝑛-node system to

⌈
𝑛
3
⌉−1, i.e.,

3 𝑓 < 𝑛, suffices to solve pulse synchronization. Second and less immediate is
an insight that can be gleaned from the following theorem, which shows that
tolerating 𝑓 Byzantine faults requires node degrees of at least 2 𝑓 + 1.

Theorem 9.2. Fix any network of 𝑛 ≥ 3 nodes with a node of degree at most 2 𝑓 .
Then, for any clock synchronization algorithm with non-trivial progress guar-
antee (Definition 7.10), there is an execution on this network with unbounded
skew.

Proof. (This proof will be discussed in the lecture and added to the chapter at
a later point.) �

While this theorem shows that we need large degrees to overcome Byzantine
faults if the selection of faulty nodes is done in a worst-case fashion, this
dramatically changes if faulty nodes are chosen (uniformly) at random. In ??
we follow this idea, leading to a fault-tolerant low-degree clock distribution
network.

9.2.1 Fault Containment Regions
The Byzantine fault model expects that we preserve correct operation of the
system at (all) correct nodes. As this is not possible if too many nodes (links,
components, etc.) fail, we should be wary of single events causing multiple
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faults. As an extreme example, consider a “fault-tolerant” system-on-chip that
is powered from a single supply without any backup. Our abstract model is
unlikely to explicitly contain the power supply. Yet, if the power supply fails,
all of the nodes in the system “fail” from the perspective of any algorithm we
might come up with. It may seem obvious that a careful designer needs to make
sure that the power supply is sufficiently robust to fail so rarely as to meet the
design goals or that fallback mechanisms (emergency power supply, batteries,
etc.) must be in place.

What may seem trivial in the above example may be harder to catch in other
cases. For instance, in the node-centric perspective we take throughout this
book, a failing communication link is interpreted as a failure of either the
sender or the receiver. However, if communication is via a bus, a failure of the
bus again means that – from the perspective of our model – all nodes become
faulty. Naturally, a careful designer will have avoided using a bus and may even
have routed the communication wires carefully to avoid or minimize crossings.
Consequently, for any (localized) error the caused communication faults can be
mapped to a single node, meaning that the resilience provided by a Byzantine
fault-tolerant algorithm is meaningful for this kind of error. Unfortunately,
this foresight may be rendered ineffective if a different designer later takes the
solution and maps it to a different system with a bus-based communication
infrastructure, not realizing that this changes which fault events the resilience
guarantee of the fault model covers for the new system. Another case that
causes a violation of the resilience guarantee is having a new team that decides
to make the system more cost efficient by reducing what seems to be wasteful
resources.

In order to avoid such issues, it is advisable to formalize the avoidance of
a “single point of failure” showcased by the examples above. To this end,
Kopetz [4] coined the term fault containment regions, attributing the concept
to Hopkins et al. [3].

Definition 9.3 (Fault Containment Regions). A fault containment region is
defined as a set of subsystems that are potentially affected by a single fault. This
definition implicitly assumes a defined set of possible faults, which determines
what is to be considered a fault containment region.

E9.8 Consider a system you know well and think about how it would have to be
reorganized into redundant fault-containment regions to allow for fault-tolerance.
Which subsystems should you focus on first to increase reliability?

E9.9 Could you use less reliable components to (partially) offset the cost of adding
redundancy?
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E9.10 If you don’t know the answers to these questions, what needs to be done to find
out?

As these exercises and the preceding discussion illustrates, how meaningful
Byzantine fault-tolerance is strongly depends on how well we can prevent sin-
gle (likely) sources of faults from preventing a large(r) fraction of the system.
Throughout this book, we will assume that nodes and their associated subsys-
tems are fault-containment regions, but the reader should be painfully aware
that this is only useful so long as this is close enough to reality.

9.3 Relation of Pulse Synchronization to other Tasks

Pulse and clock synchronization are, roughly speaking, the same task. We
show this by proving that we can solve each problem based on a solution to the
other. Note that in the context of Byzantine faults, any guarantees are limited
to the set of correct nodes, so we first need to adjust the previous definition of
a clock synchronization algorithm, Definition 7.2.

Definition 9.4 (Clock Synchronization with Byzantine Faults). In the clock
synchronization task, each correct node 𝑣 ∈ 𝑉𝑔 provides a subroutine for
computing a logical clock 𝐿𝑣 : R+0 → R+0 . The subroutine must be executed
locally without waiting for other operations like external communication. An
algorithm has
• global skew G, if max𝑣,𝑤∈𝑉𝑔 {|𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) |} ≤ G. . .
• minimum rate 𝛼, if 𝑑𝐿𝑣

𝑑𝑡 (𝑡) ≥ 𝛼. . .
• maximum rate 𝛽, if 𝑑𝐿𝑣

𝑑𝑡 (𝑡) ≤ 𝛽. . .
. . . for all 𝑡 ∈ R+0 and 𝑣 ∈ 𝑉𝑔.

Note that for a clock synchronization algorithm with minimum rate 𝛼 > 0,
dividing all 𝐿𝑣 by 𝛼 results in a clock synchronization algorithm with minimum
rate 1 and maximum rate 𝛽/𝛼, where the skew bounds also scale by 1/𝛼. For
simplicity, we will hence fix 𝛼 = 1 throughout this chapter.

9.3.1 Definition and Basic Observations
Before dwelling into the simulation arguments of this section, we elaborate on
the definition of pulse synchronization and prove a claim that will be useful for
these simulation arguments.

Definition 9.5. [Pulse Synchronization] In pulse synchronization, for each
𝑖 ∈ N, every (non-faulty) node 𝑣 ∈ 𝑉𝑔 generates pulse 𝑖 exactly once. Let
𝑝𝑣,𝑖 denote the time when 𝑣 generates the 𝑖-th pulse. We require that there are
S, 𝑃min, 𝑃max ∈ R+ satisfying
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1. sup𝑖∈N,𝑣,𝑤∈𝑉𝑔
{|𝑝𝑣,𝑖 − 𝑝𝑤,𝑖 |} = S (skew).

2. inf𝑖∈N{min𝑣∈𝑉𝑔 {𝑝𝑣,𝑖+1} −max𝑣∈𝑉𝑔 {𝑝𝑣,𝑖}} ≥ 𝑃min (minimum period).
3. sup𝑖∈N{max𝑣∈𝑉𝑔 {𝑝𝑣,𝑖+1} −min𝑣∈𝑉𝑔 {𝑝𝑣,𝑖}} ≤ 𝑃max (maximum period).
In this definition, the first condition ensures that corresponding pulses at

different nodes are closely aligned in time. This condition is closely related to
the global skew, although it is expressed in terms of the real time difference
between pulse events rather than the logical time difference at a given real
time. These notions are connected via lower an upper bounds on clock rates.
The second and third condition bound the minimum and maximum real time,
respectively, between consecutive pulses of any pair of nodes.

We first take note of some general constraints on these values.

Lemma 9.6. Any pulse synchronization algorithm must satisfy that
1. 𝑃max − 𝑃min ≥ S and
2. 𝑃max ≥ 𝜗𝑃min.

Proof. For the first statement, we bound

S = sup
𝑖∈N,𝑣,𝑤∈𝑉𝑔

{|𝑝𝑣,𝑖 − 𝑝𝑤,𝑖 |}Definition 9.5

= sup
𝑖∈N
{max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖} − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖}}

= sup
𝑖∈N
{max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖+1} − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖} − (max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖+1} − max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖})}adding 0

≤ sup
𝑖∈N

{
max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖+1} − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖} − (min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖+1} − max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖})
}

max ≥ min

≤ sup
𝑖∈N

{
max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖+1} − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖} − inf
𝑖∈N

{
min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖+1} − max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖}
}}

= sup
𝑖∈N

{
max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖+1} − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖}
}
− inf

𝑖∈N

{
min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖+1} − max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖}
}

≤ 𝑃max − 𝑃min.Definition 9.5

For the second statement, consider two executions of the algorithm without
faulty nodes. In the first execution, all delays are 𝑑 and all hardware clock rates
are 1 at all times. In the second execution, all delays are 𝑑

𝜗 and all hardware
clock rates are 𝜗 at all times. By induction over the times at which messages
are sent and received, we see that the two executions are indistinguishable.
Accordingly, all pulse events occur at the same local times in both executions.
As hardware clock speeds differ by factor 𝜗 at all times in both executions, the
second claim of the lemma follows. �
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9.3.2 Simulating Lock-step Execution
In previous chapters, we have used synchronizers (Chapter 6) and clock syn-
chronization algorithms (Chapter 7) to simulate synchronous executions. In
this chapter, we do so based on a pulse synchronization algorithm. The ap-
proach is very similar to that for a clock synchronization algorithm, but instead
of using the logical clock, we rely on pulses and the hardware clock to exe-
cute steps at the correct time. In contrast to Chapter 7, where the respective
discussion remained abstract, in this chapter we will go into the details of
an implementation of simulating a synchronous execution. In particular this
requires us to simulate, i.e., implement, a synchronous communicating state
machines. Accounting for this, in this subsection we slightly refine the model,
in order to better capture the precise timing behavior needed to achieve the best
possible performance.

Following the notation of Section 2.2, each node 𝑣 ∈ 𝑉 runs a local state
machine with state space 𝑆. Nodes operate in discrete common rounds where:

1. They receive messages from the previous round.
2. They then update their state via a local state machine’s transition function

𝑡 : 𝑆 × Σ → 𝑆, where the input alphabet Σ is the set of all messages
combinations.

3. They send a message to each node 𝑢 ∈ 𝑉 that they have an outgoing link
to. The message to be sent to 𝑢 is determined by the local state machine’s
output function 𝑜𝑢 : 𝑆 → Λ for node 𝑢. The output alphabet Λ is the set of
messages. While we favored Moore state machines in Section 2.2 for the
sake of handling unstable inputs, we will also use the more compact Measly
representation sometimes in the the following. In this case, 𝑜𝑢 : 𝑆×Σ→ Λ
depends on the combination of received messages.

We will next discuss the implementation of synchronous communicating state
machines, and thus lock-step executions, given that nodes have access to a pulse
synchronization algorithm.

In the following fix a node 𝑣 ∈ 𝑉 . Denote by state(𝑠, 𝑚in) a subroutine that
maps a state 𝑠 ∈ 𝑆 (from the previous round) and an array 𝑚in ∈ Σ of 𝛿in (𝑣)
messages (received on 𝑣’s incoming ports in the previous round) to a new state
(the one attained in the current round). Similarly, denote by msg(𝑠, 𝑚in, 𝑖) a
subroutine whose first two arguments are the same as for state plus an additional
output port number 𝑖 ∈ {1, . . . , 𝛿out (𝑣)} and that returns a message (the one to
be sent on outgoing port 𝑖 in the current round). These subroutines are given
by the synchronous algorithm to be simulated (cf. Definition 6.17). Moreover,
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the simulated algorithm provides for each node an initial state, and we assume
that the elements of the array 𝑚in are initialized to some default value ⊥.

We introduce three pairs of parameters:
• 𝑑min,send and 𝑑max,send denote the minimum and maximum communication

delay for sending a message to a neighbor, respectively (without any subse-
quent computations!)

• 𝑑min,state and 𝑑max,state denote the minimum and maximum computational
delay, respectively, for a state update, i.e., the duration between starting to
compute state(𝑠, 𝑚in) and the outcome propagating to the registers holding
the state (including the time to latch).

• 𝑑min,msg and 𝑑max,msg denote the minimum and maximum computational
delay, respectively, for computing a message, i.e., the duration between start-
ing to compute msg(𝑠, 𝑚in, 𝑖) and the outcome propagating to the registers
holding the state (including the time to latch).

Note that one could refine the timing analysis even further, but our goal here is
to maintain a good balance between performance and conceptual clarity.

Algorithm 9 provides pseudocode describing the actions that are taken to
simulate a round. Figure 9.1 shows the local timing behavior produced by this
code, provided the following constraints are satisfied:

𝜏 :=
𝑃min
𝜗
− Ŝ − 𝑑max,sendlocal time offset

for sending
(9.1)

𝑑max,state ≤ 𝜏 − Ŝ
𝜗2 + 𝑑min,send

𝜗
+ 𝑑min,statecompute state

before receiving
(9.2)

𝑑max,msg ≤ 𝜏 − Ŝ
𝜗2 + 𝑑min,send

𝜗
+ 𝑑min,msgcompute mess.

before receiving
(9.3)

𝑑max,msg ≤ 𝜏

𝜗
compute mess.
before sending

(9.4)

Theorem 9.7. Suppose that nodes 𝑣 ∈ 𝑉𝑔 run Algorithm 9 alongside a pulse
synchronization algorithm and that the constraints given by Equations (9.1)
to (9.4) are satisfied. Then the compound algorithm simulates lock-step
execution of the algorithm described by the subroutines state(𝑠, 𝑚in) and
msg(𝑠, 𝑚in, 𝑖) (plus the initial states) at a rate of one round per pulse, i.e.,
at least one round per 𝑃max time.

Proof. (This proof will be added later.) �

9.3.3 From Clock Synchronization to Pulse Synchronization
First, we prove that a clock synchronization with bounded clock rates can be
readily used to solve pulse synchronization, by generating pulses at predefined
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real time
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on port δin(v)
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.
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.

.
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dispatch

actual arrival

latch new state

waitlatch message

dmin,state

dmin,msg

Figure 9.1
Illustration of the local timing behavior of Algorithm 9. Round 𝑟+1 at node 𝑣 ∈ 𝑉𝑔 starts
with pulse 𝑝𝑣,𝑟 . In parallel, the node computes its state update and the messages it sends
in round 𝑟 + 1, based on its state and the incoming messages of round 𝑟 . Note that the
variable 𝑠 holding the state and the array𝑚in holding the incoming messages are used by
multiple threads, which requires careful timing to ensure correct ordering of accesses.
Concretely, computations in round 𝑟 + 1 should be based on the messages received and
the state computed in round 𝑟 . We exploit that propagation through computational logic
has a minimum delay, which is denoted by 𝑑min,state and 𝑑min,msg for the computation
of the new state and outgoing messages, respectively. This is the reason why the node is
ready for receiving messages only a while after the start of the round. Note also that there
is a deliberate delay between latching the outgoing messages and actually dispatching
them, accounting for the fact that the receiving nodes are not ready to receive messages
earlier in the round. Finally, we stress that the bars indicate worst-case time bounds for
the duration of the individual steps (in terms of local time). For instance, as indicated,
the actual reception of a message make take only a small fraction of the alloted interval.
Moreover, as 𝑣 uses its local clock to measure these times and pulse durations may vary,
up to 𝑃max − 𝑃min

𝜗 time at the end of the round remains unused.

logical times. Intuitively, one can interpret the clock synchronization algo-
rithm as generating ticks at “infinite” frequency , and we divide this frequency
such that we obtain the desired period bounds for the pulse synchronization
algorithm. We can divide by any value larger than G; otherwise, pulses might
overlap, which we ruled out for pulse synchronization.
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Algorithm 9 Simulation of lock-step execution at 𝑣 ∈ 𝑉𝑔, where 𝛿in and 𝛿out

are its in- and outdegree, respectively, Ŝ is an upper bound on S, state and
msg are the functions computing state updates and messages to send, and
𝑑msg denotes the maximum message delay (excluding computations). A pulse
synchronization algorithm is executed in parallel, which generates its first pulse
after the simulation is initialized.

1: 𝑠← 〈initial state〉 and 𝑚in [𝑖] ← ⊥ for 𝑖 ∈ {1, . . . , 𝛿in} ⊲ initialization
2: 𝑟 ← 0 ⊲ round counter
3: 𝜏 ← 𝑃min

1+𝜌 − Ŝ − 𝑑max,send ⊲ shorthand for constant
4: while true do
5: wait for next pulse at 𝑣
6: ℎ← getH()
7: 𝑟 ← 𝑟 + 1
8: for 𝑖 = 0, . . . , 𝛿in (𝑣) + 𝛿out (𝑣) in parallel do
9: if 𝑖 = 0 then ⊲ update state

10: 𝑠← state(𝑠, 𝑚in)
11: else if 1 ≤ 𝑖 ≤ 𝛿𝑖𝑛 (𝑣) then ⊲ receive messages
12: start receiving on incoming port 𝑖 at local time ℎ+ 𝜏−Ŝ

1+𝜌 +𝑑min,send
13: finish receiving on incoming port 𝑖 at local time ℎ + 𝑃min
14: let 𝑚 be received message (use default if none or invalid)
15: 𝑚in [𝑖] ← 𝑚

16: else ⊲ send messages
17: 𝑗 ← 𝑖 − 𝛿𝑖𝑛 (𝑣)
18: 𝑚 ← msg(𝑠, 𝑚in, 𝑗)
19: wait until local time ℎ + 𝜏
20: send 𝑚 over outgoing port 𝑗
21: end if
22: end for
23: end while

Theorem 9.8. Assume that for 𝑇 > G, the nodes in 𝑉𝑔 run a clock synchro-
nization algorithm with global skew G, minimum clock rate 1, and maximum
clock rate 𝛽. By adding only local computations to the algorithm, we can solve
pulse synchronization with S = G, 𝑃min = 𝑇 −G

𝛽 , and 𝑃max = 𝑇 + G.

Proof. The algorithm is simple. Each node 𝑣 ∈ 𝑉𝑔 executes the clock syn-
chronization algorithm, where w.l.o.g. we assume that logical clocks satisfy
𝐿𝑣 (0) ∈ [0,G]. In addition, a parallel thread executes the following:
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Figure 9.2
Relation between pulse times and logical clock at node 𝑣 ∈ 𝑉𝑔 for Algorithm 10. Note
that the logical clock rate varies between 1 and 𝛽, where typically 𝛽 − 1 � 1. Hence
the real time between pulses fluctuates slightly.

Algorithm 10 Pulse synchronization algorithm at 𝑣 ∈ 𝑉𝑔 based on a clock
synchronization algorithm. W.l.o.g., the code assumes that logical clocks
satisfy 𝐿𝑣 (0) ∈ [0,G].

1: 𝑖 ← 0
2: while true do
3: wait until getL() = 𝑖𝑇
4: generate 𝑖-th pulse
5: 𝑖 ← 𝑖 + 1
6: end while

We claim that Algorithm 10 satisfies the claims of the theorem. Because
𝑇 > G and logical clocks are continuous and strictly increasing, 𝑣 generates its
𝑖-th pulse at the unique time 𝑝𝑣,𝑖 satisfying 𝐿𝑣 (𝑝𝑣,𝑖) = 𝑖𝑇 . Fix any 𝑖 ∈ N and
𝑣, 𝑤 ∈ 𝑉𝑔. We check the three required properties.
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1. W.l.o.g. over the choice of 𝑣 and 𝑤, suppose 𝑝𝑣,𝑖 ≤ 𝑝𝑤,𝑖 . We have that

𝐿𝑤 (𝑝𝑣,𝑖 + G) ≥ 𝐿𝑤 (𝑝𝑣,𝑖) + G ≥ 𝐿𝑣 (𝑝𝑣,𝑖)Definition 9.4

= 𝑖𝑇 = 𝐿𝑤 (𝑝𝑤,𝑖),Algorithm 10

implying that 𝑝𝑤,𝑖 ≤ 𝑝𝑣,𝑖 + G. Hence, for all 𝑖 ∈ N and 𝑣, 𝑤 ∈ 𝑉𝑔 it holds
that |𝑝𝑣,𝑖 − 𝑝𝑤,𝑖 | ≤ G, as claimed.

2. We have that

𝐿𝑣

(
𝑝𝑤,𝑖 + 𝑇 − G

𝛽

)
≤ 𝐿𝑣 (𝑝𝑤,𝑖) − G + 𝑇 ≤ 𝐿𝑤 (𝑝𝑤,𝑖) + 𝑇Definition 9.4

= (𝑖 + 1)𝑇 = 𝐿𝑣 (𝑝𝑣,𝑖+1),Algorithm 10

implying that 𝑝𝑣,𝑖+1 ≥ 𝑝𝑤,𝑖 + 𝑇 −G
𝛽 . Hence, for each 𝑖 ∈ N it holds that

min𝑣∈𝑉𝑔 {𝑝𝑣,𝑖+1} −max𝑣∈𝑉𝑔 {𝑝𝑣,𝑖} ≥ 𝑇 −G
𝛽 , as claimed.

3. We have that

𝐿𝑣 (𝑝𝑤,𝑖 + G + 𝑇) ≥ 𝐿𝑣 (𝑝𝑤,𝑖) + G + 𝑇 ≥ 𝐿𝑤 (𝑝𝑤,𝑖) + 𝑇Definition 9.4

= (𝑖 + 1)𝑇 = 𝐿𝑣 (𝑝𝑣,𝑖+1),Algorithm 10

implying that 𝑝𝑣,𝑖+1 ≤ 𝑝𝑤,𝑖 + G + 𝑇 . Hence, for each 𝑖 ∈ N it holds that
max𝑣∈𝑉𝑔 {𝑝𝑣,𝑖+1} −min𝑣∈𝑉𝑔 {𝑝𝑣,𝑖} ≤ G + 𝑇 , as claimed. �

We remark that Theorem 9.8 is “lossy” in terms of clock rates and clock skew.
This is the result of using the pulse synchronization algorithm as a black box,
using worst-case bounds. However, 𝑃max − 𝑃min typically is (up to constants)
bounded by the skew of the algorithm plus (𝜗 − 1)𝑃max, meaning that we lost
constant factors only.

9.3.4 From Pulse Synchronization to Clock Synchronization
Constructing a clock synchronization algorithm based on a pulse synchroniza-
tion algorithm is conceptually not much harder, but technically more involved.
Our goal is to linearly interpolate between the discrete clock steps provided by
the pulse synchronization algorithm, where each pulse corresponds to between
𝑃min and 𝑃max time. We can not do this precisely, but will do so to the best
degree possible based on the guarantees provided by the pulse synchronization
algorithm and our local clocks.

Intuitively, we can view the pulse synchronization algorithm as providing a
fault-tolerant distributed clock reference to which we digitally lock the logical
clocks we generate, cf. ??. In this view, 1

𝑃min
and 1

𝑃max
bound the frequency

of the master clock given by the (local) pulses, and 𝑑𝑡
𝑑𝐻𝑣

is the instantaneous
frequency of the slave clock at 𝑣 ∈ 𝑉𝑔, if it was free-running (i.e., not locked to
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the reference). In line with this intuition, we need to specify a phase detector
and a loop filter to complete the local PLL at node 𝑣. As we make sure that
the logical clock as 𝑣 is never running “too fast,” the phase detector is given by
checking how much behind the “target” value the logical clock is when a local
pulse is generated. For the loop filter, we use a simple low pass filter, which
spreads out catching up by the measured phase difference over 𝑃min time. This
simple scheme is sufficient to keep the output frequency between 1 and 𝛽 for
the smallest 𝛽 we can manage.

Algorithm 11 Pulse synchronization algorithm at 𝑣 ∈ 𝑉𝑔 based on a clock
synchronization algorithm.

1: wait until initialization pulse
2: ℓ ← 0 ⊲ initialize logical clock
3: 𝑖 ← 0 ⊲ pulse number
4: ℓ↑ ← 0 ⊲ clock increase to be amortized during current pulse
5: ℎ← getH()
6: while true do
7: wait until next pulse
8: ℓ ← 𝑖(1 + 𝜌)𝑃max + getH() − ℎ ⊲ logical clock value at pulse
9: 𝑖 ← 𝑖 + 1

10: ℓ↑ ← 𝑖(1 + 𝜌)𝑃max − ℓ ⊲ difference to target value
11: ℎ← getH()
12: end while
13: procedure getL() ⊲ returns 𝐿𝑣 (𝑡) when called at time 𝑡 ≥ 𝑝𝑣,0
14: return ℓ + getH() − ℎ + ℓ↑ ·min

{
getH()−ℎ

𝑃min
, 1
}

15: end procedure

We first show that Algorithm 11 computes logical clocks with rates between
1 and 𝜗2𝑃max

𝑃min
.

Lemma 9.9 (Algorithm 11 computes logical clocks). For each 𝑣 ∈ 𝑉𝑔, denote
by 𝐿𝑣 : [𝑝𝑣,0,∞) the logical clock provided by the procedure getL() in Algo-
rithm 11. Then for all times 𝑡 ≥ 𝑡 ′ ≥ 𝑝𝑣,0, it holds that 1 ≤ 𝐿𝑣 (𝑡) − 𝐿𝑣 (𝑡 ′) ≤
𝛽 := 𝜗2𝑃max

𝑃min
.

Proof. For each 𝑖 ∈ N, the function ℓ𝑣 (𝑝𝑣,𝑖) + 𝐻𝑣 (𝑡) − ℎ𝑣 (𝑝𝑣,𝑖) + ℓ↑𝑣 (𝑝𝑣,𝑖) ·
min

{
𝐻𝑣 (𝑡)−ℎ𝑣 (𝑝𝑣,𝑖)

𝑃min
, 1
}

is continuous. It is also differentiable except at time
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Figure 9.3
Logical clock at node 𝑣 ∈ 𝑉𝑔 produced by Algorithm 11 as function of real time. The
dashed red line indicates the “target value” of the logical clock, which advances by
𝜗𝑃max per pulse. The difference is amortized over 𝑃min local time, which for the 𝑖-th
pulse corresponds to 𝐻−1

𝑣 (𝐻 (𝑝𝑣,𝑖) + 𝑃min) − 𝑝𝑣,𝑖 real time.

𝐻−1
𝑣 (𝐻 (𝑝𝑣,𝑖) + 𝑃min). Observe that for all 𝑖 ∈ N, we have that

𝐻𝑣 (𝑝𝑣,𝑖+1) − 𝐻𝑣 (𝑝𝑣,𝑖) ≥ 𝑝𝑣,𝑖+1 − 𝑝𝑣,𝑖𝑑𝐻𝑣
𝑑𝑡 ≥ 1

≥ 𝑃min.Definition 9.5 (9.5)

Hence, it holds for each 𝑖 ∈ N that evaluating the logical clock of 𝑣 at time
𝑝𝑣,𝑖+1 results in

𝐿𝑣 (𝑝𝑣,𝑖+1)
= ℓ𝑣 (𝑝𝑣,𝑖+1)Lines 11 and 14

= ℓ𝑣 (𝑝𝑣,𝑖) + 𝐻𝑣 (𝑝𝑣,𝑖+1) − ℎ𝑣 (𝑝𝑣,𝑖) + ℓ↑(𝑝𝑣,𝑖)Lines 7 to 11

= ℓ𝑣 (𝑝𝑣,𝑖) + 𝐻𝑣 (𝑝𝑣,𝑖+1) − ℎ𝑣 (𝑝𝑣,𝑖) + ℓ↑(𝑝𝑣,𝑖) ·min
{
𝐻𝑣 (𝑝𝑣,𝑖+1) − ℎ𝑣 (𝑝𝑣,𝑖)

𝑃min
, 1
}
.(9.5)

We conclude that 𝐿𝑣 is continuous. Moreover, it is differentiable at all times
except possibly 𝑝𝑣,𝑖 and 𝐻−1

𝑣 (𝐻𝑣 (𝑝𝑣,𝑖) + 𝑃min) for each 𝑖 ∈ N. Therefore, it
suffices to show that the derivative takes on values between 1 and 𝛽 at times
when it exists.
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Accordingly, consider any time 𝑡 when the derivative is guaranteed to exist.
There are two cases. If 𝐻𝑣 (𝑡) − ℎ𝑣 (𝑡) > 𝑃min, then simply

𝑑𝐿𝑣

𝑑𝑡
(𝑡) = 𝑑𝐻𝑣

𝑑𝑡
(𝑡) ∈ [1, 𝜗] . (9.6)

On the other hand, if 𝐻𝑣 (𝑡) − ℎ𝑣 (𝑡) < 𝑃min, let 𝑖 ∈ N be maximal such that
𝑝𝑣,𝑖 < 𝑡. Then

𝑑𝐿𝑣

𝑑𝑡
(𝑡) = 𝑑𝐻𝑣

𝑑𝑡
(𝑡) + ℓ

↑
𝑣 (𝑝𝑣,𝑖)
𝑃min

· 𝑑𝐻𝑣

𝑑𝑡
(𝑡) = 𝑑𝐻𝑣

𝑑𝑡
(𝑡) · ℓ

↑
𝑣 (𝑝𝑣,𝑖) + 𝑃min

𝑃min
. (9.7)

We claim that

0 ≤ ℓ↑𝑣 (𝑝𝑣,𝑖) ≤ 𝜗𝑃max − 𝑃min (9.8)

for all 𝑖 ∈ N. This is trivially satisfied for 𝑖 = 0, so consider 𝑖 ≠ 0. We have that

ℓ↑𝑣 (𝑝𝑣,𝑖) = 𝑖𝑣 (𝑝𝑣,𝑖)𝜗𝑃max − ℓ𝑣 (𝑝𝑣,𝑖) Line 10

= 𝜗𝑃max − (𝐻𝑣 (𝑝𝑣,𝑖) − 𝐻𝑣 (𝑝𝑣,𝑖−1)). Lines 7 to 9
and 11

The claim now follows by observing that

𝑃min ≤ 𝑝𝑣,𝑖 − 𝑝𝑣,𝑖−1 Definition 9.5

≤ 𝐻𝑣 (𝑝𝑣,𝑖) − 𝐻𝑣 (𝑝𝑣,𝑖−1) 𝑑𝐻𝑣
𝑑𝑡 ≥ 1

≤ 𝜗(𝑝𝑣,𝑖 − 𝑝𝑣,𝑖−1) 𝑑𝐻𝑣
𝑑𝑡 ≤ 𝜗

≤ 𝜗𝑃max. Definition 9.5

We conclude that

1 ≤ 𝑑𝐻𝑣

𝑑𝑡
(𝑡) = min

{
𝑑𝐻𝑣

𝑑𝑡
(𝑡), 𝑑𝐻𝑣

𝑑𝑡
(𝑡) · ℓ

↑
𝑣 (𝑝𝑣,𝑖) + 𝑃min

𝑃min

}
(9.8)

≤ 𝑑𝐿𝑣

𝑑𝑡
(𝑡) (9.6), (9.7)≤ max

{
𝑑𝐻𝑣

𝑑𝑡
(𝑡), 𝑑𝐻𝑣

𝑑𝑡
(𝑡) · sup𝑖∈N{ℓ↑𝑣 (𝑝𝑣,𝑖)} + 𝑃min

𝑃min

}

≤ max
{
𝑑𝐻𝑣

𝑑𝑡
(𝑡), 𝑑𝐻𝑣

𝑑𝑡
(𝑡) · 𝜗𝑃max

𝑃min

}
(9.8)

=
𝑑𝐻𝑣

𝑑𝑡
(𝑡) · 𝜗𝑃max

𝑃min
≤ 𝜗

2𝑃max
𝑃min

= 𝛽. 𝑃max ≥ 𝑃min�

Next, we bound the skew of the clocks generated by Algorithm 11.

Lemma 9.10 (Skew of Algorithm 11). Set 𝛽 := 𝜗2𝑃max
𝑃min

as in Lemma 9.9 and
assume that max𝑣∈𝑉𝑔 {𝑝𝑣,0} ≤ 0. Then the clocks 𝐿𝑣 provided by Algorithm 11
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guarantee

G ≤ (𝜗 − 1)𝑃max + 𝛽S.

Proof. Fix 𝑣, 𝑤 ∈ 𝑉𝑔. Consider a time 𝑡 ≥ max{𝑝𝑣,0, 𝑝𝑤,0}. From Defini-
tion 9.5, it is immediate that 𝑝𝑤,𝑖𝑣 (𝑡)+1 > 𝑝𝑣,𝑖𝑣 (𝑡) and 𝑝𝑣,𝑖𝑤 (𝑡)+1 > 𝑝𝑤,𝑖𝑤 (𝑡) ,
implying that 𝑖 := max{𝑖𝑣 (𝑡), 𝑖𝑤 (𝑡)} ≥ min{𝑖𝑣 (𝑡), 𝑖𝑤 (𝑡)} − 1.

Consider first the case that 𝑖𝑤 (𝑡) = 𝑖−1, i.e., 𝑡 ∈ [𝑝𝑣,𝑖 , 𝑝𝑤,𝑖) ⊆ [𝑝𝑣,𝑖 , 𝑝𝑣,𝑖+S).
Note that

𝐻𝑤 (𝑡) − 𝐻𝑤 (𝑝𝑤,𝑖−1) ≥ 𝑡 − 𝑝𝑤,𝑖−1 ≥ 𝑝𝑣,𝑖 − 𝑝𝑤,𝑖−1 ≥ 𝑃min.
𝑑𝐻𝑤
𝑑𝑡 ≥ 1,

Definition 9.5
(9.9)

Hence, we can bound

𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡)
=𝐻𝑣 (𝑡) − 𝐻𝑣 (𝑝𝑣,𝑖−1) + ℓ↑𝑣 (𝑝𝑣,𝑖) ·max

{
𝐻𝑣 (𝑡) − 𝐻𝑣 (𝑝𝑣,𝑖)

𝑃min
, 1
}

− (𝐻𝑤 (𝑡) − 𝐻𝑤 (𝑝𝑤,𝑖−1))Line 14, (9.9) (9.10)

≤ 𝜗(𝑡 − 𝑝𝑣,𝑖−1) + ℓ↑𝑣 (𝑝𝑣,𝑖) ·
𝜗(𝑡 − 𝑝𝑣,𝑖)
𝑃min

− (𝑡 − 𝑝𝑤,𝑖−1)1 ≤ 𝑑𝐻
𝑑𝑡 ≤ 𝜗,

(9.8)

= (𝜗 − 1) (𝑡 − 𝑝𝑣,𝑖−1) + (𝜗𝑃max − (𝐻𝑣 (𝑝𝑣,𝑖) − 𝐻𝑣 (𝑝𝑣,𝑖−1))) · 𝜗S
𝑃min

+ SLines 7 to 11

= (𝜗 − 1) (𝑡 − 𝑝𝑣,𝑖−1) + (𝜗𝑃max − (𝑝𝑣,𝑖 − 𝑝𝑣,𝑖−1)) · 𝜗S
𝑃min

+ S𝑑𝐻𝑣
𝑑𝑡 ≥ 1

< (𝜗 − 1)𝑃max +
(
1 + (𝜗

2𝑃max − 𝜗𝑃min)
𝑃min

)
S < (𝜗 − 1)𝑃max + 𝛽S.Definition 9.5 (9.11)

By continuity of the logical clock functions, this bound also applies to 𝑡 =
𝑝𝑤,𝑖 = max{𝑝𝑣,𝑖 , 𝑝𝑤,𝑖}, which will be useful later.

The second case is that 𝑖𝑣 (𝑡) = 𝑖 − 1, i.e., 𝑡 ∈ [𝑝𝑤,𝑖 , 𝑝𝑣,𝑖) ⊆ [𝑝𝑤,𝑖 , 𝑝𝑤,𝑖 + S).
Analogously to the first case, we can show Equation (9.9) for 𝑣, yielding

𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) ≤ 𝐻𝑣 (𝑡) − 𝐻𝑤 (𝑝𝑣,𝑖−1) − (𝐻𝑤 (𝑡) − 𝐻𝑤 (𝑝𝑣,𝑖−1))(9.8), (9.10)

≤ 𝜗(𝑡 − 𝑝𝑣,𝑖−1) − (𝑡 − 𝑝𝑤,𝑖−1)1 ≤ ℎ𝑣 , ℎ𝑤 ≤
𝜗

= (𝜗 − 1) (𝑡 − 𝑝𝑣,𝑖−1) + 𝜗(𝑝𝑤,𝑖−1 − 𝑝𝑣,𝑖−1)
≤ (𝜗 − 1)𝑃max + 𝜗S < (𝜗 − 1)𝑃max + 𝛽S.Definition 9.5

Again, this bound also applies to 𝑡 = 𝑝𝑣,𝑖 = max{𝑝𝑣,𝑖 , 𝑝𝑤,𝑖}.
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The final case is that 𝑖 = 𝑖𝑣 (𝑡) = 𝑖𝑤 (𝑡), from which we can conclude that
𝑡 ∈ [max{𝑝𝑣,𝑖 , 𝑝𝑤,𝑖},min{𝑝𝑣,𝑖+1, 𝑝𝑤,𝑖+1}]. We get that

𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡)
= 𝐿𝑣 (𝑡) − 𝐿𝑣 (𝑝𝑣,𝑖) + 𝐿𝑣 (𝑝𝑣,𝑖) − 𝐿𝑤 (𝑝𝑤,𝑖) − (𝐿𝑤 (𝑡) − 𝐿𝑤 (𝑝𝑤,𝑖)) adding 0

= 𝐿𝑣 (𝑡) − 𝐿𝑣 (𝑝𝑣,𝑖) − ℓ↑𝑣 (𝑝𝑣,𝑖) + ℓ↑𝑤 (𝑝𝑤,𝑖) − (𝐿𝑤 (𝑡) − 𝐿𝑤 (𝑝𝑤,𝑖)) Lines 8 and 10

=𝐻𝑣 (𝑡) − 𝐻𝑣 (𝑝𝑣,𝑖) − ℓ↑𝑣 (𝑝𝑣,𝑖) ·max
{
1 − 𝐻𝑣 (𝑡) − 𝐻𝑣 (𝑝𝑣,𝑖)

𝑃min
, 0
}

−
(
𝐻𝑤 (𝑡) − 𝐻𝑤 (𝑝𝑤,𝑖) − ℓ↑𝑤 (𝑝𝑤,𝑖) ·max

{
1 − 𝐻𝑤 (𝑡) − 𝐻𝑤 (𝑝𝑤,𝑖)

𝑃min
, 0
})

Line 14

≤ 𝜗(𝑡 − 𝑝𝑣,𝑖) − ℓ↑𝑣 (𝑝𝑣,𝑖) ·max
{
1 − 𝜗(𝑡 − 𝑝𝑣,𝑖)

𝑃min
, 0
}

−
(
(𝑡 − 𝑝𝑤,𝑖) − ℓ↑𝑤 (𝑝𝑤,𝑖) ·max

{
1 − 𝑡 − 𝑝𝑤,𝑖

𝑃min
, 0
})

1 ≤ 𝑑𝐻
𝑑𝑡 ≤ 𝜗(9.12)

This last expression is piece-wise linear as function of 𝑡, implying that the
maximum is attained at some

𝑡 ∈
{
max{𝑝𝑣,𝑖 , 𝑝𝑤,𝑖}, 𝑝𝑣,𝑖 + 𝑃min

𝜗
, 𝑝𝑤,𝑖 + 𝑃min,min{𝑝𝑣,𝑖+1, 𝑝𝑤,𝑖+1}

}
.

Observe that the previous cases already cover the option 𝑡 = max{𝑝𝑣,𝑖 , 𝑝𝑤,𝑖},
and by applying them for index 𝑖 +1 the same holds for 𝑡 = min{𝑝𝑣,𝑖+1, 𝑝𝑤,𝑖+1}.

Next, we can bound

𝐿𝑣

(
𝑝𝑣,𝑖 + 𝑃min

𝜗

)
− 𝐿𝑤

(
𝑝𝑣,𝑖 + 𝑃min

𝜗

)

≤ (𝜗 − 1)𝑃min
𝜗

+ 𝑝𝑤,𝑖 − 𝑝𝑣,𝑖 + ℓ↑𝑤 (𝑝𝑤,𝑖) ·max
{
1 − 𝜗(𝑝𝑣,𝑖 − 𝑝𝑤,𝑖) + 𝑃min

𝜗𝑃min
, 0
}

(9.12)

=
(𝜗 − 1)𝑃min

𝜗
+ 𝑝𝑤,𝑖 − 𝑝𝑣,𝑖 + (𝜗𝑃max − (𝐻𝑤 (𝑝𝑤,𝑖) − 𝐻𝑤 (𝑝𝑤,𝑖−1)))

·max
{ (𝜗 − 1)𝑃min + 𝜗(𝑝𝑤,𝑖 − 𝑝𝑣,𝑖)

𝜗𝑃min
, 0
}

Lines 7 to 11

=
(𝜗 − 1)𝑃min

𝜗
+ 𝑝𝑤,𝑖 − 𝑝𝑣,𝑖 + (𝜗𝑃max − 𝑃min)

·max
{ (𝜗 − 1)𝑃min + 𝜗(𝑝𝑤,𝑖 − 𝑝𝑣,𝑖)

𝜗𝑃min
, 0
}

𝑑𝐻𝑤
𝑑𝑡 ≥ 1,

Definition 9.5

≤ (𝜗 − 1)𝑃min
𝜗

+ S + (𝜗𝑃max − 𝑃min) · (𝜗 − 1)𝑃min + 𝜗S
𝜗𝑃min

Definition 9.5

= (𝜗 − 1)𝑃max +
(
1 + 𝜗𝑃max − 𝑃min

𝑃min

)
S < (𝜗 − 1)𝑃max + 𝛽S.
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Last, we compute

𝐿𝑣 (𝑝𝑤,𝑖 + 𝑃min) − 𝐿𝑤 (𝑝𝑤,𝑖 + 𝑃min) ≤ (𝜗 − 1)𝑃min + 𝑝𝑤,𝑖 − 𝑝𝑣,𝑖(9.8), (9.12)

≤ (𝜗 − 1)𝑃min + S < (𝜗 − 1)𝑃max + 𝛽S.Definition 9.5

As we bounded 𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) from above in all cases and 𝑣, 𝑤 ∈ 𝑉𝑔 and 𝑡 were
arbitrary, we can conclude that indeed G ≤ (𝜗 − 1)𝑃max + 𝛽S. �

Theorem 9.11. Suppose the nodes in𝑉𝑔 run a pulse synchronization algorithm
with skew S, minimum period 𝑃min, and maximum period 𝑃max. Furthermore,
assume that node 𝑣 ∈ 𝑉𝑔 generates its first pulse at real time 𝑝𝑣,0 ∈ [−S, 0].
By adding only local computations to the algorithm, we can solve clock syn-
chronization with global skew (𝜗 − 1)𝑃max + 𝛽S, minimum clock rate 1, and
maximum clock rate 𝛽 := 𝜗2𝑃max

𝑃min
.

Proof. We claim that Algorithm 11 satisfies the claims of the theorem. By
Lemma 9.9, the algorithm provides logical clocks satisfying the rate bounds,
and by Lemma 9.10, the skew bound holds. �

Note that, by choosing 𝑇 large enough, Theorem 9.11 preserves frequency
arbitrarily well. On the other hand, we can choose 𝑇 in Θ(G), maintaining
asymptotically optimal speed of simulation of lock-step execution.

9.4 Impossibility of Synchronization with one Third of Faulty Nodes

Before delving into the impossibility proof, the reader is encouraged to spend
a few minutes to form an idea on how faulty nodes may disrupt algorithms.

E9.11 Argue that synchronization cannot be guaranteed if half or more of the nodes are
Byzantine faulty.

E9.12 Argue that a node for which half or more of its neighbors are faulty cannot reliably
synchronize to correct nodes that are not its neighbors.

So, where does the smaller threshold of 3 𝑓 < 𝑛 come from? Intuitively,
the issue is that Byzantine nodes can play different sets of nodes differently.
Instead of simply drowning out the information from correct nodes by being in
the majority, they can follow a divide-and-conquer approach. As always, we
will make an indistinguishability argument, but this time there will always be
some correct nodes who can observe a difference. The issue is that they cannot
prove to the other correct nodes that it is not them who are faulty.

We prove the lower bound for the pulse synchronization task. We partition
the node set into three sets 𝐴, 𝐵, 𝐶 ⊂ 𝑉 so that 1 ≤ |𝐴|, |𝐵|, |𝐶 | ≤ 𝑓 . We will
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𝐻𝐴(𝑡) 𝐻𝐵 (𝑡) 𝐻𝐶 (𝑡)
E0 𝜈𝑡 𝜈2𝑡

← arbitrary
𝑡 →

E1 𝜈2𝑡
← 𝜈3𝑡

𝜈𝑡
𝑡 →

E2
← 𝜈3𝑡

𝜈𝑡 𝜈2𝑡
𝑡 →

E3 𝜈𝑡 𝜈2𝑡
← 𝜈3𝑡
𝑡 →

E4 𝜈2𝑡
← 𝜈3𝑡

𝜈𝑡
𝑡 →

E5
← 𝜈3𝑡

𝜈𝑡 𝜈2𝑡
𝑡 →

E6 𝜈𝑡 𝜈2𝑡
← 𝜈3𝑡
𝑡 →

. . . . . . . . . . . .
Table 9.1
Hardware clock speeds in the different executions for the different sets. The red entries
indicate faulty sets, simulating a clock speed of 𝜈3𝑡 to the set “to the left” and 𝑡 to the set
“to the right.” For 𝑘 ∈ N0, execution pairs (E3𝑘 , E3𝑘+1) are indistinguishable to nodes
in 𝐴, pairs (E3𝑘+1, E3𝑘+2) are indistinguishable to nodes in𝐶, and pairs (E3𝑘+2, E3𝑘+3)
are indistinguishable to nodes in 𝐵. That is, in E𝑖 faulty nodes mimic the behavior they
have in E𝑖−1 to the set left of them, and that from E𝑖+1 to the set to the right.

construct a sequence of executions showing that either synchronization is lost
in some execution (i.e., any finite skew bound S is violated) or the algorithm
cannot guarantee bounds on the period, cf. Table 9.1. In each execution, one
of the sets, say 𝐴, consists entirely of faulty nodes. All of the nodes in the
(correct) set 𝐵 will have identical hardware clocks, as will the nodes in 𝐶. The
faulty nodes in 𝐴 attempt to fool the correct nodes in 𝐵 and 𝐶 as follows: to
one set, say 𝐵, faulty nodes send messages to each 𝑣 ∈ 𝐵 that lead 𝑣 to believe
that 𝑣’s clock is fast. Similarly, nodes in 𝐴 try to convince each 𝑤 ∈ 𝐶 that 𝑤’s
clock is slow. All clock rates (actual or simulated) will lie between 1 and 𝜈3,
where 𝜈 > 1 is small enough so that 𝜈3 ≤ 𝜗 and 𝑑 ≤ 𝜈3 (𝑑 − 𝑢). This way,
message delays can be chosen such that messages arrive at the same local times
without violating message delay bounds.

For each pair of consecutive executions, the executions are indistinguishable
to the node set that is correct in both executions and there is a factor of 𝜈 > 1
between the speeds of hardware clocks. This means that the pulses are generated
at by factor 𝜈 higher speed. However, as the skew bounds are to be satisfied, the
set of correct nodes that know that something is different will have to generate
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pulses faster. Thus, in execution E𝑖 , pulses are generated at an amortized rate
of (at least) 𝜈𝑖𝑃min. For 𝑖 > log𝜈

𝑃max
𝑃min

, we arrive at a contradiction.

Lemma 9.12. Suppose 3 ≤ 𝑛 ≤ 3 𝑓 . Then, for any algorithm A, there exists
𝜈 > 1 and a sequence of executions E𝑖 , 𝑖 ∈ N0, with the properties stated in
Table 9.1.

Proof. Choose 𝜈 B min
{
𝜗, 𝑑

𝑑−𝑢
}1/3. We construct the entire sequence con-

currently, where we advance real time in execution E𝑖 at speed 𝜈−𝑖 . All correct
nodes run A, which specifies the local times at which these nodes send mes-
sages as well as their content. We maintain the invariant that the constructed
parts of the executions satisfy the stated properties. In particular, this defines
the hardware clocks of correct nodes at all times. Any message a node 𝑣 (faulty
or not) sends at time 𝑡 to some node 𝑤 is received at local time 𝐻𝑤 (𝑡) + 𝑑. By
the choice of 𝜈, this means that all hardware clock rates (of correct nodes) and
message delays are within the required bounds, i.e., all constructed executions
are feasible.

We need to specify the messages sent by faulty nodes in a way that achieves
the desired indistinguishability. To this end, consider the set of faulty nodes
in execution E𝑖 , 𝑖 ∈ N0. If in execution E𝑖+1 such a node 𝑣 sends a message
to some 𝑤 in the “right” set (i.e., 𝐵 is right of 𝐴, 𝐶 of 𝐵, and 𝐴 of 𝐶) at time
𝑡 = 𝐻𝑣 (𝑡)

𝜈 , it sends the same message in E𝑖 at time 𝜈𝑡. Thus, it is received at
local time

𝐻 (E𝑖)𝑤 (𝜈𝑡) + 𝑑 = 𝜈2𝑡 + 𝑑 = 𝐻E𝑖+1𝑤 (𝑡) + 𝑑.
Similarly, consider the set of faulty nodes in execution E𝑖 , 𝑖 ∈ N. If in execution
E𝑖−1 a node 𝑣 from this set sends a message to some 𝑤 in the “left” set (i.e., 𝐴
is left of 𝐵, 𝐵 of 𝐶, and 𝐶 or 𝐴) at time 𝑡, it sends the same message in E𝑖 at
time 𝑡

𝜈 . Thus, it is received at local time

𝐻 (E𝑖)𝑤

( 𝑡
𝜈

)
+ 𝑑 = 𝜈𝑡 + 𝑑 = 𝐻 (E𝑖−1)

𝑤 (𝑡) + 𝑑.

Together, this implies that for 𝑘 ∈ N0, execution pairs (E3𝑘 , E3𝑘+1) are indis-
tinguishable to nodes in 𝐴, pairs (E3𝑘+1, E3𝑘+2) are indistinguishable to nodes
in 𝐶, and pairs (E3𝑘+2, E3𝑘+3) are indistinguishable to nodes in 𝐵, as claimed.
Note that it does not matter which messages are sent from the nodes in 𝐶 to
nodes in 𝐵 in execution E0; for example, we can rule that they send no messages
to nodes in 𝐵 at all.

It might seem as if the proof were complete. However, each execution is
defined in terms of others, so it is not entirely clear that the above assignment is
possible. This is where we use the aforementioned approach of “constructing
execution E𝑖 at speed 𝜈−𝑖 .” Think of each faulty node as simulating two virtual
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nodes, one for messages sent “to the left,” which has local time 𝜈3𝑡 at time
𝑡, and one for messages sent “to the right,” which has local time 𝑡 at time 𝑡.
This way, there is a one-to-one correspondence between the virtual nodes of a
faulty node 𝑣 in execution E𝑖 and the corresponding nodes in executions E𝑖−1
and E𝑖+1, respectively (up to the case 𝑖 = 0, where the “left” virtual nodes do
not send messages). If a faulty node 𝑣 needs to send a message in execution
E𝑖 , the respective virtual node sends the message at the same local time as
𝑣 sends the message in execution E𝑖−1 (left) or E𝑖+1 (right). In terms of real
time, there is exactly a factor of 𝜈: if 𝑣 is faulty in E𝑖 and wants to determine
the behavior of its virtual node corresponding to E𝑖−1 up to time 𝑡, it needs
to simulate E𝑖−1 up to time 𝜈𝑡; similarly, when doing the same for its virtual
node corresponding to E𝑖+1, it needs to simulate E𝑖+1 up to time 𝑡

𝜈 . Thus,
when simulating all executions concurrently, where E𝑖 progresses at rate 𝜈−𝑖 ,
at all times the behavior of faulty nodes according to the above scheme can be
determined. This completes the proof. �

Theorem 9.13. Pulse synchronization is impossible if 3 ≤ 𝑛 ≤ 3 𝑓 .

Proof. Assume for contradiction that there is an algorithm solving pulse syn-
chronization. We apply Lemma 9.12, yielding a sequence of executions E𝑖
with the properties stated in Table 9.1. We will show that pulses are generated
arbitrarily fast, contradicting the minimum period requirement. We show this
by induction on 𝑖 ∈ N0, where the induction hypothesis is that there is some
𝑣 ∈ 𝑉 (E𝑖)𝑔 satisfying that

𝑝 (E𝑖)𝑣, 𝑗 − 𝑝 (E𝑖)𝑣,1 ≤ ( 𝑗 − 1)𝜈−𝑖𝑃max + 2𝑖S

for all 𝑗 ∈ N, where 𝜈 > 1 is given by Lemma 9.12. This is trivial for the base
case 𝑖 = 0 by the maximum period requirement.

For the induction step from 𝑖 to 𝑖+1, let 𝑣 ∈ 𝑉 (E𝑖)𝑔 be a node with 𝑝 (E𝑖)𝑣, 𝑗 −𝑝 (E𝑖)𝑣,1 ≤
( 𝑗 − 1)𝜈−𝑖𝑃max + 2𝑖S for all 𝑗 ∈ N0. Let 𝑤 ∈ 𝑉 (E𝑖)𝑔 ∩ 𝑉 (E𝑖+1)𝑔 be a node that is
correct in both E𝑖 and E𝑖+1. By the skew bound,

𝑝 (E𝑖)𝑤, 𝑗 − 𝑝 (E𝑖)𝑤,1 ≤ 𝑝
(E𝑖)
𝑣, 𝑗 − 𝑝 (E𝑖)𝑣,1 + 2S ≤ ( 𝑗 − 1)𝜈−𝑖𝑃max + 2(𝑖 + 1)S

for all 𝑗 ∈ N. By Lemma 9.12, 𝑤 cannot distinguish between E𝑖 and E𝑖+1.
Because 𝐻 (E𝑖+1)𝑤 (𝑡/𝜈) = 𝜈𝑡 = 𝐻 (E𝑖+1)𝑤 (𝑡), we conclude that 𝑝 (E𝑖+1)𝑤, 𝑗 = 𝜈−1𝑝 (E𝑖)𝑤, 𝑗

for all 𝑗 ∈ N. Hence,

𝑝 (E𝑖+1)𝑤, 𝑗 − 𝑝 (E𝑖+1)𝑤,1 ≤ 𝜈−1
(
𝑝 (E𝑖)𝑤, 𝑗 − 𝑝 (E𝑖)𝑤,1

)
≤ ( 𝑗 − 1)𝜈−(𝑖+1)𝑃max + 2(𝑖 + 1)S

for all 𝑗 ∈ N, completing the induction step.
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Now choose 𝑖 ∈ N large enough so that 𝜈−𝑖𝑃max < 𝑃min and let 𝑣 ∈ 𝑉 (E𝑖)𝑔 be a
node to which the claim applies in E𝑖 . Choosing 𝑗 − 1 > 2𝑖S(𝑃min − 𝜈−𝑖𝑃max),
it follows that

𝑝 (E𝑖)𝑣, 𝑗 − 𝑝 (E𝑖)𝑣,1 ≤ ( 𝑗 − 1)𝜈−𝑖𝑃max + 2𝑖S < ( 𝑗 − 1)𝑃min .

Hence, the minimum period bound is violated, as there must be some index
𝑗 ′ ∈ {1, . . . , 𝑗 − 1} for which 𝑝 (E𝑖)𝑣, 𝑗′+1 − 𝑝

(E𝑖)
𝑣, 𝑗′ < 𝑃min. �

E9.13 Solve pulse synchronization for 𝑛 = 2 and 𝑓 = 1.

The above theorem concerns pulse synchronization. However, we established
that pulse and clock synchronization are very closely related, so the impossiblity
of solving pulse synchronization implies the same for clock synchronization.

Corollary 9.14. Clock synchronization is impossible if 3 ≤ 𝑛 ≤ 3 𝑓 and any
(amortized) lower bound on clock rates is to be guaranteed.

E9.14 Prove the corollary. Note that the corollary does not require an upper bound on
clock rates. To reach a contradiction, show that no finite skew bound can be
satisfied.

9.5 Pulse Synchronization with less than one Third of Faulty Nodes

We have seen that we cannot hope to find an algorithm that always works if
𝑛 ≤ 3 𝑓 . We now show that 𝑛 > 3 𝑓 is not only sufficient, but a simple algorithm
can deal with this setting, despite the arbitrary behavior of faulty nodes. This
simplicity enables us to describe the algorithm as a small state machine, plus
one memory flag at each node for each incoming link. Concretely, we make the
following restrictions (which do not constrain the behavior of faulty nodes!):
• Nodes communicate by broadcast (i.e., sending the same information to all

nodes, including themselves). Note that faulty nodes do not need to obey this
rule!

• Messages are trivial: Nodes communicate only when they transition to state
propose.

• Each node 𝑣 has a memory flag for every node 𝑤 ∈ 𝑉 (including 𝑣 itself),
indicating whether 𝑣 received such a message from 𝑤 in the current iteration
of the loop in the state machine. On some state transitions, 𝑣 will reset all of
its flags to 0, indicating that it starts a new iteration locally, in which it has
not yet received any propose messages.

• Not accounting for the memory flags, each node runs a state machine with a
constant number of states.
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G1

G3

G2

Guard Condition

G4

G5 hT3i expires or > f PROPOSE flags set

hT1i expires or > f PROPOSE flags set

hT2i expires

� n � f PROPOSE flags set

Hv(t) = H0

RESET START PROPOSE READY

PULSE

Propose

Propose

G3

G2G1 G5

G4

Figure 9.4
State machine of a node in the pulse synchronisation algorithm. State transitions occur
when the condition of the guard in the respective edge is satisfied (gray boxes). All
transition guards involve checking whether a local timer expires or a node has received
propose messages from sufficiently many different nodes. The only communication is
that a node broadcasts to all nodes (including itself) when it transitions to propose. The
notation 〈𝑇〉 evaluates to true when𝑇 time units have passed on the local clock since the
transition to the current state. The boxes labeled propose indicate that a node clears its
propose memory flags when transitioning from reset to start or from pulse to ready.
That is, the node forgets who it has “seen” in propose at some point in the previous
iteration. All nodes initialize their state machine to state reset, which they leave at the
time 𝑡 when 𝐻𝑣 (𝑡) = 𝐻0. Whenever a node transitions to state pulse, it generates a
pulse. The constraints imposed on the timeouts are listed in Inequalities (9.13)–(9.16).

• Transitions in this state machine are triggered by expressions involving (i) the
own state, (ii) thresholds for the number of memory flags that are set (i.e., 1),
and (iii) timeouts. A timeout means that a node waits for a certain amount
of local time after entering a state before considering the timeout expired,
i.e., evaluating the respective expression to true. The only exception is the
starting state reset, from which nodes transition to start when the local clock
reaches 𝐻0, where we assume that max𝑣∈𝑉𝑔 {𝐻𝑣 (0)} < 𝐻0. This corresponds
to some (possibly weak) guarantee of synchronization at initialization.

The algorithm, from the perspective of a node, is depicted in Figure 9.4.

E9.15 Try to figure out the intended operation of the algorithm. Assume first that all
correct nodes start in state ready.

The idea is to repeat the following cycle:
• At the beginning of an iteration, all nodes transition to state ready (or,

initially, start) within a bounded time span. This resets the flags.
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• Nodes wait in this state until they are sure that all correct nodes reached it.
Then, when a local timeout expires, they transition to propose.

• When it looks like all correct nodes (may) have arrived there, they transition
to pulse. As the faulty nodes might refuse to send any messages, this means
to wait for 𝑛 − 𝑓 nodes having announced to be in propose.

• However, faulty nodes may also sent propose messages, meaning that the
threshold is reached despite some nodes still waiting in ready for their
timeouts to expire. To “pull” such stragglers along, nodes will also transition
to propose if more than 𝑓 of their memory flags are set. This is proof that at
least one correct node transitioned to propose due to its timeout expiring, so
no “early” transitions are caused by this rule.

• Thus, if any node hits the 𝑛 − 𝑓 threshold, no more than 𝑑 time later each
node will hit the 𝑓 + 1 threshold. Another 𝑑 time later all nodes hit the 𝑛 − 𝑓
threshold, i.e., the algorithm has skew 2𝑑.

• The nodes wait in pulse sufficiently long to ensure that no propose messages
are in transit any more before transitioning to ready and starting the next
iteration.

For this reasoning to work out, a number of timing constraints need to be
satisfied:

𝐻0 > max
𝑣∈𝑉𝑔

{𝐻𝑣 (0)} (9.13)

𝑇1
𝜗
≥ 𝐻0 (9.14)

𝑇2
𝜗
≥ 3𝑑 (9.15)

𝑇3
𝜗
≥

(
1 − 1

𝜗

)
𝑇2 + 2𝑑 (9.16)

We first show that the propose-pull mechanism works as intended, provided it
is set up correctly, i.e., all correct nodes transition to start or ready within a
small time window.

Lemma 9.15. Suppose 3 𝑓 < 𝑛, Δ ≥ 0, and the above constraints are satisfied.
Moreover, assume that each 𝑣 ∈ 𝑉𝑔 transitions to start (ready) at a time
𝑡𝑣 ∈ [𝑡 − Δ, 𝑡], no such node transitions to propose during (𝑡 − Δ − 𝑑, 𝑡𝑣),
and 𝑇1 ≥ 𝜗Δ (𝑇3 ≥ 𝜗Δ). Then there is a time 𝑡 ′ ∈

(
𝑡 − Δ + 𝑇1

𝜗 , 𝑡 + 𝑇1 − 𝑑
)

(𝑡 ′ ∈
(
𝑡 − Δ + 𝑇3

𝜗 , 𝑡 + 𝑇3 − 𝑑
)
) such that each 𝑣 ∈ 𝑉𝑔 transitions to pulse during

[𝑡 ′, 𝑡 ′ + 2𝑑).
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Proof. We perform the proof for the case of start and 𝑇1; the other case is
analogous. Let 𝑡𝑝 denote the smallest time larger than 𝑡 − Δ − 𝑑 when some
𝑣 ∈ 𝑉𝑔 transitions to propose (such a time exists, as 𝑇1 will expire if a node
does not transition to propose before this happens). By assumption and the
definition of 𝑡𝑝 , no 𝑣 ∈ 𝑉𝑔 transitions to propose during (𝑡−Δ−𝑑, 𝑡𝑝), implying
that no node receives a message from any such node during [𝑡 − Δ, 𝑡𝑝]. As
𝑣 ∈ 𝑉𝑔 clears its memory flags when transitioning to ready at time 𝑡𝑣 ≥ 𝑡 − Δ,
this implies that the node(s) from 𝑉𝑔 that transition to propose at time 𝑡𝑝 do
so because 𝑇1 expired. As hardware clocks run at most at rate 𝜗 and for each
𝑣 ∈ 𝑉𝑔 it holds that 𝑡𝑣 ≥ 𝑡 − Δ, it follows that

𝑡𝑝 ≥ 𝑡 − Δ + 𝑇1
𝜗
≥ 𝑡 .

Thus, at time 𝑡𝑝 ≥ 𝑡, each 𝑣 ∈ 𝑉𝑔 has reached state ready and will not reset its
memory flags again without transitioning to pulse first. Therefore, each 𝑣 ∈ 𝑉𝑔
will transition to pulse: Each 𝑣 ∈ 𝑉𝑔 transitions to propose during [𝑡𝑝 , 𝑡 +𝑇1],
as it does so at the latest at time 𝑡𝑣 +𝑇1 ≤ 𝑡+𝑇1 due to𝑇1 expiring. Thus, by time
𝑡 + 𝑇1 + 𝑑 each 𝑣 ∈ 𝑉𝑔 received the respective messages and, as |𝑉𝑔 | ≥ 𝑛 − 𝑓 ,
transitioned to pulse.

It remains to show that all correct nodes transition to pulse within 2𝑑 time.
Let 𝑡 ′ be the minimum time after 𝑡𝑝 when some 𝑣 ∈ 𝑉𝑔 transitions to pulse. If
𝑡 ′ ≥ 𝑡 +𝑇1− 𝑑, the claim is immediate from the above observations. Otherwise,
note that out of the 𝑛 − 𝑓 of 𝑣’s flags that are true, at least 𝑛 − 2 𝑓 > 𝑓

correspond to nodes in 𝑉𝑔. The messages causing them to be set have been
sent at or after time 𝑡𝑝 , as we already established that any flags that were raised
earlier have been cleared before time 𝑡 ≤ 𝑡𝑝 . Their senders have broadcasted
their transition to propose to all nodes, so any 𝑤 ∈ 𝑉𝑔 has more than 𝑓 flags
raised by time 𝑡 ′ + 𝑑, where 𝑑 accounts for the potentially different travelling
times of the respective messages. Hence, each 𝑤 ∈ 𝑉𝑔 transitions to propose
before time 𝑡 ′+ 𝑑, the respective messages are received before time 𝑡 ′+2𝑑, and,
as |𝑉𝑔 | ≥ 𝑛 − 𝑓 , each 𝑤 ∈ 𝑉𝑔 transitions to pulse during [𝑡 ′, 𝑡 ′ + 2𝑑). �

E9.16 Show a tight bound on the size of the time window during which the transitions
to pulse occur, taking into account that messages are under way for at least 𝑢
time.

Lemma 9.16. Suppose 3 𝑓 < 𝑛 and the constraints of Equations (9.13) to (9.16)
are satisfied. Then the algorithm given in Figure 9.4 solves the pulse synchro-
nization problem with S = 2𝑑, 𝑃min = 𝑇2+𝑇3

𝜗 − 2𝑑, and 𝑃max = 𝑇2 + 𝑇3 + 3𝑑.



9.5 Pulse Synchronization with less than one Third of Faulty Nodes 137

Proof. We prove the claim by induction on the pulse number. For each pulse,
we invoke Lemma 9.15. The first time, we use that all nodes start with hardware
clock values in the range [0, 𝐻0) by (9.13). As hardware clocks run at least
at rate 1, thus all nodes transition to state start by time 𝐻0. By (9.14), the
lemma can be applied with 𝑡 = Δ = 𝐻0, yielding times 𝑝𝑣,1, 𝑣 ∈ 𝑉𝑔, satisfying
the claimed skew bound of 2𝑑.

For the induction step from 𝑖 to 𝑖 + 1, (9.15) yields that 𝑣 ∈ 𝑉𝑔 transitions to
ready no earlier than time

𝑝𝑣,𝑖 + 𝑇2
𝜗
≥ max

𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇2
𝜗
− 2𝑑 ≥ max

𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑑

and no later than time

𝑝𝑣,𝑖 + 𝑇2 ≤ max
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇2 .

Thus, by (9.16) we can apply Lemma 9.15 with 𝑡 = max𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} + 𝑇2 and
Δ =

(
1 − 1

𝜗

)
𝑇2 + 2𝑑, yielding pulse times 𝑝𝑣,𝑖+1, 𝑣 ∈ 𝑉𝑔, satisfying the stated

skew bound.
It remains to show that min𝑣∈𝑉𝑔 {𝑝𝑣,𝑖+1} −max𝑣∈𝑉𝑔 {𝑝𝑣,𝑖} ≥ 𝑇2+𝑇3

𝜗 − 2𝑑 and
max𝑣∈𝑉𝑔 {𝑝𝑣,𝑖+1} −min𝑣∈𝑉𝑔 {𝑝𝑣,𝑖} ≤ 𝑇2 + 𝑇3 + 3𝑑. By Lemma 9.15,

𝑝𝑣,𝑖+1 ∈
(
𝑡 − Δ + 𝑇3

𝜗
, 𝑡 + 𝑇3 + 𝑑

)

=

(
max
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇2 + 𝑇3
𝜗
− 2𝑑, max

𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇2 + 𝑇3 + 𝑑
)
.

Thus, the first bound is satisfied. The second follows as well, as we have already
shown that max𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} ≤ min𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} + 2𝑑. �

Theorem 9.17. Suppose 3 𝑓 < 𝑛, 𝐻𝑣 (0) ∈ [0, 𝐻0) for all 𝑣 ∈ 𝑉 and some
known 𝐻0 ∈ R+, and choose any 𝑇 ≥ 3𝜗𝑑. Then we can solve the pulse
synchronization problem with S = 2𝑑, 𝑃min = 𝑇 , and 𝑃max = 𝜗𝑇 + (5 + 2(𝜗 −
1))𝑑, where each node generates its first pulse by time 𝐻0 + (𝜗 − 1)𝑇 + (3 +
2(𝜗 − 1))𝑑.

Proof. Set 𝑇1 := 𝜗𝐻0, 𝑇2 := 𝑇 , and 𝑇3 := (𝜗 − 1)𝑇 + 2𝜗𝑑. By the assumption
that 𝐻0 > 𝐻𝑣 (0) for all 𝑣 ∈ 𝑉𝑔, these choices satisfy Equations (9.13) to (9.16).
We apply Lemma 9.16 to solve pulse synchronization with the stated skew and
period bounds. As all correct nodes switch to propose for the first time by local
(and thus also real) time 𝐻0 + 𝑇3, the first pulse is generated at each correct
node by time 𝐻0 + 𝑇3 + 𝑑 = 𝐻0 + (𝜗 − 1)𝑇 + (3 + 2(𝜗 − 1))𝑑. �
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We remark that, by making 𝑇2 +𝑇3 large, the ratio 𝑃max/𝑃min can be brought
arbitrarily close to 𝜗. On the other hand, we can go for the minimal choice
𝑇2 = 3𝜗𝑑 and𝑇3 = (3𝜗2−𝜗)𝑑, yielding 𝑃min = 3𝜗𝑑 and 𝑃max = (3𝜗2+2𝜗+2)𝑑.

E9.17 Derive a clock synchronization algorithm using Theorem 9.11. Do the results so
far leave room for improvement in some of the guarantees?

9.6 Implementing the Srikanth-Toueg Algorithm

The state machine representation in Figure 9.4 is already a good starting point
for a hardware implementation of the algorithm. In the following we will do a
top-down approach by

1. constructing the state machine, assuming the guards𝐺1 to𝐺5 are available
as digital signals,

2. building the guards, assuming binary signals about the expiration status of
the timers 〈𝑇1〉 to 〈𝑇3〉, about 𝐻𝑣 (𝑡), as well as about the conditions 𝐶𝐺

(< 𝑓 ) and 𝐶𝐺𝐸 (≥ 𝑛 − 𝑓 ) of the propose flags are available,
3. building the timers,
4. deriving the conditions 𝐶𝐺 and 𝐶𝐺𝐸 from the propose flags 𝑃𝐹𝑖 , and

finally
5. maintaining the propose flags.

The block diagram shown in Figure 9.5 gives the top level view of the state
machine design.

For the moment we assume that we build our state machine in a fully syn-
chronous environment where a suitable clock 𝐻𝑊_𝐶𝐿𝐾 is available for clock-
ing the registers and the timers.

According to the algorithm, the communication between the instances of the
state machine is established through the propose flags, namely by having each
state machine broadcast its generated propose flag 𝑃𝑖 to all others (plus itself).
Note that these instances will have different clocks supplying them – otherwise
there would be no need for a (pulse) synchronization. Our implementation of
the “broadcast” will be a set of 𝑛 signal lines, each driven by one instance of the
algorithm (“node”) and being routed to the inputs of all nodes. Should one of
these signal lines become defective, we may see asymmetric faults, where some
of the receiving nodes are cut off, while others are not. This can be mapped to
a Byzantine behavior of the sender (or, alternatively, the receiver) and is hence
well within our fault model. Another way of experiencing Byzantine behavior
would be a node driving a voltage level on its associated line that is in between
HI and LO. Then some receivers may regard this as a HI, and others as LO.
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Figure 9.5
Block diagram of the state machine implementing the Srikanth-Toueg algorithm. the
flip flops in the center hold the current state, encoded in the signals 𝑆, 𝑂, 𝑈, and 𝑅.
The block “Next State logic” at the left computes, based on current state and input, the
values (𝑆′, 𝑂 ′,𝑈 ′, 𝑅′) that shall be captured by the flip flops upon the next active clock
edge. The “Output Logic” at the right derives, according to the current state, the output
signals 𝑃𝑢𝑙𝑠𝑒 and 𝑃, as well as the reset signals 𝑇𝑖∗ for the timers that will be required
later on.

Worse, unless we protect the receiver from this, their logic may be affected by
metastability, cf. ??.

9.6.1 State Machine Design
To cover the space of 5 states that our state machine uses we need at least 3
bits. If we are slightly more generous and invest 4 bits, we can obtain a very
intuitive state representation that will pay off later on, as follows: For the active
states we use a one-hot encoding with
• bit 𝑆 being active in state start,
• bit 𝑂 in state propose,
• bit𝑈 in state pulse, and
• bit 𝑅 in state ready.
• For state reset we conveniently use (𝑆𝑂𝑈𝑅) = (0000), so we can (asyn-

chronously) clear all state registers upon reset.
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Next we have to determine how to move forward from one state to a next.
This is particularly simple for the given state machine, as each state has one
single clear successor state – the guards just determine the moment when a
transition occurs, but have no influence on the selection of the next state that is
attained. Consequently (and thanks to our investment into a one-hot encoding),
our next state logic becomes very simple, see Figure 9.6.
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Figure 9.6
Next State Logic for the state machine. The OR gates make sure that the state is assumed
when the state machine is in the predecessor state and the guard is valid (decoded at the
AND with no inverted inputs), and that it is, once active, held active until the guard for
the next state becomes valid (AND with the inverted input).

The outputs produced by our state machine can be easily derived as well: The
propose signal needs to be sent when the state machine enters state propose,
so we get PF = 𝑂 ′. Similarly, for the pulse we get PULSE = 𝑈. The use of the
𝑇𝑖∗ signals for triggering the timers will be explained below.

In our synchronous implementation we can be sure that each state is main-
tained at least for one clock period. For pulse this is not important, as this state
is not left anyway before timer 𝑇2 expires. However, propose is visited just to
see if a sufficient number of propose flags has been set, and hence may indeed
be visited for just one period of 𝐻𝑊_𝐶𝐿𝐾 . In that case this period must be



9.6 Implementing the Srikanth-Toueg Algorithm 141

long enough for the resulting propose pulse to be safely recognized by all other
nodes. If this is not guaranteed, a suitable number 𝐶𝑚𝑖𝑛 of clock states must
be spent in propose. This can be enforced by a counter that starts counting
when propose is entered and whose count reaching 𝐶𝑚𝑖𝑛 forms an additional
condition for moving to the next state.

Pulse
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Figure 9.7
Output Logic for the state machine. Due to the chosen one-hot encoding of the states
it is easy to derive the desired output signals. The buffers could be omitted, they are
inserted here to formally separate the signals with different names at their inputs and
outputs.

E9.18 With 4 bits representing the state, our pipeline could actually have up to 16 states.
What happens when the pipeline, as a consequence of a bit flip, gets into one of
the unused states? Could we extend the combinational parts of the state machine
(next-state logic and output logic) to make it more robust?

9.6.2 Deriving the Guards
For deriving the guard signals 𝐺𝑥 we can directly apply the table given in
Figure 9.4: So, unsurprisingly, we get the circuit shown in Figure 9.8.

9.6.3 Building the Timers
Assuming that we have a local crystal clock available, it is easy to transform the
time-outs required by the algorithm into equivalent counter values 𝐶𝑖. Once
we need to trigger a given time-out 𝑇𝑖, we can reset the counter to zero and
wait until the count matches that 𝐶𝑖. While comparison with an arbitrary,
changing pattern is somewhat expensive to implement, here we fortunately
have a constant 𝐶𝑖. So we may as well pre-load the counter to 𝐶𝑖 and have
it count down; then checking for count 0 becomes as simple as a NOR over
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Figure 9.8
Derivation of the guard signals. This circuit logically implements the conditions stated
in Figure 9.4

all bits. The pre-loading can be done by presetting or clearing the counter’s
individual flip flops upon trigger. Still we need a trigger signal 𝑇𝑥∗ for this
purpose. Here again the one-hot coding of our state machine proves beneficial:
Assuming that (as usual) register clear and preset are low-active, we can have
𝑇1∗ = 𝑆, 𝑇2∗ = 𝑈, and 𝑇3∗ = 𝑅, as shown in Figure 9.7. With this assignment
the timer required for the guard to leave start / pulse / ready is triggered
exactly when the respective state is entered. More precisely, the respective
clear and preset signals of the individual registers are kept active all the time
and only released when that state is entered and the counter is supposed to
count down. In order to avoid metastability issues at the interfaces, it is highly
advisable to use the same clock source 𝐻𝑊𝐶𝐿𝐾 for counter and state machine.
A simple example for a timer is shown in Figure 9.8: Here the timer is kept
initialized to 100 until 𝑇𝑖∗ is released (carefully note the connection of 𝑇𝑖∗ to
the preset (𝑆) and clear (𝑅) inputs of the individual flip flops. Consequently, the
next four clock edges will make it count down to zero (following the sequence
100,011,010,001,000). Then, on the next clock edge the state machine will
sense the 1 on 𝑇𝑖. So overall we have implemented a time-out of 5 clock cycles.

E9.19 The combinational logic in a binary counter is relatively expensive. Think about
which property of the counter is actually required and whether other, maybe
cheaper, types of counters could do the job.

E9.20 Checking the counter for all zero is a simple way of detecting its expiration. What
happens if, due to a glitch, we miss the zero-detection in the very cycle when



9.6 Implementing the Srikanth-Toueg Algorithm 143

D2

D1

D0

HW CLK
T∗

i

TiD

R

Q
S

D

R

Q
S

D

R

Q
S

Figure 9.9
Example implementation of a time-out. A 3-bit counter is initialized to 100 by pulling
𝑇𝑖∗ to 0. Upon release of 𝑇𝑖∗, a count down sequence starts. As soon as count 000 is
reached, 𝑇𝑖 is raised.

the counter reaches that value? What will a counter normally do? What will the
signal 𝑇𝑖 do? What would be required for robust solution? How does the counter
shown in Figure 9.9 perform in this respect?

Checking for 𝐻𝑣 (𝑡) = 𝐻0 is a different problem as it just involves checking
the match of the local time with a given threshold value. So there is no need
to establish a time reference through a counter here. However, as the local
time is not under our control here, we obviously cannot use the approach of
counting down. So we need to do a more complicated comparison, as shown in
Figure 9.10. In a naive approach we could use an AND gate with the number of
inputs matching the bit width of 𝐻0 and put an inversion at those inputs where
𝐻0 holds a 0. In modern CMOS technologies, however, AND gates with more
than 4 inputs (sometimes even 3) do not reliably work, so larger ones are built
by cascading the available smaller ones, as shown in the figure.

9.6.4 Evaluating the Propose Flags
To generate the status signal𝐶𝐺 we need to check whether among 𝑛 inputs (the
propose flags 𝑃𝐹𝑖 for all nodes) we have more than 𝑓 activated. This so called
“threshold function” is more costly than it initially seems. For the example of
𝑓 = 1 and 𝑛 = 4 we need at least two inputs activated, so the input patterns
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Figure 9.10
Example implementation of a time comparison 𝐻𝑣 (𝑡) = 𝐻0 for the example of 𝐻0 =
1101110110101001. A 16 bit wide AND is composed by cascading four 4 bit wide
AND gates. All inputs where the corresponding bit position in𝐻0 holds a 0 are inverted.

(0011), (0101), (0110), (0111), (1001), (1010), (1011), (1100), (1101),
(1110), (1111)

shall activate the 𝐶𝐺 output, while the others shall not.
Writing a truth table for this function is straightforward and will allow a sum-

of-products implementation, possibly with a subsequent optimization. Already
here it becomes apparent, that this approach does not scale well; in fact the
number of terms that cause the output to be activated scales with

( 𝑛
𝑓 +1

)
, and

there is not much optimization possible. However, there are hardly any better
solutions available. Sorting the inputs such that all ones are at the bottom bits
of the output word, and all zeros in the upper positions, and then checking the
appropriate bit position (in our example the second one from the bottom) for
a one, is an alternative. The associated cost of 𝑂 (𝑛 log( 𝑓 + 1)) is exponen-
tially cheaper than the naive approach, but still becomes painful for larger 𝑓 .
Asymptotically yet cheaper is a (binary) adder tree. It has size Θ(𝑛), because
the number of nodes per level drops exponentially in the distance from leaves.
As we can add in binary, the size of adders grows only logarithmically with
distance from leaves. However, the sorting network should be (asymptotically)
faster, because the comparators consist only of two gates, while the adders will
have depth Θ(log log 𝑓 ). For the example of 𝑓 = 1 and 𝑛 = 4 Figure 9.11
shows an implementation for deriving 𝐶𝐺.
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Figure 9.11
Implementation of the threshold gate for generating 𝐶𝐺 for the example of 𝑛 = 4 and
𝑓 = 1, illustrating, how all combinations of bit pairs need to be explicitly enumerated.
Therefore, this approach scales badly for larger 𝑛, and other implementations based on
sorting networks or adder trees should be considered.

In the same way the status signal 𝐶𝐺𝐸 can be generated to indicate when
condition ≥ 𝑛 − 𝑓 is fulfilled.

E9.21 The problem of checking whether at least 𝑛− 𝑓 inputs are activated (as required for
𝐶𝐺𝐸) is complementary to the one of checking whether more than 𝑓 inputs are
activated (as for 𝐶𝐺): In fact, the former can be rephrased to checking whether
more than 𝑓 inputs are not activated. Using this insight, think about how to
modify the circuit that generates 𝐶𝐺 to make it applicable for solving 𝐶𝐺𝐸 .

9.6.5 Maintaining the Propose Flags
Once a node 𝑖 activates its propose signal 𝑃𝑖 , all receiving nodes must set the
corresponding local flag 𝑃𝐹𝑖 and keep it set until the local state machine clears
it – even if the sending node de-activates 𝑃𝑖 later on. This “sticky bit” can
be implemented using a D-flip flop whose data input is a logical OR of the
incoming 𝑃𝑖 and the same flip flop’s output. The reset of the flag would then
be an (asynchronous) register clear (low active), accomplished when any of the
states start / propose / ready is entered. This simple solution is shown in the
left part of Figure 9.12.

There is, however, one issue that calls for a more elaborate implementation:
The algorithm assumes the 𝑃𝐹𝑖 to be strictly monotonic during most phases –
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Figure 9.12
Implementation of the “sticky bit” required to maintain the propose flag asynchronously
received from an other node. The synchronizer on the right mitigates the risk of
metastability to propagate down to 𝑃𝐹𝑖

once set they would never go to zero before being reset by the algorithm. This
assumption is somewhat threatened by the potential for metastability that we
experience at this sticky register: Recall that the other nodes work in different
clock domains, so the activation of the 𝑃𝑖 occurs uncorrelated with the local
clock that drives the register. Therefore metastability cannot be avoided, even
without any node failing, when 𝑃𝑖 is sampled right at its rising transition. Even
if one can assume that 𝑃𝑖 will remain activated for more than one clock cycle and
so a stable logic 1 is guaranteed to be sampled next, the first, metastable cycle
may produce a glitch (shorter than one clock cycle though). A subsequent
synchronizer circuit buys the metastable bit more time to resolve and hence
mitigates that risk. So to create a glitch at the output, the metastability would
have to persist until the last register stage. The probability for such a case can
be calculated and, by making the chain sufficiently long, be made arbitrarily
small.

In the same way, a faulty node may activate its 𝑃𝑖 only shortly and at the
worst possible moment to make the register chain metastable. Again, however,
this has only an effect if the metastable upset propagates through the whole
chain.

Another aspect worth noting is that the state diagram in Figure 9.4 suggests
to clear the propose flags upon a state transition. The transition to ready, e.g.,
can be safely detected by a flip flop that captures the value of 𝑅 into a signal
𝑅𝑝𝑟𝑒𝑣 . Then the case when 𝑅 = 1 and 𝑅𝑝𝑟𝑒𝑣 = 0 indicates a rising edge on
𝑅 for one clock cycle and can hence be conveniently decoded into the required
clear pulse for the propose flags. As we have to do this in two places, we need
two extra registers.
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However, a closer look at Figure 9.4 reveals that the propose flags are not
relevant in states reset and pulse anyway, so the propose flags can be cleared
already during these states (and not just upon leaving them). This simplifies
the clear condition for the propose flags to an OR of (𝑆𝑂𝑈𝑅) = (0000) and
(𝑈 = 1), which yields (𝑆𝑂𝑅) = (000). This is easy to implement with a NOR
and does not require a flip flop. However, this implementation formally does
not follow the given algorithm.


