
10 Synchronizing by Approximate Agreement

Chapter Contents
10.1 Overview 149
10.2 Approximate Agreement 149
10.3 A Variant of the Lynch-Welch Algorithm 153

In a previous chapter (Chapter 9), we’ve seen how to achieve a skew of O(𝑑)
in a system of 𝑛 fully connected nodes with 𝑓 < 𝑛/3 Byzantine faults. We’ve
also seen that we can’t do any better in terms of the number of faults that can be
tolerated. So let’s ask our usual question: Is this skew bound (asymptotically)
optimal or can we do better? Already in a fault-free system, we know that we
can’t beat Ω(𝑢 + (𝜗 − 1)𝑑). But can this bound be attained in the presence of
faults?

In this chapter we introduce a target function that iteratively reduces the
range of values the participating nodes hold. We make use of this technique to
improve that skew.

10.1 Overview

10.2 Approximate Agreement

The answer is provided by leveraging techniques for the task of approximate
agreement. For this problem, we assume the (convenient) abstraction of a
synchronously operating system. For simplicity, we make no use of the detailed
state machine description given in Definition 6.1. Hiding such details, for the
purposes of this chapter synchronous operation can be described as follows:

A synchronous execution proceeds in synchronous rounds. At the start of
the execution, each node receives an input (whose type depends on the task at
hand). In each round,

1. nodes perform local computations,

150 Chapter 10 Synchronizing by Approximate Agreement

2. send messages to their neighbors in the network graph,
3. receive the messages of their neighbors, and
4. (optionally) may compute an output value and terminate (i.e., stop execut-

ing the other steps in future rounds).

Note that a synchronous execution of a deterministic algorithm is fully deter-
mined by the input values and the (arbitrary) messages sent by faulty nodes.

This model provides a very clean abstraction for describing the tool we would
like to use.

Definition 10.1 (Approximate Agreement). Each node 𝑣 ∈ 𝑉 is given an input
value 𝑟𝑣 ∈ R. Given a constant Y > 0, the task is to generate output values
𝑜𝑣 ∈ R so that

agreement: max𝑣,𝑤∈𝑉𝑔 {𝑜𝑣 − 𝑜𝑤} ≤ Y,
validity: ∀𝑣 ∈ 𝑉𝑔 : min𝑤∈𝑉𝑔 {𝑟𝑤} ≤ 𝑜𝑣 ≤ max𝑤∈𝑉𝑔 {𝑟𝑤}, and
termination: each 𝑣 ∈ 𝑉𝑔 determines its output 𝑜𝑣 and terminates within a
finite number of rounds.
Once we solved approximate agreement in this abstract model, we will employ

it to agree on when the nodes should generate clock pulses, i.e., solve the pulse
synchronization problem with it. The simulation of the synchronous algorithm
(cf. Sections 9.3.2 and 9.6.6) and maintaining a small skew will go hand in
hand!

Solving Approximate Agreement

Algorithm 12 An iterative step of the Approximate Agreement at node 𝑣 ∈ 𝑉𝑔
(with synchronous message exchange).

1: broadcast 𝑟𝑣 to all nodes (including self) // node 𝑣 is given input value 𝑟𝑣
2: receive 𝑟𝑤𝑣 from each node 𝑤

(𝑟𝑤𝑣 B 𝑟𝑣 if no message with correct type of content from 𝑤 received)
3: 𝑆𝑣 ← {𝑟𝑤𝑣 | 𝑤 ∈ 𝑉}
4: 𝑜𝑣 ← 𝑆

(𝑓 +1)
𝑣 + 𝑆 (𝑛− 𝑓)𝑣

2
5: return 𝑜𝑣

Since minimizing the maximum difference between correct nodes’ values is
our goal, the following definition provides a useful shorthand.

Definition 10.2 (Diameters of Vectors). Denote by ®𝑟 the |𝑉𝑔 |-dimensional
vector of correct nodes’ inputs, i.e., (®𝑟)𝑣 = 𝑟𝑣 for 𝑣 ∈ 𝑉𝑔. Denote by 𝑟 (𝑘) ,
𝑘 ∈ {1, . . . , |𝑉𝑔 |}, the 𝑘-th entry when ordering the entries of ®𝑟 ascendingly.

10.2 Approximate Agreement 151

The diameter ‖®𝑟 ‖ of ®𝑟 is the difference between the maximum and minimum
components of ®𝑟. Formally,

‖®𝑟 ‖ B 𝑟 (|𝑉𝑔 |) − 𝑟 (1) = max
𝑣∈𝑉𝑔

{𝑟𝑣} − min
𝑣∈𝑉𝑔

{𝑟𝑣}.

We will use the same notation for other values, e.g. ®𝑜, 𝑜 (𝑘) , ‖ ®𝑜 ‖, etc.
For simplicity, we assume that |𝑉𝑔 | = 𝑛 − 𝑓 in the following; all statements

can be adapted by replacing 𝑛 − 𝑓 with |𝑉𝑔 | where appropriate. As usual, we
require that 3 𝑓 < 𝑛.

Intuitively, Algorithm 12 discards the smallest and largest 𝑓 values each to
ensure that values from faulty nodes cannot cause outputs to lie outside the
range spanned by the correct nodes’ values. Afterwards, 𝑜𝑣 is determined as
the midpoint of the interval spanned by the remaining values. Since 𝑓 < 𝑛/3,
i.e., 𝑛 − 𝑓 ≥ 2 𝑓 + 1, the median of correct nodes’ values is part of all intervals
computed by correct nodes. From this, it is easy to see that ‖ ®𝑜 ‖ ≤ ‖®𝑟 ‖/2. We
now prove these properties.

Lemma 10.3.
∀𝑣 ∈ 𝑉𝑔 : 𝑟 (1) ≤ 𝑜𝑣 ≤ 𝑟 (𝑛− 𝑓) .

Proof. As there are at most 𝑓 faulty nodes, for 𝑣 ∈ 𝑉𝑔 we have that

𝑆
(𝑓 +1)
𝑣 ≥ min

𝑤∈𝑉𝑔

{𝑟𝑤𝑣} = 𝑟 (1) .

Analogously, 𝑆 (𝑛− 𝑓)𝑣 ≤ 𝑟 (𝑛− 𝑓) . We conclude that

𝑟 (1) ≤ 𝑆 (𝑓 +1)𝑣 ≤ 𝑆
(𝑓 +1)
𝑣 + 𝑆 (𝑛− 𝑓)𝑣

2
= 𝑜𝑣 ≤ 𝑆 (𝑛− 𝑓)𝑣 ≤ 𝑟 (𝑛− 𝑓) . �

Lemma 10.4. ‖ ®𝑜 ‖ ≤ ‖®𝑟 ‖/2.

Proof. Since 𝑓 < 𝑛/3, we have that 𝑛 − 𝑓 ≥ 2 𝑓 + 1. Hence, for all 𝑣 ∈ 𝑉𝑔,

𝑟 (1) ≤ 𝑆 (𝑓 +1)𝑣 ≤ 𝑟 (𝑓 +1) ≤ 𝑆 (2 𝑓 +1)𝑣 ≤ 𝑆 (𝑛− 𝑓)𝑣 ≤ 𝑟 (𝑛− 𝑓) .

For any 𝑣, 𝑤 ∈ 𝑉𝑔, it follows that

𝑜𝑣 − 𝑜𝑤 =
𝑆
(𝑓 +1)
𝑣 − 𝑆 (𝑓 +1)𝑤 + 𝑆 (𝑛− 𝑓)𝑣 − 𝑆 (𝑛− 𝑓)𝑤

2

≤ 𝑟
(𝑓 +1) − 𝑟 (1) + 𝑟 (𝑛− 𝑓) − 𝑟 (𝑓 +1)

2
=
𝑟 (𝑛− 𝑓) − 𝑟 (1)

2

=
‖®𝑟 ‖
2
.

As 𝑣, 𝑤 ∈ 𝑉𝑔 were arbitrary, this yields ‖ ®𝑜 ‖ ≤ ‖®𝑟 ‖/2. �

152 Chapter 10 Synchronizing by Approximate Agreement

Applying this approach inductively yields a straightforward algorithm pro-
vided an upper bound 𝑅 ≥ 𝑟 (|𝑉𝑔 |) − 𝑟 (1) is known.

Theorem 10.5 (Approximate Agreement). Applying Algorithm 12 iteratively
(using the output of one step as input to the next) for dlog(𝑅/Y)e steps solves
approximate agreement.

Proof. Agreement readily follows from inductive application of Lemma 10.4.
Applying Lemma 10.3 inductively shows validity. By construction, all nodes
terminate after dlog(𝑅/Y)e synchronous rounds. �

Modifications for the Pulse Synchronization Problem
In our setting, we will not be able to guarantee exact communication of clock
values. Accordingly, we slightly modify the communication model. More
specifically, at certain times, nodes will need estimates of each other’s logical
clock values. Node 𝑣 will use its estimate of 𝑤’s clock value as approximation
of the “input” 𝑟𝑤 of 𝑤 ∈ 𝑉 . Thus, instead of receiving 𝑟𝑤𝑣 = 𝑟𝑤 from 𝑤 ∈ 𝑉 , 𝑣
will receive 𝑟𝑤𝑣 satisfying

𝑟𝑤 ≤ 𝑟𝑤𝑣 ≤ 𝑟𝑤 + 𝛿

for some 𝛿 > 0 that we will determine later. As shifting the values 𝑟𝑤𝑣 in
Algorithm 12 by less than 𝛿 will affect the outputs by less than 𝛿, we obtain
the following corollary to Lemmas 10.3 and 10.4. See Figure 10.1 for a
visualization.

Corollary 10.6. With the above modification to the communication model,
Algorithm 12 guarantees

(i) ∀𝑣 ∈ 𝑉𝑔 : 𝑟 (1) ≤ 𝑜𝑣 ≤ 𝑟 (𝑛− 𝑓) + 𝛿 and
(ii) ‖ ®𝑜 ‖ ≤ ‖®𝑟 ‖/2 + 𝛿.
Now all we need to do is to gather estimates, use Algorithm 12 to determine

adjustments to the logical clocks, and iterate.
The algorithm is now constructed as follows. Assuming some bound 𝐻 ≥

max𝑣∈𝑉𝑔 {𝐻𝑣 (0)} on the skew at initialization, nodes generate their first pulse
at local time 𝐻. This marks the (local) start of the first round. Then they wait
until they can be sure that all nodes have generated their pulse. At the respective
hardware time, they transmit an empty message — no content is needed, as the
local time when the message is sent is hardwired into the algorithm. Then
nodes wait until the local time when all such messages from correct nodes are
certainly received and compute their estimates of the relative clock differences
to other nodes. Finally, they apply Algorithm 12 to compute an adjustment to
the (local) starting time of the next round. This ensures bounded skew for the

10.3 A Variant of the Lynch-Welch Algorithm 153

Sf+1
v Sn�f

v

yv =
Sf+1

v + Sn�f
v

2

yw =
Sf+1

w + Sn�f
w

2

||~x|| + 2�

Sn�f
wSf+1

w

||~y|| ||~x||
2

+ �

median

w

v

Figure 10.1
An execution of Algorithm 12 at nodes 𝑣 and 𝑤 of a system consisting of 𝑛 = 4 nodes.
There is a single faulty node and its values are indicated in red. Note that the ranges
spanned by the values received from correct nodes are almost identical; the difference
originates in the perturbations of up to 𝛿.

next pulse and thus also the starting times of the next round. From there, the
process is iterated.

10.3 A Variant of the Lynch-Welch Algorithm

Algorithm 13 is phrased in a parametrized fashion suitable for the analysis.
This means that we assume a skew bound of S to hold on initialization, an
error bound 𝛿 on the logical clock estimates nodes compute of each other, and
a nominal round duration of 𝑇 . We then determine valid choices for these
parameters from the analysis, where we need to determine 𝛿 depending on how
the estimates are computed.

“Rounds” of the algorithm simulate the synchronous operation assumed in
the approximate agreement problem, where each iteration of the loop simulates
one synchronous round. For this to work as intended, two requirements need
to be met in each round:

(i) Messages sent by correct nodes are received at all correct nodes after
starting the round and before they compute their clock adjustment, i.e.,
during [𝑝𝑣,𝑟 , 𝜏𝑣,𝑟].

(ii) 𝑇 is large enough to accomodate the adjustments of the next pulse times.
This means to ensure that 𝐻𝑣 (𝜏𝑣,𝑟) ≤ ℎ𝑣 (𝜏𝑣,𝑟) + Δ𝑣 (𝜏𝑣,𝑟) + 𝑇 , i.e., that
𝐻𝑣 (𝜏𝑣,𝑟) ≤ 𝐻𝑣 (𝑝𝑣,𝑟) + Δ + 𝑇 , where Δ is the value determined in Line 12
of the 𝑟-th iteration of the loop.

154 Chapter 10 Synchronizing by Approximate Agreement

Algorithm 13 Lynch-Welch pulse synchronization algorithm, the code for a
node 𝑣 ∈ 𝑉𝑔. S denotes a (to-be-determined) upper bound on ‖ ®𝑝𝑟 ‖ for each
𝑟 ∈ N>0 and 𝑇 is the nominal round duration and it needs to be specified how
Line 9 is implemented.

1: wait until getH() = S // 𝐻𝑤 (0) ∈ [0,S) for all 𝑤 ∈ 𝑉
2: for all round 𝑟 ∈ N do
3: generate 𝑟-th pulse
4: ℎ← getH()
5: wait until getH() = ℎ + 𝜗S // all nodes are in round 𝑟
6: broadcast empty message to all nodes (including self)
7: wait until getH() = ℎ + (𝜗2 + 𝜗)S + 𝜗𝑑 // denote this time by 𝜏𝑣,𝑟

// correct nodes’ messages should have arrived
8: for each node 𝑤 ∈ 𝑉 do
9: compute Δ(𝑤) ∈ [𝑝𝑤,𝑟 − 𝑝𝑣,𝑟 , 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟 + 𝛿]

// denote 𝑝𝑟 B max𝑤∈𝑉𝑔 {𝑝𝑤,𝑟 }
10: end for
11: 𝑆 ← {Δ(𝑤) | 𝑤 ∈ 𝑉} (as multiset, i.e., values may repeat)
12: Δ←

(
𝑆
(𝑓 +1)
𝑣 + 𝑆 (𝑛− 𝑓)𝑣

)
/2

13: wait until getH() = ℎ + Δ + 𝑇
14: end for

If these properties are satisfied in round 𝑟, we will say that round 𝑟 is executed
correctly. We will show that this holds for all 𝑟 ∈ N inductively, where the
induction hypothesis is that ‖ ®𝑝𝑟 ‖ ≤ S; this simulatenously shows that the
algorithm has a small skew! For 𝑟 = 1, this is immediate from our assumption
on the initial hardware clock values.

Lemma 10.7. Suppose that 𝑇 ≥ (𝜗2 + 𝜗 + 1)S + 𝜗𝑑 and

S ≥ 2(2𝜗 − 1)𝛿 + 2(𝜗 − 1)𝑇
2 − 𝜗 .

Moreover, assume that for 𝑟 ∈ N it holds that all prior rounds have been
executed correctly, and that ‖ ®𝑝𝑟 ‖ ≤ S. Then

(i) round 𝑟 is executed correctly,
(ii) (𝑇 − S)/𝜗 ≤ min𝑣∈𝑉𝑔 {𝑝𝑣,𝑟+1} −min𝑣∈𝑉𝑔 {𝑝𝑣,𝑟 } ≤ 𝑇 + S + 𝛿, and
(iii) ‖ ®𝑝𝑟+1‖ ≤ S.

Proof. By assumption, no messages sent by correct nodes in rounds 𝑟 ′ < 𝑟 are
received in round 𝑟. Consider the message 𝑣 ∈ 𝑉 sends after entering round 𝑟 .
It is sent no earlier than local time ℎ𝑣 (𝑝𝑣,𝑟) + 𝜗S = 𝐻𝑣 (𝑝𝑣,𝑟) + 𝜗S, and hence

10.3 A Variant of the Lynch-Welch Algorithm 155

no earlier than time

𝐻−1
𝑣 (𝐻𝑣 (𝑝𝑣,𝑟) + 𝜗S) ≥ 𝑝𝑣,𝑟 + S𝑑𝐻𝑣

𝑑𝑡 ≤ 𝜗

≥ max
𝑤∈𝑉𝑔

{𝑝𝑤,𝑟 }.‖ ®𝑝𝑟 ‖ ≤ S

It is received by time

𝐻−1
𝑣 (𝐻𝑣 (𝑝𝑣,𝑟) + 𝜗S) + 𝑑 ≤ 𝑝𝑣,𝑟 + 𝜗S + 𝑑𝑑𝐻𝑣

𝑑𝑡 ≥ 1

≤ min
𝑤∈𝑉𝑔

{𝑝𝑤,𝑟 } + (𝜗 + 1)S + 𝑑.‖ ®𝑝𝑟 ‖ ≤ S

As 𝜏𝑤,𝑟 ≥ 𝑝𝑤,𝑟 + (𝜗 + 1)S + 𝑑 for all 𝑤 ∈ 𝑉𝑔 (again because 𝑑𝐻𝑣

𝑑𝑡 ≤ 𝜗), this
shows part (i) of the requirements for correct execution of round 𝑟 .

Concerning part (ii), assume that Algorithm 12 would be executed with inputs
𝑝𝑣,𝑟 for each 𝑣 ∈ 𝑉𝑔. Equivalently to executing the algorithm, each node could
shift all the measured values by subtracting 𝑝𝑣,𝑟 and shift the return value back
by adding 𝑝𝑣,𝑟 . Thus, Algorithm 13 carries out this procedure, except that the
inputs suffer from an additional error of (up to) 𝛿. This is accounted for by
Corollary 10.6, whose first statement then shows that

Δ𝑣 (𝜏𝑣,𝑟) + 𝑝𝑣,𝑟 ≥ min
𝑤∈𝑉𝑔

{𝑝𝑤,𝑟 } ≥ 𝑝𝑣,𝑟 − S,‖ ®𝑝𝑟 ‖ ≤ S (10.1)

i.e., Δ𝑣 (𝜏𝑣,𝑟) ≥ −S. Therefore,

𝐻𝑣 (𝑝𝑣,𝑟) + Δ𝑣 (𝜏𝑣,𝑟) + 𝑇 ≥ 𝐻𝑣 (𝑝𝑣,𝑟) − S + 𝑇(10.1)

= 𝐻𝑣 (𝜏𝑣,𝑟) − (𝜗2 + 𝜗 + 1)S − 𝜗𝑑 + 𝑇def. of 𝜏𝑣,𝑟

≥ 𝐻𝑣 (𝜏𝑣,𝑟).𝑇 ≥ 𝜗𝑑 +
(𝜗2 + 𝜗 + 1)S

This shows part (ii) of the requirements for correct execution of round 𝑟 ,
establishing the part (i) of the claim of the lemma for round 𝑟 . In particular,
the times 𝑝𝑣,𝑟+1, 𝑣 ∈ 𝑉𝑔, are well-defined, as all correct nodes generate pulse
𝑟 + 1 upon starting the next iteration of the loop.

Moreover, for each 𝑣 ∈ 𝑉𝑔 it follows that

𝐻𝑣 (𝑝𝑣,𝑟+1) − 𝐻𝑣 (𝑝𝑣,𝑟) = 𝑇 + Δ𝑣 (𝜏𝑣,𝑟)Line 13

≥ 𝑇 − S,(10.1)

implying that 𝑝𝑣,𝑟+1 − 𝑝𝑣,𝑟 ≥ (𝑇 −S)/𝜗 and thereby showing the lower bound
for part (ii) of the claim of the lemma for round 𝑟 . To show the upper bound,
we apply statement (i) of Corollary 10.6 as above, but use the upper bound on
the output values. We get that

Δ𝑣 (𝜏𝑣,𝑟) + 𝑝𝑣,𝑟 ≤ max
𝑤∈𝑉𝑔

{𝑝𝑤,𝑟 } + 𝛿 ≤ 𝑝𝑣,𝑟 + S + 𝛿, (10.2)

156 Chapter 10 Synchronizing by Approximate Agreement

i.e., Δ𝑣 (𝜏𝑣,𝑟) ≤ S + 𝛿.
𝐻𝑣 (𝑝𝑣,𝑟+1) − 𝐻𝑣 (𝑝𝑣,𝑟) = 𝑇 + Δ𝑣 (𝜏𝑣,𝑟) Line 13

≤ 𝑇 + S + 𝛿. (10.2)

For the choice 𝑣 = argmin𝑤∈𝑉𝑔
{𝑝𝑤,𝑟 }, this yields

min
𝑤∈𝑉𝑔

{𝑝𝑤,𝑟+1} − min
𝑤∈𝑉𝑔

{𝑝𝑤,𝑟 } ≤ 𝑝𝑣,𝑟+1 − 𝑝𝑣,𝑟 choice of 𝑣

≤ 𝐻𝑣 (𝑝𝑣,𝑟+1) − 𝐻𝑣 (𝑝𝑣,𝑟) 𝑑𝐻𝑣
𝑑𝑡 ≥ 1

≤ 𝑇 + S + 𝛿. (10.2)

Overall, this proves part (ii) of the claim of the lemma for round 𝑟 .
It remains to show part (iii) of the claim, i.e., the bound on the skew of pulse

𝑟 + 1. To this end, fix any 𝑣, 𝑤 ∈ 𝑉𝑔 and assume w.l.o.g. that 𝑝𝑣,𝑟+1 ≥ 𝑝𝑤,𝑟+1.
We apply the second statement of Corollary 10.6, yielding

𝑝𝑣,𝑟+1 − 𝑝𝑤,𝑟+1
=𝐻−1

𝑣 (𝐻𝑣 (𝑝𝑣,𝑟+1)) − 𝐻−1
𝑤 (𝐻𝑤 (𝑝𝑤,𝑟+1))

=𝐻−1
𝑣 (𝐻𝑣 (𝑝𝑣,𝑟) + Δ𝑣 (𝜏𝑣,𝑟) + 𝑇) − 𝐻−1

𝑤 (𝐻𝑤 (𝑝𝑤,𝑟) + Δ𝑤 (𝜏𝑤,𝑟) + 𝑇) Line 13

≤ 𝑝𝑣,𝑟 + Δ𝑣 (𝜏𝑣,𝑟) + 𝑇 −
(
𝑝𝑤,𝑟 +

Δ𝑤 (𝜏𝑤,𝑟) + 𝑇
𝜗

)
1 ≤ 𝑑𝐻

𝑑𝑡 ≤ 𝜗

= 𝑝𝑣,𝑟 + Δ𝑣 (𝜏𝑣,𝑟) − (𝑝𝑤,𝑟 + Δ𝑤 (𝜏𝑤,𝑟)) +
(
1 − 1

𝜗

)
(Δ𝑤 (𝜏𝑤,𝑟) + 𝑇) adding 0

≤ ‖ ®𝑝𝑟 ‖
2
+ 𝛿 +

(
1 − 1

𝜗

)
(Δ𝑤 (𝜏𝑤,𝑟) + 𝑇) Corollary 10.6

≤ S
2
+ 𝛿 +

(
1 − 1

𝜗

)
(Δ𝑤 (𝜏𝑤,𝑟) + 𝑇) prerequisite

≤ S
2
+ 𝛿 +

(
1 − 1

𝜗

)
(𝑇 + S + 𝛿). (10.2)

In order for this upper bound to be at most S, it is sufficient if(
1 − 𝜗

2

)
S ≥ (2𝜗 − 1)𝛿 + (𝜗 − 1)𝑇.

This is equivalent to the prerequisite constraint on S. This shows part (iii) of
the claim for round 𝑟, completing the proof. �

Before we can prove our main theorem, we need to get a hold on 𝛿. This is a
straightforward calculation.

10.3 A Variant of the Lynch-Welch Algorithm 157

Lemma 10.8. Suppose round 𝑟 is executed correctly, ‖ ®𝑝𝑟 ‖ ≤ S, and 𝑣 ∈ 𝑉𝑔
receives the message from 𝑤 ∈ 𝑉𝑔 for this round at time 𝑡. Then setting

Δ(𝑤) B 𝐻𝑣 (𝑡) − 𝐻𝑣 (𝑝𝑣,𝑟) − 𝑑 + 𝑢 − S

is a suitable choice for the computation in Line 9, achieving 𝛿 ≤ 𝑢 + (𝜗− 1)𝑑 +
(𝜗2 + 𝜗 − 2)S.

Proof. Denote by 𝑡𝑠 the time when 𝑤 sent the message that 𝑣 receives at time
𝑡. We have that

𝐻𝑣 (𝑡) − 𝐻𝑣 (𝑝𝑣,𝑟) ≥ 𝑡 − 𝑝𝑣,𝑟𝑑𝐻𝑣
𝑑𝑡 ≥ 1

= 𝑡 − 𝑡𝑠 + 𝑡𝑠 − 𝑝𝑤,𝑟 + 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟adding 0

≥ 𝑑 − 𝑢 + 𝑡𝑠 − 𝑝𝑤,𝑟 + 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟minimum delay

≥ 𝑑 − 𝑢 + 𝐻𝑤 (𝑡𝑠) − 𝐻𝑤 (𝑝𝑤,𝑟)
𝜗

+ 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟𝑑𝐻𝑤
𝑑𝑡 ≤ 𝜗

= 𝑑 − 𝑢 + S + 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟 .Line 5

On the other hand,

𝐻𝑣 (𝑡) − 𝐻𝑣 (𝑝𝑣,𝑟) ≤ 𝜗(𝑡 − 𝑝𝑣,𝑟)𝑑𝐻𝑣
𝑑𝑡 ≤ 𝜗

= 𝜗(𝑡 − 𝑡𝑠 + 𝑡𝑠 − 𝑝𝑤,𝑟 + 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟)adding 0

≤ 𝜗(𝑑 + 𝑡𝑠 − 𝑝𝑤,𝑟 + 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟)maximum delay

≤ 𝜗(𝑑 + 𝐻𝑤 (𝑡𝑠) − 𝐻𝑤 (𝑝𝑤,𝑟 + 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟)𝑑𝐻𝑤
𝑑𝑡 ≥ 1

= 𝜗(𝑑 + 𝜗S + 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟)Line 5

= 𝜗𝑑 + 𝜗2S + (𝜗 − 1) (𝑝𝑤,𝑟 − 𝑝𝑣,𝑟) + 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟adding 0

= 𝜗𝑑 + (𝜗2 + 𝜗 − 1)S + 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟prerequisite .

Thus, Δ(𝑤) = 𝐻𝑣 (𝑡) − 𝐻𝑣 (𝑝𝑣,𝑟) − 𝑑 + 𝑢 − S satisfies that

𝑝𝑤,𝑟 − 𝑝𝑣,𝑟 ≤ Δ(𝑤) ≤ 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟 + 𝑢 + (𝜗 − 1)𝑑 + (𝜗2 + 𝜗 − 2)S,

as claimed. �

Theorem 10.9. Assume that 6 − 2𝜗 − 𝜗2 − 2𝜗3 > 0 and that estimates are
computed according to Lemma 10.8. For any choice of

𝑇 ≥ (4𝜗
3 + 2𝜗2 + 2𝜗 − 2)𝑢 + (4𝜗4 − 3𝜗3 − 2𝜗2 + 2)𝑑

6 − 2𝜗 − 𝜗2 − 2𝜗3 ∈ O(𝑑),

set

S B 2(2𝜗 − 1) (𝑢 + (𝜗 − 1)𝑑) + 2(𝜗 − 1)𝑇
4 − 2𝜗 − 𝜗2 ∈ O

(
𝑢 +

(
1 − 1

𝜗

)
𝑇

)
.

158 Chapter 10 Synchronizing by Approximate Agreement

If max𝑣∈𝑉 {𝐻𝑣 (0)} ≤ S, then Algorithm 13 solves pulse synchronization with
skew at most S, 𝑃min ≥ (𝑇 − (𝜗 + 1)S)/𝜗, and 𝑃max ≤ 𝑇 + 3S.

Proof. Set 𝛿 B 𝑢 + (𝜗− 1)𝑑 + (𝜗2 + 𝜗− 2)S in accordance with Lemma 10.8.
Thus,

S =
2(2𝜗 − 1) (𝑢 + (𝜗 − 1)𝑑) + 2(𝜗 − 1)𝑇

4 − 2𝜗 − 𝜗2

=
2(2𝜗 − 1)𝛿 + 2(𝜗 − 1)𝑇

2 − 𝜗 > 𝛿. (10.3)

Moreover,

𝑇 ≥ (4𝜗
3 + 2𝜗2 + 2𝜗 − 2)𝑢 + (4𝜗4 − 3𝜗3 − 2𝜗2 + 2)𝑑

6 − 2𝜗 − 𝜗2 − 2𝜗3

= (𝜗2 + 𝜗 + 1)S + 𝜗𝑑.

The claim is now shown by a straightforward induction on the pulse number,
where the hypothesis includes that all previous rounds have been executed
correctly. The induction is anchored at the first pulse, which satisfies the skew
bounds due to the assumed bound on the hardware clock values at time 0.
The induction step is performed by invoking Lemma 10.7, where Lemma 10.8
shows that 𝛿 is indeed a bound on the quality of estimates. We obtain that S
is a bound on the skew for all pulses and that (𝑇 − S)/𝜗 ≤ min𝑣∈𝑉𝑔 {𝑝𝑣,𝑟+1} −
min𝑣∈𝑉𝑔 {𝑝𝑣,𝑟 } ≤ 𝑇 + S + 𝛿 for each 𝑟 ∈ N>0. This implies for each 𝑟 ∈ N>0
that

min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑟+1} − max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑟 } ≥ min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑟+1} − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑟 } + S

≥ 𝑇 − (𝜗 + 1)S
𝜗

and that

max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑟+1} − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑟 } ≤ min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑟+1} − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑟 } + S

≤ 𝑇 + 2S + 𝛿
< 𝑇 + 3S. (10.3)

�

Remark 10.10.
1. The theorem requires that 6 − 2𝜗 − 𝜗2 − 2𝜗3 > 0, which is the case for

𝜗 ≤ 1.09. As 𝜗 approaches this threshold, the skew goes to∞.

10.3 A Variant of the Lynch-Welch Algorithm 159

2. Sending (𝑇, 𝜗) → (∞, 1), the ratio 𝑃max/𝑃min ∈ (1 + 𝑜(1))𝜗. However,
when sending 𝑇 → ∞ while keeping 𝜗 fixed, the ratio converges to a
constant 𝑐 ∈ 1 + O(𝜗 − 1).

3. If on initialization such a tight skew bound cannot be guaranteed, one can
choose 𝑇 accordingly larger.

4. Alternatively, one can only initially use the larger 𝑇 and keep reducing 𝑇
alongside the decrease in (the worst-case bound on) the skew.

5. A known bound on the initial skew is necessary for executing the algorithm.
6. We haven’t clarified how nodes compute their estimates of faulty nodes’

clocks. What if these nodes send no or many messages during a round?
The answer is simple: It doesn’t matter. As the approximate agreement
algorithm works regardless of what values faulty nodes provide, choosing
any default value for nodes clearly not obeying the protocol will do.

Bibliography

[1] Boksberger, Philipp, Fabian Kuhn, and Roger Wattenhofer. 203. On the Approxima-
tion of the Minimum Maximum Stretch Tree Problem, Technical Report 409, ETH
Zurich.

[2] Fisher, Allan L., and Hsiang-Tsung Kung. 1985. Synchronizing Large VLSI Processor
Arrays. IEEE Transactions on Computers C-34 (8): 734–740.

[3] Hopkins, A. L., T. B. Smith, and J. H. Lala. 1978. Ftmp – a highly reliable fault-
tolerant multiprocess for aircraft. Proceedings of the IEEE 66 (10): 1221–1239.
doi:10.1109/PROC.1978.11113.

[4] Kopetz, H. 2003. Fault containment and error detection in the time-triggered archi-
tecture. In The sixth international symposium on autonomous decentralized systems,
2003. isads 2003., 139–146. doi:10.1109/ISADS.2003.1193942.

[5] Pease, M., R. Shostak, and L. Lamport. 1980. Reaching agreement in the
presence of faults. J. ACM 27 (2): 228–234. doi:10.1145/322186.322188.
http://doi.acm.org/10.1145/322186.322188.

[6] Srikanth, T. K., and Sam Toueg. 1987. Optimal clock synchronization. J. ACM 34
(3): 626–645. doi:10.1145/28869.28876. https://doi.org/10.1145/28869.28876.

