
11 Low-degree Clock Distribution Networks

Chapter Contents
11.1 Overview 58
11.2 Fault-tolerant clock signals for large num-

ber of nodes 58
11.3 Solution: Replicated Trees 60
11.4 Solution: Interlinked Trees 63

Learning Goals
The fault-tolerant synchronization algorithms for fully connected networks
discussed in the previous two chapters are are well suited for small networks.
However, for large scale networks, the communication infrastructure of Θ(𝑛2)
links required by these algorithms becomes highly impractical.

In this chapter, we seek to adapt and generalize the introduced techniques
to achieve Byzantine fault-tolerance in large networks at low node degrees. A
possible scheme is to let a small number of fully connected root nodes generate
clock signals with a fault-tolerant clock synchronization algorithms such as the
Lynch-Welch algorithm (cf. ??) and then distribute the clock signals over a
low-degree distribution network to the remaining nodes. We will discuss such
solutions in this chapter.

58 Chapter 11 Low-degree Clock Distribution Networks

11.1 Overview

MF: fill in later

11.2 Fault-tolerant clock signals for large number of nodes

Assume we are facing the problem of synchronizing a large number of nodes
𝑛 despite some of them being faulty. If not stated otherwise, we will assume
Byzantine faults, i.e., worst-case behavior of faulty nodes. The problem of
generating clock transitions at all correct nodes in synchrony then is accurately
described by the pulse synchronization task, cf. Definition 9.5. Following the
notation of Chapter 9, we write 𝑉𝑔 for the set of correct nodes and 𝑝𝑣,𝑟 for the
time node 𝑣 ∈ 𝑉𝑔 generates pulse 𝑟 ≥ 1, i.e., generates its 𝑟-th (rising) clock
transition. We set the latter to∞ if 𝑣 never generates round 𝑟 .

11.2.1 The challenge
As in previous chapters, we assume that the system behaves according to the
TMP model, i.e., communication is by message passing with known upper
and lower bounds on end-to-end delays, nodes have hardware clocks running
at rates from [1, 𝜗], and nodes perform computations by deterministic finite
state machines. However, we remark that most of the nodes will not make
use of the full power of these capabilities, which is line with our goal to be
resource-efficient. The above applies to the set of correct nodes 𝑉𝑔 ⊆ 𝑉 , while
faulty nodes again exhibit Byzantine, i.e., worst-case behavior.

Recall that the goal is to guarantee that our circuit generates local clock
signals that fulfill the following constraints within all feasible executions:

Definition 9.5. [Pulse Synchronization] In pulse synchronization, for each
𝑖 ∈ N, every (correct) node 𝑣 ∈ 𝑉𝑔 generates pulse 𝑖 exactly once. Let 𝑝𝑣,𝑖
denote the time when 𝑣 generates the 𝑖-th pulse. We require that there are
S, 𝑃min, 𝑃max ∈ R>0 satisfying
1. sup𝑖∈N,𝑣,𝑤∈𝑉𝑔

{|𝑝𝑣,𝑖 − 𝑝𝑤,𝑖 |} = S (skew).
2. inf𝑖∈N{min𝑣∈𝑉𝑔 {𝑝𝑣,𝑖+1} −max𝑣∈𝑉𝑔 {𝑝𝑣,𝑖}} ≥ 𝑃min (minimum period).
3. sup𝑖∈N{max𝑣∈𝑉𝑔 {𝑝𝑣,𝑖+1} −min𝑣∈𝑉𝑔 {𝑝𝑣,𝑖}} ≤ 𝑃max (maximum period).
What is different from the previous two chapters is that we do not assume a

fully connected network. That is, the network graph 𝐺 = (𝑉, 𝐸) need not be
complete, and 𝑣 ∈ 𝑉𝑔 can send messages to 𝑤 ∈ 𝑉𝑔 only if (𝑣, 𝑤) ∈ 𝐸 .

Note that this means that the condition 𝑓 < 𝑛/3 is still necessary (cf. The-
orem 9.13) to solve pulse synchronization, but not sufficient: If 𝑓 faults are
placed in a worst-case fashion, we also need that each node has degree at least
2 𝑓 + 1 (cf. Theorem 9.2). As we seek low-degree solutions, this means we

11.2 Fault-tolerant clock signals for large number of nodes 59

can tolerate only a number of faults that is proportional to the (minimum) node
degree.

11.2.2 Fault distribution
Instead of accepting that with constant node degrees we can tolerate only a
constant number of faults, we will make an additional assumption: Faults are
not distributed in a worst-case fashion. The proof of Theorem 9.2 was based on
separating a node from the rest of the network by a majority of faulty neighbors.
However, the argument does not apply when the additional faults are elsewhere
in the network. Hence, we will consider settings where locally, i.e., in the
neighborhood of nodes, only a small number of nodes are faulty, but allow for
many faults in the network as a whole. Care has to be taken in how this changes
the model coverage!

As an example, consider a network of (uniform) in-degree 3 and the fault
model allowing that for each node, at most one of its in-neighbors is faulty.

E11.1 Consider a network of size 𝑛 = 300 and assume that each node fails with inde-
pendent probability 𝑝 = 0.01. What is the probability that at least 2 nodes fail?
What is the probability that at least 𝑛/3 = 100 nodes fail?

E11.2 In the same setting, assume that each node has in-degree 3. Bound the probability
that no node has more than 1 faulty in-neighbor from above. Can you get a
similarly strong bound if the probability that a node becomes faulty can depend
on whether other faults in the network fail?

E11.3 Compare the results and discuss the consequences in light of Theorem 9.2.

11.2.3 Fault containment regions
In the above exercise, two important assumptions are made: (i) that it is
clear what belongs to a node including network links, and (ii) that all nodes
fail independently from each other; recall that we sought to capture this in
Definition 9.3.

In fact, both (i) and (ii) are related, and (i) can always be chosen in a way to
make property (ii) trivially true: group all circuitry into a single node. Strictly
speaking, this is the only way to guarantee that nodes fail independently, since
it is impossible to exclude that some catrastrophic event affects multiple nodes
at the same time. However, in practice we only need that dependent failures
are sufficiently unlikely, i.e., failures happen almost independently.

In the following, we assume that nodes are fault containment regions, but
stress again that this requires careful design to make sure that the assumption
of (almost) independent failures is valid. Mind that depending on how fault-

60 Chapter 11 Low-degree Clock Distribution Networks

containment regions are chosen, the system’s guaranteed properties may change
significantly.

In the following sections, we present two solutions. Both follow the approach
of generating the clock signal using a few fully connected nodes and propagating
it by means of a low-degree network. This separates the concern of clock
generation from the easier task of distributing the clock signal, which results
in simpler and more modular solutions.

11.3 Solution: Replicated Trees

We start with a straightforward, but naive solution, whose primary purpose is
to highlight a pitfall the second one avoids. Suppose a target parameter 𝑓 for
the number of faults. Consider a system with 𝑛𝑅 = 3 𝑓 + 1 root nodes, up to 𝑓

of which are Byzantine. We assume that the correct root nodes generate clock
signals that are synchronized by a pulse synchronization algorithm resilient to
𝑓 Byzantine faults, e.g. Algorithm 5.

The distribution network, consisting of the 𝑛𝑇 = 𝑛 − 𝑛𝑅 ∈ (2 𝑓 + 1)N>0
remaining nodes and their incident links, is a (2 𝑓 + 1)-fold replicated clock
tree. Each of these trees (see ?? for how to design such a tree) is driven by a
different root node, leaving 𝑓 root nodes without a corresponding tree. Starting
from a clock tree with 𝑛𝑇 /(2 𝑓 + 1) non-root nodes, we replicate each non-root
node 2 𝑓 additional times and denote for an original node 𝑣 the resulting nodes
by 𝑣𝑖 , 𝑖 ∈ {1, . . . , 2 𝑓 + 1}.

Each of the clock trees now propagates the pulses of its root, which occur
close to each other, because the root nodes execute a pulse synchronization
algorithm. Denote by 𝑝𝑣𝑖 ,𝑘 for 𝑖 ∈ {1, . . . , 2 𝑓 + 1} and 𝑘 ∈ N>0 the time
when 𝑣𝑖 forwards the 𝑘-th pulse. The (local) computational logic uses the
pulse signals 𝑝𝑣𝑖 ,𝑘 by considering for each 𝑘 the median of the 2 𝑓 + 1 pulse
times as the time when the 𝑘-th clock pulse arrives. That is, denoting by
𝑃𝑣,𝑘 := {𝑝𝑣𝑖 ,𝑘 | 𝑖 ∈ {1, . . . , 2 𝑓 + 1}} and by 𝑃 (𝑗)𝑣,𝑘 the 𝑗-th value when sorting
𝑃𝑣,𝑘 in ascending order, the local logic will interpret 𝑝𝑣,𝑘 := 𝑃 (𝑓 +1)𝑣,𝑘 as the 𝑘-th
pulse of the fault-tolerant clock signal driving it.

Note that this implies that the replicas 𝑣𝑖 of 𝑣 need to be physically fairly
close to each other, and the clock trees should be laid out such that these nodes
receive the pulses from their roots at (almost) the same time. Yet, we need to
separate both them and their incident links well enough for considering them
separate fault containment regions!

Figure 11.1 shows a high-level circuit for the replicated trees solution for the
case 𝑓 = 1.

11.3 Solution: Replicated Trees 61

Figure 11.1
Replicated tree solution for 𝑓 = 1. Three (2 𝑓 + 1) among the synchronized root nodes
each drive a clock tree. The local computational logic at nodes 𝑣1, 𝑣2, 𝑣3 uses the median
of the 3 (2 𝑓 + 1) pulse times produced by 𝑣1, 𝑣2, 𝑣3.

In the following, we neglect the delays of local computational logic, including
the (quite involved!) logic that would be needed to determine 𝑝𝑣,𝑘 locally. We
now state a theorem implying that up to 𝑓 Byzantine faults cannot significantly
deteriorate the timing guarantees compared to a fault-free system without re-
dundancy. Since our main focus is the resilience to faults, which readily follows
from the majority of the redundant clock trees being completely without fault,
we only sketch the proof.

Theorem 11.1. Suppose that there are at most 𝑓 Byzantine faulty nodes and
assume that the (minimum and maximum) delays in the replicated trees are
identical to those of the original, non-replicated tree. Denote by S the skew
of the pulse synchronization algorithm executed by the root nodes. Fix any
correct root node. Then all timing guarantees that the original tree driven by
this root node would satisfy without faults hold for the redundant system with
respect to the pulse times 𝑝𝑣,𝑘 , albeit weakened by an additive S.

62 Chapter 11 Low-degree Clock Distribution Networks

Proof sketch. Since there are at most 𝑓 faulty nodes, the pulse synchronization
algorithm guarantees some bounded skew S. The bound on the number of
faults also implies that out of the 2 𝑓 + 1 trees, at least 𝑓 + 1 contain no faulty
node (including their roots). Because we assumed that each tree has the same
characteristics as the original one, the relative timing guarantees between any
pair of nodes 𝑣𝑖 and𝑤 𝑗 in these trees would be the same as between 𝑣 and𝑤 in the
original tree; as the roots instead pulse at most S time apart, the pulsing times
of 𝑣𝑖 and 𝑤 𝑗 might be an additional S apart. Finally, the fact that 𝑝𝑣,𝑘 = 𝑃 (𝑓 +1)𝑣,𝑘

and 𝑝𝑤,𝑘 = 𝑃 (𝑓 +1)𝑤,𝑘 ensures that the up to 𝑓 values in these sets from trees with
faulty nodes that violate the resulting time bounds are discarded. �

Note that, compared to the fault-free setting, there are three disadvantages in
terms of timing, only one of which is explicit in the theorem:
• The skew of up to S between the redundant roots adds to the overall skew of

the clock distribution scheme.
• The pulse synchronization algorithm is likely to provide a less stable time

reference than a single clock source, in the sense that the period bounds of
the pulse synchronization algorithm are weaker.

• The redundant trees will not have the exact same timing properties, and the
additional circuitry to determine the median signal at computational logic
might further affect timing.

On the other hand,
• the system can withstand up to 𝑓 failures and
• using the median signal discards outliers, thereby reducing the effects of

process variations and similar contributions to skew.

E11.4 Is the above skew bound tight? If yes, sketch the execution where the skew is
indeed attained. Try to use as few faults as possible.

E11.5 How did we choose the fault-containment regions? Consider choosing an entire
redundant clock tree as fault containment region. How does this affect the results?
Does it matter whether we can ensure independence of faults within a single tree?

E11.6 Suppose that the probability that one of the redundant clock trees contains at
least one faulty node is 𝑞. What is the probability that there are at most 𝑓 trees
with a faulty node? How should you choose 𝑓 for a given 𝑞 when trying to make
sure that the clocking system fails with probability at most 1%? Is this always
possible?

E11.7 How would 𝑞 change with system size? How large can the probability of an
individual node to fail be for the above scheme to be of use?

11.4 Solution: Interlinked Trees 63

These exercises show that there is limited gain in this approach. The main issue
is that each fault may bring down a large part of a clock tree. While a more
careful analysis could yield better results—for instance, we could exploit that
for each branch of the original tree, up to 𝑓 redundant trees could be faulty, but
these do not need the same trees in different branches—we can do much better
when applying the idea of relying on local redundancy when propagating the
clock signal.

11.4 Solution: Interlinked Trees

Theorem 11.1 has two major shortcomings:

1. It requires that the total number of faults is at most 𝑓 , although Theorem 9.2
only imposes a local limit on the faults in each neighborhood. Accordingly,
we can still hope that the overall possible number of faults that can be
sustained is much larger, so long as the local constraint is satisfied.

2. The computational logic is clocked by the median pulses from several
clock trees, which would require fairly complex circuitry.

An improvement that addresses both issues at the same time is to integrate the
selection of the median signal into the tree nodes, see Figure 11.2. First, this
means that we now only require that for each node 𝑣 in the original tree, fewer
than half of its replicas are faulty, which is much less stringent than requiring
half of the trees to contain no faulty node. Second, clocking computational
logic by only one replica of a node now means that it will receive a correct
and synchronized clock signal so long as the supplying node is faulty (and the
overall constraints on faults are satisfied). This provides the flexibility to decide
for each part of the computational logic how much redundancy is needed—and
if redundancy is required, we can replicate the computational modules and
clock each replica from a different replica of the corresponding tree node.

As this intertwines the clock signal propagation in the redundant clock trees,
we refer to this scheme as interlinked trees in the following.

Again, for simplicity we assume that the timing properties of the original clock
tree are preserved. That is, if (𝑣, 𝑤) is an edge in the original tree with end-to-
end delay from [𝑑−𝑢, 𝑑], the same applies for (𝑣𝑖 , 𝑤 𝑗) for 𝑖, 𝑗 ∈ {1, . . . , 2 𝑓 +1}.
As before, set 𝑃𝑣,𝑘 := {𝑝𝑣𝑖 ,𝑘 | 𝑖 ∈ {1, . . . , 2 𝑓 + 1}}, denote by 𝑃 (𝑗)𝑣,𝑘 the 𝑗-th
value when sorting 𝑃𝑣,𝑘 in ascending order, and set 𝑝𝑣,𝑘 := 𝑃 (𝑓 +1)𝑣,𝑘

Theorem 11.2. Suppose that there are at most 𝑓 Byzantine faulty root nodes
and for each node 𝑣 in the original tree, at most 𝑓 of its replicas are faulty.
Moreover, assume that the (minimum and maximum) delays in the replicated
trees are identical to those of the original, non-replicated tree. Denote byS the

64 Chapter 11 Low-degree Clock Distribution Networks

Figure 11.2
Interlinked trees solution for 𝑓 = 1. The solution differs from the replicated trees
solution in that each stage comprising of the 2 𝑓 +1 = 3 replica nodes receives the output
clock signals from all replicas of the parent node. This extends to the first stage, in
which each node receives signals from 2 𝑓 + 1 = 3 root nodes. A single such hop in the
(replicated) clock distribution tree is shown.

skew of the pulse synchronization algorithm executed by the root nodes. Fix
any correct root node. Then all timing guarantees that the original tree driven
by this root node would satisfy without faults hold for the redundant system
with respect to the times 𝑝𝑣,𝑘 , albeit weakened by an additive S.

Proof sketch. The proof is very similar to the one of Theorem 11.1.
We prove the claim by induction on the nodes of the original tree, where we

show that 𝑝𝑣𝑖 ,𝑘 satisfy the claimed time bounds for all 𝑣𝑖 ∈ 𝑉𝑔 and 𝑘 ∈ N>0.
Since at most 𝑓 replicase of an original node 𝑣 may be faulty, this readily
implies the same for 𝑝𝑣,𝑘 . Since there are at most 𝑓 faulty roots, the pulse
synchronization algorithm guarantees some bounded skew S. This anchors the
induction at the root of the original tree.

For the induction step, consider a node 𝑤 of the original tree with parent 𝑣
for which we already established the claim. Since the claim already holds for
all of the at least 𝑓 + 1 correct replicas 𝑣𝑖 of 𝑣 and we assume that the replica
edges have the same end-to-end delay as (𝑣, 𝑤) in the original tree, we get for

11.4 Solution: Interlinked Trees 65

each correct replica 𝑤𝑖 of 𝑤 that it will discard the at most 𝑓 values outside the
feasible time interval for its pulse. Thus, the induction step succeeds. �

Compared to Theorem 11.1, there are a few downsides:
• Where before we increased the number of edges by (roughly) factor 2 𝑓 + 1,

now this factor is (2 𝑓 + 1)2. Even for the (arguably) most interesting case of
𝑓 = 1, this means a factor-9 increase rather than a factor of 3.

• Each node in the clock tree now needs to select the median signal out of the
arriving ones. Even if pulses are clearly separated, this requires non-trivial
logic, which will affect timing.

In return,
• the system can tolerate a much larger number of faults, so long as they are

distributed well (see exercises below),
• the benefit of discarding outliers now applies in each stage of the tree, and
• the computational logic does not require the ability to select the median clock

signal, but can be clocked directly from the output of a single node.

E11.8 Denote by 𝑞 the (independent) probability with which an individual node 𝑣 has
more than 𝑓 faulty replicas. If the system should still work correctly as a whole
with probability 99%, how large can 𝑞 be?

E11.9 Given 𝑛 and 𝑓 , estimate the probability with which individual nodes may inde-
pendently fail such that the system as a whole works correctly.

E11.10For large 𝑛, which of the two solutions is more robust to faults? Does this change
if you choose the value of 𝑓 for the first solution large, such that the number of
links in both schemes is the same?

11.4.1 Synchronization between replicas of the same node
We have suggested above the possibility to clock computational logic from
individual replicas, i.e., using 𝑝𝑣𝑖 ,𝑘 for some fixed 𝑖 as the 𝑘-th clock pulse
rather than determining 𝑝𝑣,𝑘 locally. If we are using replicas of the same logic
block clocked by different 𝑣𝑖 , it is likely that their outputs will ultimately be
compared to weed out faulty values in one way or another. This means that it
is of interest to bound the skew between |𝑝𝑣𝑖 ,𝑘 − 𝑝𝑣𝑗 ,𝑘 | for 𝑖 ≠ 𝑗 .

E11.11Recall that there can be up to 𝑓 faulty replicas of each node. As function of S
and the end-to-end delays on the path from the root to 𝑣 in the original tree, how
large can |𝑝𝑣𝑖 ,𝑘 − 𝑝𝑣𝑗 ,𝑘 | become in the worst case? Provide an execution where
the maximum is attained.

66 Chapter 11 Low-degree Clock Distribution Networks

This worst-case bound is only attained when there are many faults in consec-
utive stages, however. If there is just a single fault-free stage, immediately tight
bounds on |𝑝𝑣𝑖 ,𝑘 − 𝑝𝑣𝑗 ,𝑘 | are (re-)established.

Lemma 11.3. Suppose (𝑣, 𝑤) is an edge in the original tree and assume its
end-to-end delay is from [𝑑 − 𝑢, 𝑑]. If there is no faulty replica of 𝑣 and a
majority of them generates pulse 𝑘 , then for any 𝑤𝑖 , 𝑤 𝑗 ∈ 𝑉𝑔 we have that
|𝑝𝑣𝑖 ,𝑘 − 𝑝𝑣𝑗 ,𝑘 | ≤ 𝑢.

Proof. Since more than half of the replicas of 𝑣 generate their 𝑘-th pulse, each
correct replica of 𝑤 generates their 𝑘-th pulse eventually. The reception times
of the 𝑘-th pulses from replicas of 𝑣 differ by at most 𝑢. Since all replicas
of 𝑣 are correct, this implies that the reception times of the median signals at
replicas of 𝑤 do not differ by more than 𝑢. �

We remark that if there are fewer than 𝑓 , but non-zero faults in a stage,
some weaker form of convergence can be shown. However, as we are mostly
interested in the case of 𝑓 = 1, the above lemma is sufficient.

E11.12Fix 𝑓 = 1. For given 𝑛, what is the probability 𝑝 of independent node failures
that can be sustained such that overall system failur occurs with probability at
most 1%?

E11.13Given the bound on 𝑝 from the previous exercise, how likely is it that 𝑠 consecutive
stages contain a fault?

E11.14Use the probability bound you just computed and a union bound to conclude that,
with probability at least 99%, for no node 𝑣 of the original tree, both its parent
and its grandparent has a faulty replica.

Bibliography

[1] Hopkins, A. L., T. B. Smith, and J. H. Lala. 1978. Ftmp – a highly reliable fault-
tolerant multiprocess for aircraft. Proceedings of the IEEE 66 (10): 1221–1239.
doi:10.1109/PROC.1978.11113.

[2] Kopetz, H. 2003. Fault containment and error detection in the time-triggered archi-
tecture. In The sixth international symposium on autonomous decentralized systems,
2003. isads 2003., 139–146. doi:10.1109/ISADS.2003.1193942.

[3] Pease, M., R. Shostak, and L. Lamport. 1980. Reaching agreement in the
presence of faults. J. ACM 27 (2): 228–234. doi:10.1145/322186.322188.
http://doi.acm.org/10.1145/322186.322188.

[4] Srikanth, T. K., and Sam Toueg. 1987. Optimal clock synchronization. J. ACM 34
(3): 626–645. doi:10.1145/28869.28876. https://doi.org/10.1145/28869.28876.

