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12.1 Overview

In Chapters 9 and 10 we studied how to achieve synchronization despite Bzyan-
tine, i.e., worst-case failures of a minority of the nodes in a system. Our solu-
tions required full connectivity, which is impractical for all but small systems.
To make do with fewer links, in Chapter 11 we relaxed the “where” of faults, in
the sense that we dropped the assumption of a worst-case distribution of faults.
We saw that if faults are (close to) uniformly distributed across the system,
fairly high probabilities of individual node failure can be supported with very
small node degrees.

In this chapter, we introduce a related notions corresponding to the “when”
of faults. Rather than assuming that a node becomes forever, what happens if
faults are transient in nature? Possibilities for such faults are endless: radiation-
induced spurious pulses on communication links or bit flips in memory, a
temporary drop or outage of supply voltage, electro-magnetic interference from
a close-by source, delay bound violations due to (local) overheating, etc. In
none of these examples, there is physical damage to the hardware, meaning that
it will commence to function correctly again as soon as the transient event is
over.

So far, our models did not consider that nodes violating the behavior pre-
scribed by our algorithms could ever recover. This has dramatic consequences
in a setting where transient faults are more common that permanent ones.

E12.1 Suppose that every second, a correct node becomes faulty with (independent)
probability p = 1078, What is the mean time between failures (MTBF), i.e., the
expected time until the node fails? (Hint: For |¢| < 1, Z;.’il il =(1-¢)2)

E12.2 Now assume that we add redundancy to make the system more reliable. Using
n = 10 nodes and an algorithm that can sustain up to any f = 3 nodes being
faulty, what is the MTBF of the algorithm on this system if correct nodes still
become faulty with independent probability p = 1078 each second? What about
n=100and f =33, orn = 1000 and f = 333?

E12.3 Are the assumptions that the failure rate remains constant and nodes fail inde-
pendently when adding redundancy realistic? If not, how does this affect the
MTBF?

But how should we characterize what makes a fault “transient?” Also here,
we follow a similar strategy as in earlier chapters. Rather than relying on
an empiric approach—deriving from data on deployed systems, experiments,
or simulations which faults and resulting behavior to expect—we aim for the
broadest behavioral characterization we can handle; this reduces the burden
of determining and verifying fault models, while simultaneously maximizing
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the possible scenarios we cover. Given that we rely on nodes executing the
algorithms we design to prove properties of the system, a natural minimal
requirement is that for a node to be considered correct again after undergoing
a transient fault, it must faithfully execute the specified algorithm. Obviously,
what precisely this means depends on the system model we employ. To be
concrete, consider the TMP model, which will continue to be our model of
choice.

Definition 12.1 (Correct Nodes in TMP). Node v € V is correct during [t,t'] C
R>q if and only if

. at each time t, € [t,t’], v receives a message from w € V only if the same
message was sent by w during (t, — d, t,.),

- ifw €V sends a message to v at time tg € [t,t’], there is a unique time
t, € (tg,ts + d] when the message is received by v,

. ateachtimet” € [t,1'], 1 < %(f") <, and

« the state machine of v performs state transitions and sends messages accord-
ing to the TMP model and the specified algorithm.

Note that this definition associates each link (w,v) with its endpoint v, in
the sense that v is considered faulty whenever (w, v) does not behave correctly.
Other mappings of links to nodes are perfectly fine, as is to treat the links as
separate entities, distinguishing between correct and faulty links. We make
this choice for convenience, and because especially in low-degree networks,
the results would remain very similar.

More importantly, the above definition again encapsulates the idea that no
assumptions are made on the behavior of faulty nodes. That is, we continue
to consider Byzantine faults, and an algorithm needs to overcome any possible
behavior of faulty nodes. In other words, correct nodes receive arbitrary
messages on links originating at faulty nodes.

This worst-case assumption is also significant for what we face when a
transient fault is over. The challenge is that, while the now again correct node
faithfully executes the algorithm, its state machine is in an arbitrary (read: the
worst possible choice of) state. As we made no assumptions on what happens
to the node during its transient failure, its state-holding memory could have
transitioned to any configuration. In particular, the node might have lost any and
all information on the state of the remaining system, instead storing completely
misleading incorrect data. Moreover, the node has no way of reliably being
aware that it just suffered a transient fault, as any pertinent diagnostic data
might have been lost or compromised, too. This requires highly circumspect
design of algorithms, in that one needs to make sure that in all cases, such
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inconsistent state information is eventually removed and the node starts to
operate as intended also in relation to the state of the system as a whole.

As the first result of this chapter, we show that with only small modifications,
Algorithm 11 can be augmented such that nodes resynchronize after suffering
a transient fault.

Theorem 12.13. Suppose that 11 — 109% > 0, fix any
. 20720 — Du + 93 (49 - 3)d

T
- 19 — 1892

€ 0(d), (12.3)

and set
229 -D(u+ (- 1)d)+2(90 - 1T
39 — 892)

Then there is Ty € O(T) such that the following holds. If for each time
t € Ry, theset Vy (1) € V of all nodes that are correct during [max{t—Tp, 0}, t]
has size at least n — f and maxyev, (1) {Hy(0)} < S, then Algorithm 11 lets
these nodes generate pulses with skew at most S, Ppin > (T — (9 + 1)S) /9,
and Ppnax < T +38. More precisely, we can inductively label for all t € R

S = €0+ (¥-1T). (12.4)

and all pulses by nodes v € V,(t) by round numbers k € Nsq such that (i)
pulses with the same round number are at most S time apart, (ii) pulses with
consecutive round numbers are at least P, time apart, and (iii) pulses with
consecutive round numbers are at most P,y time apart.

We emphasize that this constitutes a huge improvement in overall robustness
of the system in face of independent transient faults.

E12.4 Suppose that every second, each correct node becomes faulty with independent
probability p = 1078, However, so long as no more than n — f nodes are neither
faulty nor in the process of recovery, it will recover, i.e., resynchronize with the
correct synchronized nodes, within another second. Using n = 10 nodes and an
algorithm that can sustain up to any f = 3 nodes being faulty or unsynchronized,
what is the MTBF? What about n = 100 and f = 33, or n = 1000 and f = 333?

E12.5 What if faults are correlated? In the extreme case of the only mode of failure
being all nodes failing together, is there any gain in the result of Theorem 12.13?

Take careful note of the requirement that faults are independent. If a too large
fraction of the nodes transiently fails concurrently, the system will still fail as a
whole. In this case, no guarantee of recovery is given.

Avoiding any assumption on independence of faults, Edger Dijkstra intro-
duced an even stronger notion of recovery, which is called self-stabilization.
Here, the goal is for the system to recover from arbitrary transient faults, includ-
ing all nodes jointly failing. Thus, once the transient faults are over, the system
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is expected to recommence its intended operation. The meaning of “transient”
is determined by specifying the space of executions that are considered feasible,
i.e., satisfying the model assumptions; the meaning of “intended operation” is
determined by specifying a subset of executions that are considered to fulfil the
requirements of the task at hand.

Definition 12.2 (Self-stabilization). Denote by Y 4 the set of feasible executions
of an algorithm A in a given system, which is closed under taking suffixes (i.e.,
removing an arbitrarily long initial part of an execution & € Y 7 must result
in an execution & € Y ). Denote by Y ar C Y 7 the subset of executions
satisfying the specification of some task T that A is supposed to solve. Then A
is self-stabilizing if and only if every execution & € Y gz has a suffix&” € Y a4 1.
If there is a length measure € for execution prefixes and for each & € Y 4
there is & € Y g1 such that €(E \ E") < L, then A has stabilization time L.

To make this highly abstract definition more palpable, let us illustrate the
concept by an example. As the set of feasible executions, we choose fault-free
TMP executions. In other words, we consider an execution feasible if and only
if it behaves according to the model from the previous sections. A suffix of
such an execution is obtained by simply restricting the execution to times ¢’ > ¢
for some time ¢.

Definition 12.3 (Suffixes of TMP Executions). Denote by Y #(0) the set of
feasible executions of TMP Algorithm A according to Section 1.2. Fort € Ry,
the set of feasible executions Y 7(t) of A is obtained by restricting executions
E €Y 4(0) totimest’ >t i.e., discarding all events at timest’ < t from & and
restricting hardware clocks and all other functions to times t’ > t. We define
Ya = Urer,, Yaa(t). Execution & € Y #(t') is a suffix of & € Y # (1) if and
only if &' can be obtained from & in the manner described above, and in this
case the length of the prefix is ((E\ &) :=1t' —t.

Recall that for clock synchronization algorithm A outputting logical clocks
Ly: Rsp — Ryp, we defined

G@):
L(1):

U’nu}ael)‘(/ {ILy(t) = Ly, ()}

U’Igaeu‘(/ {ILy(t) = Ly, ()}

Av,w)eE
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and set G and L to the supremum of these values across all times ¢ € R»g. We
define G and L for executions in Y #(¢) for t > 0 analogously, by setting
G =sup{G(1)}
t'>t
L :=sup{L(1)}.

t'>t

With these definitions in place, we can now set our task to be as in Chapter 8,
i.e., ensuring logical clock rates between 1 and (1 + u) dZ”, a global skew of
O(uD), and a local skew of O(ulog,;(9_1) D). For this particular example, it

turns out that the algorithm presented in the chapter already is self-stabilizing.

Theorem 12.18. Suppose that

« Algorithm 13 with T = d is used to compute clock estimates,
« 2(0-1) <pu=0(u/d), and

o« k=0, where 6 is as in Lemma 8.31.

Then Algorithm 14 is a self-stabilizing solution to the task of guaranteeing that

. dg” (1) < %(r) <(1+p) dg” () for all nodes v and times t,
« G=0(uD), and
« L=0(ulog, D), where o = pu/ (¢ - 1).

These properties are established within O(G(0)/u) time.

This seemingly powerful result is rendered ineffective by two important,
related drawbacks. First, the algorithm does not guarantee a (finite) stabilization
time. This can easily be seen from the fact that Algorithm 14 has no mechanism
for adjusting logical clocks at rates other than dg" and (1 + p) % However,
a transient fault could change the logical clock value of node v arbitrarily, as
a mutable variable like a logical clock value must be stored in some kind of
(volatile) memory. Thus, a transient fault could result in an arbitrarily large
global skew, which subsequently can only be reduced at a rate of u.

The reader might now bring up the point that the global skew cannot, in fact,
become arbitrarily large: the abstraction of representing hardware and logical
clocks by functions R>g — Ryq is hiding that any physical implementation
will have finite memory and, accordingly, will operate with bounded clocks
that eventually wrap around to 0. Unfortunately, this only causes further trou-
ble. The (formally) self-stabilizing Algorithm 6, which computes estimates of
the difference in logical clock values to those of neighbors, is stated under the
assumption of unbounded logical clocks whose values are explicitly commu-

nicated. While under fault-free operation it is not too hard to implement this
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abstraction efficiently with small messages, a self-stabilizing solution is much
more involved.

E12.6 Assume that logical clocks have rates between 1 and 1+ O (u/d) and (¥ — 1)d <«
u, and are initialized to 0. Describe a simple way to estimate logical clock
differences to neighbors with error O(u) that requires messages of O(L/u)
every O(d) time and locally stores only O(L/u) bits. (You may assume that
the logical clock increments discretely in steps of u, without worrying about the
logic implementing this or the hardware clock.)

E12.7 Can your scheme also be made to work if there is some initial, but bounded skew
between logical clocks? What if there is no bound on the initial skew?

Remark 12.4. This issue highlights the gap between the TMP model and
the pseudocode. The pseudocode uses instructions that cannot be directly
implemented in the model, but rather need subroutines realizing them. These in
turn might make use of assumptions on initialization or invariants maintained
by the algorithm. However, when considering self-stabilization, any such
guarantee breaks down. If we pretend that one can implement the pseudocode
without providing details, we are implicitly adding model assumptions, making
it all the harder (and sometimes impossible) to implement the augmented model.

This is a major pitfall in designing self-stabilizing algorithms: properties
that are trivial to ensure under correct operation might be inadvertently taken
for granted by the algorithm designer. Depending on the point of view, this
either results in a more restrictive model that cannot be implemented (or not
efficiently so), or in pseudocode that does not actually describe an algorithm in
the stated model. Similarly, pushing assumptions about initialization into the
model might defeat the purpose of self-stabilization: When assuming something
about the volatile state of nodes at the beginning of feasible executions (e.g.
bounded skew), we implicitly make any “transient” fault affecting the memory
holding this state into a permanent one from the perspective of the model; so
long as the skew bound is not re-established, the execution starting at that point
in time is not considered feasible, conveniently removing the burden (and the
benefits) of ensuring recovery from the “self-stabilizing” algorithm.

To overcome the above obstacle in our example, we introduce a recovery
mechanism that bounds G in a self-stabilizing manner, but does not interfere
with logical clocks whenever it is small enough. Using clocks that are bounded,
but do not wrap around to 0 too often (e.g., with a period of at least 5G), such a
bound allows us to implement Algorithm 6. By combining both algorithms, we
(1) get a self-stabilizing implementation of Algorithm 6 and (ii) ensure that the
global skew is reduced to within a constant factor of the target value quickly.
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From there, Algorithm 5 can take over to maintain a small global skew (thus
ensuring that the recovery mechanism does not meddle) and converge to a small
local skew in time O(G/u).

Theorem 12.24. Suppose that

« Algorithm 6 with T = d is used to compute clock estimates,

« 2(0-1) < u=0(u/d),

+ kK =0, where § is as in Lemma 8.31, and

« Algorithm 15 is run with a sufficiently large value for G = O(uD).

With this modification, Algorithm 14 is a self-stabilizing solution to the task of
guaranteeing that

. %(r) < %(I) <(1+p dg” (t) for all nodes v and times t,
« G=0(uD), and

« L =0(ulog, D), where o = /(9 - 1).
It has a stabilization time of O(dD).

12.2 A Variant of the Lynch-Welch Algorithm

Algorithm 12 modifies Algorithm 11 to allow for recovery of nodes after
transient faults. We made the following changes:

1. All waiting statements check whether the local time until which too wait
is in the past or too far in the future, and in this case stop the waiting
instruction.

2. The waiting periods before sending the message for the current round and
for receiving other nodes’ messages allow for twice the skew. This way,
resynchronizing nodes need not immediately meet the skew bound to start
executing rounds correctly again.

3. A resynchronizing node might not receive all n — f messages from correct
nodes during the expected window. To avoid that this can cause faulty
nodes to “lure” them away from the crowd, missing values are replaced
by the median of received values. From the perspective of approximate
agreement, this is safe in the sense that this guarantees that the output lies
in the range spanned by correct nodes. (The convergence argument does
not apply, however, which is the reason for the additional slack in the initial
waiting periods.)

4. If too few (i.e., less than n — f) messages are received, the node switches
into a recovery mode, in which it waits until it observes a pulse from the
crowd. As this pulse must be tightly synchronized, this is implemented
by a “sliding window”—the node waits until it observes n — f messages
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Al

gorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

mechanism, code for node v € V.

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:

1
2
3:
4:
5
6
7

. wait until getH() > S /I Hy,(0) € [0,S8) for correct nodes w
: for all rounds » € N do
generate r-th pulse
h < getH()
wait until getH() > & + 29S8 or getH() < A // all nodes are in round r
broadcast empty message to all nodes (including self)
: wait until getH() > i+ 2(9? + $)S + 9d or getH() < h + 298 /!
denote this time by 7, ,
// correct nodes’ messages should have arrived
if received messages from n — f distinct nodes during current loop
iteration then
h’ « median of {h, | hy local reception time of latest message
from some x € V} (as multiset, i.e., values may repeat)
for each node w € V do
if received message from w during current loop iteration then
let iy, be local time at latest received message from w
Aw) «— hy—h—d+u-28
else
A(w) «— W' — h—d +u — 28 // replace missing ones by
median
end if
end for
U « {A(w) |w € V} (as multiset, i.e., values may repeat)
A (UUHD 4y 12
wait until getH() > h+ A+ T or getH() < h+ A - 38
else
wait for n — f messages from distinct nodes within #°S + du local
time

let i’ be the local reception time of the (f + 1)-th such message
wait until getH() > b’ —d+u—28+T or getH() < h’ — (9>S +Ju)
end if
end for

from distinct sources within the narrow local time window guaranteed by
the skew bound S, the delay uncertainty u, and the drift bound of ¢ for the
hardware clocks. Then it jumps onto the moving train, re-initializes the
loop with sufficiently accurate timing.
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E12.8 How would you implement the waiting statement in Line 227

E12.9 Revisit your implementation of Line 22. Did you make sure that transient faults
cannot result in a state that causes the node to deadlock or fail to implement
the waiting statement correctly? If not, what is the stabilization time of your
subroutine?

Before proving the recovery property, we first adapt the definition of correct
execution of round k € N, . Note that for nodes undergoing transient faults,
the k-th local pulse might not correspond to the k-th “global” pulse, assuming
that we can define the latter term in a meaningful way. However, we will make
assumptions enabling this, so we use according indexation in the definition.

(i) There is a set Vi of n — f correct nodes that start a loop iteration within S
time and stay correct until completing the iteration.

(i) Messages sent by these nodes are received at all such nodes after starting
the loop iteration and before they evaluate the if-condition, i.e., during
[Po,ks To,k]-

(iii) These nodes execute the if-block.

(iv) T is large enough to accomodate the adjustments of the next pulse times.
This means to ensure that H, (7, k) < hy(Tp.x) + Ap(1px) + T, i.e., that
Hy(tp.x) < Hy(py.x) + A+ T, where A is the value determined in Line 18
of the k-th iteration of the loop.

Note that the fact that these nodes stay correct until completing the loop iteration
means they generate another pulse at this point. By tying iterations together
using these new pulses as reference—because n — f nodes are required for each
iteration, there is an overlap in consecutive sets—we will inductively define
rounds k € N, even if individual nodes might not be able to keep track of k
due to transient faults.

With this in mind, we can define that round k is executed correctly by set Vi
if these properties are satisfied in round k.

We also preemptively set

S=u+@-1)d+Q29*+9-3)S

for this section. This value is slightly larger than the ¢ used in Chapter 10,
accounting for the larger waiting times used for sending and receiving messages
of Algorithm 12.

We start by repeating the analysis from Chapter 10 for the modified algorithm,
showing that its synchronization properties are maintained. The following are
adjusted versions of Lemma 10.7, Lemma 10.8, and Theorem 10.9.
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Lemma 12.5. Suppose that T > (207 + 209 + 1)S + 9d and

S 2129 - 1)6 +2(9 - )T

> g .

Moreover, assume V,._ executed round r — 1 correctly and that V., C 'V with
|Vi-| = n — f starts a loop iteration during [t,,t, + S|, where for some v €
V-1 NV, # 0 the new loop iteration is the one right after that of round r — 1.
If V, is correct during [t,,t, + T + S + 6], then

S

(i) round r is executed correctly by V.,
(i) (T-8)/9 < IninvEVg {pv,r+l} - minveVg {pv,r} <T+8+6, and
(iii) the nodes in V, start the next loop iteration within S time.

Proof sketch. Consider the message v € V, sends after entering round r. If it
is sent at time fy, it is received at time ¢, € [ty +d — u,ts + d]. If a message
sent earlier by v arrives later, then the fact that v is correct during this iteration
implies that this message is also received during [t5 + d — u,t; + d]. Since
Algorithm 12 makes use only of the latest such received message in Line 12,
for the purpose of this proof we may treat this case simply as if the message v
sent in round r arrives at this time instead.

From here on, the proof'is analogous to that of Lemma 10.7, with the following
modifications:

- all statements are about nodes in V.,

« we note that the waiting statements before the if-block complete because the
first criterion holds with equality,

- we replace the respective local waiting times in the proof by the modified
ones of Lines 5 and 7 (i.e., account for the additional factors of 2),

- we note that from showing that all messages from nodes in V,. are received
in a timely fashion and |V,.| > n — f, it follows that nodes in V, execute the
if-statement,

« we use Lemma 12.6 to show that the estimates computed in Line 13 have
indeed error at most §, and

« we conclude from the determined bounds on A that the waiting statement in
Line 20 completes due to the first condition being met with equality. O

Lemma 12.6. Suppose that the prerequisites of Lemma 12.5 hold and v € V,
receives the message from w € V,. in the loop iteration started at time t at time
ty. Then setting

A(w) = Hy(t,) -Hy(pyy)—d+u-28
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as in Line 13 produces an estimate with error at most § = u+ (9 — 1)d + (292 +
9 —3)S.

Proof. Analogous to the one of Lemma 10.8, accounting for the additional
factors of 2 in Lines 5 and 7. ]

Theorem 12.7. Suppose that there is a set Vo C V of size at least n — f that is
correct at all times and that 11 — 1093 > 0. For any choice of
. 20%(20 — Du + 93 (49 - 3)d

T >
19 — 1892

€ 0(d), (12.1)

set
_ 220 - D@+ (@ - Dd) +2(9 - DT

St 9(9 - 892)

€O+ @-1T). (12.2)

If max,cy {H,(0)} < S, then Algorithm 11 solves pulse synchronization with
skew at most S, Ppin = (T — (9 +1)S) /9, and Ppax < T + 3S.

Proof sketch. The proof is analogous to the one of Theorem 10.9, but with
§=u+ (9 —1)d+ (20% + 9 — 3)S as defined earlier, S and T as in the
prerequisites, and using Lemma 12.5 for the induction step. O

‘We now turn to showing that correct nodes can resynchronize, so long as n— f
nodes keep producing synchronized pulses. To keep the notation tractable, we
employ the trick of assuming that there is a majority of correct nodes running
in synchrony at all times, and that recovering nodes do not fail again. We will
later circumvent this limitation by arguing that (i) future faults do not affect
the present state and (ii) due to the “forgetful” nature of the algorithm, we can
remove execution prefixes with additional faults (up to a certain point) without
affecting the behavior of the nodes. This then allows us to “pretend” that the
preconditions used in our statements apply.

As a first helper lemma, we observe that the messages corresponding to a
pulse of such a synchronized majority are received in close temporal proximity.

Lemma 12.8. Suppose that the prerequisites of Theorem 12.7 hold. Then all
messages from nodes in Vg sent in round k € Nsq are received within a time
interval of length 98 + u.

Proof. Let v,w € V, send their messages at times f; and f, respectively.
Denote by ¢, and ¢, the respective times when the messages are received, we
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[d—u.d]

1<4dt <

Theorem 12.7

(12.3),(12.4)
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bound
|ty =t < |ty — | +u
= |H;1(Hv(pv,k) +08) - H;;l(Hw(pw,k) +0S)| tu
< |pv,k _pw,kl + (ﬂ_ ])S+M
<9S8 +u. O

Next, we show that no matter which state a node is in when it becomes correct,
it will start a new loop iteration within 37, effectively clearing its state (except
for the time when the loop iteration starts). The previous lemma here serves to
show that a node will leave the recovery mode (the else-block of the loop) in a
timely fashion if it ends up there.

Lemma 12.9. Suppose that the prerequisites of Theorem 12.7 hold and let
v € V\ Vg be correct at times t > t, € Ryo. Then v starts a new iteration of
the loop of Algorithm 12 by time t, + 3T.

Proof. 1f v currently is not executing the loop, recall that at time ¢,, getH()
returns H,(t,) € R>o. Hence,

H,(t,+8) > H,(t,) +S > S,

implying that the condition to start a loop iteration is satisfied by time 7, + S.
Accordingly, assume that v is executing the loop at time #,,.

Observe that if v is executing parts of the loop before the if-else branch, it
will complete this at some time 7, < 7, + 2(92 + 9)S + 9d, regardless of the
value h(t,) it stores in & at time t,. Hence, it remains to show that the loop
iteration completes in a timely fashion after the branch.

As |V, | = n— f, by Theorem 12.7 the nodes in V, solve pulse synchronization
with skew S, Pmin = (T — (9 + 1)S)/9 and P = T + 3S. Let r be
maximal such that there is some node w € V, satisfying py -1 < t, (if no
pulses have been sent yet, set r := 1). Hence, we have for all w € V, that
Pw.k € [ty,ty+Pmax < t,+T +38]. Denote by ¢, (w, k) the time when w sends
its message for pulse k to v and by ¢, (w, k) the time when it is received by v.

We distinguish two cases. If v executes the if statement of the branch, it waits
for at most 7'+ 3S local time before completing the loop iteration, meaning that
it completes the loop iteration by time

H' (H, (1) +T+38) <1/, +T+38 < 1, +T+(20% +20+3)S+9d < 1,+2T,

as claimed.
If v executes the else statement of the branch, this implies that is some w € V,

such that ¢, (w, k) > t; otherwise, v would have stored reception times for
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n — f distinct nodes during the current loop iteration by time #, and hence
executed the if statement. By Lemma 12.8, for all x,y € V, we have that
|t (x, k) — t,(y, k)| < 9S + u. Therefore, there is some #y > ¢, such that v
receives messages from n — f distinct nodes during [zy — 98 — u, ty] and

to < max{t,(w,k)}
weVyg
< max{ts(w, k)} +d
weVyg

= max {H,' (Hy(puwi +208)} +d
weVg

IA

max{py i} +29S +d
weVyg

IA

ty + Pnax + 29S8 + d
=t, +T+Q29+3)S+d

Because ¢S + u time corresponds to at most 9°S + ¢u local time, v thus passes
the first waiting statement in the else branch no later than time #yp + 9S8 + u <
ty +T + (39 + 3)S + d + u. Finally, the second waiting statement is complete
within at most 7 — d + u — 28 additional time, i.e., no later than time

ty+2T + (39 + 1)S +2u < t, + 3T. |

A second helper lemma shows that all messages received from synchronized
nodes while waiting for messages before the if-branch correspond to the same
pulse.

Lemma 12.10. Suppose that the prerequisites of Theorem 12.7 hold and fix
any to € Rso. Then there is some time t| € [to, to +2(9* +9)S +9d] such that
all messages received from nodes v € Vy during this interval are

« received during [t1,11 + 98 + u] and
« all such messages belong to the same pulse, i.e., have been sent during the
k-th loop iteration of the sender for some k € Nx.

Proof. If no messages from nodes in V, are received during [o, fo+ (9*+29)S+
9d], the claim vacuously holds. Hence, assume that such a message is received,
and let 1, € [to, 1o + (9>+29)S + 9d] be the minimal such time. Denote by 7,
the time it was sent and by v € V, its sender. Consider another message sent
by w € V, at time ¢, which is received at time ¢,..

First, we show that both messages must belong to the same pulse k. Assuming
towards contradiction that this is not the case, denote by k and k’, k # k', the

max. delay

dHy

7 =1

choice of k

(12.3),(12.4)



delays in
[d—u.d]

1<4d <y

Theorem 12.7

Theorem 12.7

(12.3),(12.4)

12.2 A Variant of the Lynch-Welch Algorithm 145

pulse numbers of the messages by v and w, respectively. We get that
|ty — 2| = |ty —tg| +u
= |Hy (Hy(po.i) +08) = Hy (Hu(puie) +9S)| —u
2 |pok = Pwil— (@ -1)S —u
> Ppin— (3 -1)S—u
_T-(?+1S —u

9
> 2(92 +9)S + 9d,

contradicting the assumption that t,, /. € [to, to+2(9? +9)S +9d]. Therefore,
both messages belong to the same pulse k € N.g and by Lemma 12.10 it
follows that |t — 7| < 9S + u. O

Using this statement, we can now establish that once a “fresh” loop iteration
is started, a recovering node will establish sufficient synchrony to “catch” all
messages corresponding to a subsequent pulse.

Lemma 12.11. Suppose that the prerequisites of Theorem 12.7 hold and let
v € V\ Vg be correct at times t > p, € Ryo, where it starts a new iteration of
the loop at time p,. Then there is k € N+ such that v will receive all messages
sent by nodes in Vg in their k-th iteration of the loop after starting its next loop
iteration, but before evaluating the if-condition.

Proof. First consider the case that in its loop iteration starting at time p,, node
v executes the if-block. Thus, it receives at least n — f > 2 f messages from
distinct senders during [p,, 7,], where 7, := H,!(p, + 2(9% + 9)S + 9d) is
the time when v evaluates the if-condition. Consider the ordered set of more
than 2 f local reception times, up to f which may correspond to faulty nodes.
Observe that, no matter what the latter f times are, the median of the set
lies within the interval spanned by the reception times from correct nodes.
Therefore, replacing any missing reception times by the median reception time
results in at least n — f values from that range.

Recall that by Lemma 12.10, all messages from correct nodes belong to the
same pulse, say pulse k — 1 € N, . Denoting by ¢, ,, the reception time of the
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message sent by node w € V, for pulse k — 1, we conclude that
min {H,(ty w)} — ho(7p) —d+u -8
weVy

<U," " (x)

U,

<max{H,(tyw)} —hy(1py) —d+u-S.
weVy

In particular,

U (1) + U (1)
2

=A, (Tv)

< Hy(ty) —hy(ty) —d+u-8
< Hy(1y) = hy(7y) +38,
implying that the loop iteration ends once the local time reaches or exceeds
hy(1y) + Ay(1,) + T. Since the above also shows that
hy(ty) +Ay(ty)+T 2 Hy(py) —d+u—-S+T
> H,(p,) +2(9% +9)S + 9d (12.3),12.4)
= Hy(1,),
the loop iteration ends exactly at time p/, := H, ! (h,(1,) + A, (1,) + T).
Now consider a node x € V,. Since the preconditions of the lemma apply
also to node x and pulse time py x_j, we can repeat our reasoning to show
that pyx = H;l(hx(rx,k,l) + Ay (Tx,k-1) + T) with analogous bounds on

Ax(7x,k-1). Denote by ¢, the reception time at node x corresponding to ¢, .
By Lemma 12.10, all reception times for pulse messages from nodes in Vj, lie



<9

Iy &‘&
5‘.‘: Sl

>0

Lemma 12.10
d>u,8S>0
(12.4)
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within a time interval of length ¥S + u, yielding that
pl’) —Pw,k = H;] (hy(1p) + Ay(1y) +T) — H;] (hx(Tx,k—l) + Ax(Tx,k—l) +T)

<H;! (max{Hv(t,,w)} -d+u-S8 +T)
weVyg
- H;! (min{Hx(t; W) —d+u —S+T)
weVyg ’

< H! (ul}leag;{HU(tr,w)}) - H! (ur)%ivri{Hx(t;,w)})

+(@-D|-d+u-S+T|
zur)réa“/),i{tr,ll)}_ur}rélvng{tr,w}-i-(ﬂ_ 1)|T_d+l/l_8|

SOS+u+(W-DHIT-d+u-S8j
<OIS+u+ (O -1)T
<28.

Symetrically and analogously, the same bound can be derived for p,, x — p,.
In order words, v takes part in the k-th pulse of V,, albeit with skew (smaller
than) 28. Observing that the waiting times in Line 5 and ?? match those of
Algorithm 11 for skew 8’ = 28, analogously to Lemmas 12.5 and 10.7 it
follows that v will receive the messages for pulse k from nodes in V, within the
stated time bounds. O

Once this coarse, but sufficiently precise synchronization is established, the
node will execute subsequent loop iterations correctly, in the sense that it
receives all messages corresponding to the respective pulse in a timely fashion.
This in turn implies that tight synchronization is (re-)established.

Corollary 12.12. Suppose that the prerequisites of Theorem 12.7 hold and let
v € V\V, becorrectat timest > p, € Ry, where it starts a new iteration of the
loop at time p,. Then there is k € N~ such that the following holds. Denoting
by py.k its second next pulse, and enumerate subsequent pulses accordingly
(i.e., Po.k+1s Po.k+25 - - -) it holds for all k' > k that

mfg({lpv,k’ - pw,k’|} <S.

we g

Proof. By Lemma 12.11, in its next loop iteration v will receive all messages
from nodes in V,, for some round k -1 € N before evaluating the if-condition.
Thus, analogously to nodes in Vg, we can perform the induction step as in
Lemma 12.5 (where Lemma 12.6 does not require v to meet a skew bound of
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S). Accordingly, v will generate its next pulse, and by induction all subsequent
ones, with skew S relative to the nodes of V. m]

We are now ready to prove Theorem 12.13. Essentially, the assumptions
of the theorem provide enough time for recovering nodes to (re-)synchronize
before too many previously correct nodes may fail. We leverage this to “stitch
together” the pulses generated by (currently) correct and synchronized nodes,
which in turn provide the time reference for recovering nodes to synchronize
to.

Theorem 12.13. Suppose that 11 — 109% > 0, fix any
N 20720 — Du + 93 (49 - 3)d

T
B 19 — 1892

€ 0(d), (12.3)

and set
229 -D(u+ (- 1)d)+2(0 - 1T
(9 — 892)

Then there is Ty € O(T) such that the following holds. If for each time
t € Ry, theset Vg (t) € V of all nodes that are correct during [max{t—Ty, 0}, t]
has size at least n — f and maxyev, (1) {Hy(0)} < S, then Algorithm 11 lets
these nodes generate pulses with skew at most S, Ppin = (T — (9 + 1)S) /9,
and Pnax < T +38. More precisely, we can inductively label for all t € R
and all pulses by nodes v € V,(t) by round numbers k € Nsq such that (i)
pulses with the same round number are at most S time apart, (ii) pulses with
consecutive round numbers are at least P, time apart, and (iii) pulses with
consecutive round numbers are at most P,y time apart.

S = e0(u+(¥-1T). (12.4)

Proof. Choose Ty = CT for a sufficiently large constant C. The proof is by
induction over the time up to which we have performed the assignment of
round labels. As additional invariant for the induction, we add that for each
time ¢t > Tj, there is some set of at least n — f nodes that have been generating
(suitably labelled) pulses during [t — Ty/2, ¢]. To anchor the induction at time
Ty, note that V,(Tp) is correct until time Ty, has size at least n — f, and the
hardware clocks of nodes in V,(Tp) are initialized with values between 0 and
S. Observe that we can extend the execution prefix until time T in a way such
that the nodes in V,, (Tp) stay correct forever without making any changes before
time Tp. Thus, we can apply Theorem 12.7 to show that the nodes in V, (7o)
generate pulses satisfying the requirements until time 7 also in the original
execution, as there is no difference between the two executions before time 7.

For the induction step, assume that we have shown all claims until some
time ¢, i.e., all pulses generated at times ¢ < ¢ by nodes in Vg (¢") have been
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assigned labels satisfying the requirements. We will show that can extend this
assignment consistenly until time ¢ + 7. Consider any ¢’ € (¢,t + T]. By
the induction hypothesis, the nodes in Vg (¢" — Tp/2) have generated pulses
satisfying the constraints during [¢' — Ty, ' —T/2]. Let k € N be the minimal
round label such that all pulses with label k of nodes in V, (¢’ — Tp) fall into this
interval. Thus, the first such pulse is generated at a time p, x <t —To + Prax.-

We now argue that we can apply Theorem 12.7 to V, (¢’ — Tp/2), even though
it is not properly initialized for this set at this time. To this end, we construct an
execution that results in the exact same behavior at all nodes, but with shifted
times to match the requirements of the theorem. We “cut off” the prefix of the
execution before p, «, also dropping all sending events of messages sent earlier.
Then we shift time, i.e., map time 7 € [p, k, o) to time ¢ — p, i, shifting all
clock functions and event times with it (e.g., the new hardware clock value at
time 7 is the old one at time ¢ + p, x, etc.). Finally, observe that since all nodes
in Vg (¢’ = To/2) now generate a pulse by the (new) time S, we can change their
hardware clock functions such that (i) the clocks have values between 0 and S
at time 0, (ii) they have value S when generating the first pulse of the node, (iii)
they have derivative 1 until the first pulse of the node, and (iv) their derivative
is identical afterwards. Since the algorithm only uses the hardware clocks to
measure time differences relative to the start of a loop iteration, this change
does not affect the bevavior of nodes.

Again, observe that there are executions identical to the one we created up
to time To/2 — (py.x — (t' = To)) = To/2 — Pmax (formerly time ¢ — Tp/2) in
which V, (+' = Tp/2) is correct at all times. Thus, our manipulations result in an
execution for which Theorem 12.7 shows that the nodes in V(¢ — T /2) solve
pulse synchronization with the stated parameters until time 7 /2 — (p, x — (¢’ —
To)) = To/2 = Pmax > To/2 — 2T. Now consider a node w € V,(¢’). Since in
the original execution, it is correct during [¢t’ — Tp, '], in the new execution it
is correct during [0, Ty/2 — 2T]. Because it could also be correct in the future,
we can apply Lemma 12.9 to show that by time 37 (which, as C is sufficiently
large, is smaller than 7/2 — 2T), it will have started a new loop iteration. By
Corollary 12.12, it will start generating pulses synchronized with V, (+' =Ty /2)
two loop iterations later, which by Lemma 12.10 happens no later than time
9T < Tp/2 - 2T.

Translating this back to the original execution, we conclude that w generates
pulses synchronized with V, (t' Ty /2) during [¢'~To+11T,t'~Ty/2]. Thus, we
can consistenly assign pulses of w during this period labels k € N satisfying
the bounds. Because Pnax < 27T and Ty is sufficiently large, this applies
to a non-zero number of pulses. We now inductively repeat this procedure
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with later pulses, by gradually using larger times, e.g., t’ — Ty/2 + i Py, for
i=1,2,.... Note that because |Vy(t"")| > n— f forall 1" € Ry, any two such
sets intersect, guaranteeing that the pulses satisfy not only the skew, but also
the period bounds. This process allows us to assign consistent pulse numbers
for pulses of w until time ', which also establishes that all of V,(¢’) generates
suitably labelled pulses during [#" — Tp/2,¢’]. This completes the induction
step and hence the proof. O

12.3 Self-stabilizing gradient clock synchronization

It turns out that Algorithm 5 has inherent self-stabilization properties, which
originate in its goal to keep the local skew small. Since it continually “spreads
out” large local skews over larger distances, this means that it also (re-)establishes
a small local skew and, similarly, a small global skew, if it is ever lost. How-
ever, proving this requires to revisit the algorithm, to check that incorrect state
does not break the mechanism minimizing local skews. Subsequently, we
need to prove that this indeed achieves the desired stabilization from a global
perspective.

Algorithm 13 Pseudocode for v € V keeping track of the logical clock of its
neighbor w.
if v just woke up, i.e., t = O then
h «— getH()
Ly — getl() > default to own clock value
end if
if getH() = kT for some k € N then
send (getL.()) to w
end if
if received (€) from w then
by —C+d—u > take message delay into account
h «— getH()
end if
procedure getl.(w) > returns LY (1)
return £, + (getH() — h) /9 > own clock might be faster than w’s
end procedure

Before performing these tasks, let us quickly recap how the algorithm oper-
ates.

« The algorithm operates on an (arbitrary) undirected connected network G =
(V, E) of (unknown) diameter D.
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« Each node v € V maintains for each incident edge {v,w} € E an estimate
LY (1) of the logical clock Ly, (t) of its neighbor w of error 4, i.e.,

Ly(1) > Ly(1) > Ly(1) = 6.

This is implemented by Algorithm 13, which achieves 6 = (F(1 + u) —
1/9)(T + u) + 9(u + ud) so long as logical clock rates satisfy the constraints
imposed by the gradient clock synchronization algorithm, cf. Lemma 8.31.

« The main algorithm, whose code is shown in Algorithm 14, then lets each
node continuously evaluate the slow mode trigger ST, which is satisfied at
v € V and time ¢ if and only if there is s € N such that:

ST-1 3{v,x} € E: L,(t) — Ly(t) > (25 — 1)«,
ST-2 Y{v,y} € E: Ly(t) — L,(t) < (25 — D)k.

For « we can choose any value of at least §, so we assume k = ¢ in the
following. If the trigger holds, the node increases its logical clock at rate

Algorithm 14 GCS algorithm

if v just woke up, i.e., t = O then

{ «— getH()
h «— getH()
if ST then
re1 > v is in slow mode
else
r—1l+u > v is in fast mode
end if
end if
if ST stops to hold then
{ « getl() > always keep track of clock progress
h « getH()
re—1l+u > v is in fast mode
end if
if ST starts to hold then
{ « getL() > always keep track of clock progress
h < getH()
re—1 > v is in slow mode
end if
procedure getL() > returns L, (1)
return ¢ + r(getH() — h) > logical clock increases at rate rdg”

end procedure
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at time 7, and otherwise at rate (1 + p)%. This is implemented by

the procedure getL() together with memorizing logical and hardware clock
values whenever ST starts or stops to hold.

dH,
dt

12.3.1 Algorithm 14 is self-stabilizing

Algorithm 14 assumes that there are no faults. If any node fails, this entails that
no guarantees on the behavior of the system are implied from its analysis. Our
goal now is to establish such guarantees in face of transient faults. However, we
do not need to (nor will we be able to) show that skew is bounded while faults
are ongoing. Hence, our analysis commences only after transient faults cease,
and we only will make statements about times before the next transient fault.
By allowing for d additional time to pass “before” we start our analysis, we can
also remove all messages from the system that have not been sent according to
the instructions of the algorithm. Therefore, w.l.o.g., we may assume that our
execution starts at time O without any faults, but the state machines of nodes are
in arbitrary states. In particular, any instructions performed upon initialization,
like the first instruction block of Algorithm 14, are irrelevant and could even
be discarded from the code altogether.

For the algorithm at hand, given by Algorithm 13 and Algorithm 14, the state
of the algorithm at node v € V consists of (i) the state of the local variables (i
and ¢, in Algorithm 13 and ¢, h, and r in Algorithm 14) and (ii) the state of the
hardware clock. Naturally, an implementation needs to deal with further details,
such as how the hardware clocks are accessed and how ST is evaluated, which
is likely to introduce further state; we assume here that all these operations
are implemented in a self-stabilizing manner, too, and our analysis begins only
after these subroutines stabilized.

E12.10The “continuous” evaluation of ST is likely to be implemented by some kind of
loop that keeps checking the condition, and any implementation will incur some
computational delay. In our model, we can easily hide this issue by making this
delay part of d. However, the evaluation still needs to be self-stabilizing. Con-
ceive a simple implementation, assuming that Algorithm 13 is already operating
correctly, and check whether it is self-stabilizing.

Before arguing about convergence, we need to make sure that the code ac-
tually operates as intended after transient faults. In most cases, this requires
adjustments avoiding deadlocks, etc. By sheer coincidence, this particular im-
plementation happens to be self-stabilizing. However, lacking even elementary
sanity checks for variables, it is instructive to take note of the rather unexpected
behavior that could surface in the aftermath of transient faults. Recall that L, (7)
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T =0(d)

u <d,

pd =0 (u)
1-1/8 < 9 -1
d-1=

O(u/d) C
o)
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is defined as the return value of the getL() procedure when (hypothetically)
being called at time ¢.

E12.11Under normal circumstances, Algorithm 14 ensures logical clock rates of either
% or (1+ ﬂ)% at all times. Is this still the case when state variables can be

set to arbitrary values?

E12.125pecify the type of each state variable, i.e., which values they may attain. Assum-
ing implicit type checks (resulting in resetting the variable to a valid default value
in case of violation), show that the logical clock satisfies the above invariant.

Observation 12.14. Assuming suitable typing of variables, Algorithm 14 sat-

. dH, dL, dH,
isfies that <3* < <7 < (1+ p)=3*.

In the following, we assume that this invariant holds. With the logical clocks
behaving as expected, the estimate algorithm turns out to be self-stabilizing
by design; since it regularly updates the estimates, all its state information is
transient and therefore any incorrect state is quickly removed from the system.

Corollary 12.15 (of Lemma 8.31). Suppose that Algorithm 13 is executed with
T =0(d) and that 2(9 — 1) < u = O(u/d). Then at times t > ty € O(d), it
computes estimates satisfying 5 = O (u).

Proof. The proof of Lemma 8.31 applies verbatim, showing that
1
o= (19(1+;1) — 5) (T + u) + 9(u + ud)
1
:O(ﬁ(l+,u)— 5) (d+u)+9(u+ ud)
=0 |9 - 1 d+9u
- ?

=0((9-1)d +u)
=0(u). O

Thus, this part of the algorithm is self-stabilizing with stabilization time
O(d). Since Algorithm 14 continuously checks whether ST holds or not, it
will immediately (read: with whatever delay the implementation of this check
incurs) start responding to skews as it is designed to. Accordingly, from here
on, it remains to show that the potentially large clock skews resulting from
arbitrary changes to the logical clock values are reduced.

Our first step is to note that two key lemmas from the analysis of the algorithm
readily apply. These are concerned with the potential functions that lie at the
heart of the analysis (cf. Definition 8.19): For each v € V, s € N, and
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t S Rz(),

¥, (1) = max{L, (1) = Ly (1) = (25 = Drdist(v, w)},

where dist(v, w) denotes the distance between v and w in G. The following two
lemmas apply to any system state, so long as the algorithm has clock estimates
of error 6 < k and behaves as intended. In light of the above reasoning and
Corollary 12.15, they can be applied after an initial grace period of ®(d). For
simplicity, in the following we will not explicitly add this to all statements and
pretend that it holds starting from time 0; however, we will have to bear this in
mind when arguing about stabilization time later.

The first of the two lemmas shows that the potentials cannot increase quickly.

Lemma 8.21 (Wait-up Lemma). Suppose w € V satisfies ¥5,(t) > 0 for all
t € (to,t1]. Then

Wy, (t1) < Wy, (10) — (Lw(t1) = Ly(t0)) + (11 = to).

The second lemma shows that nodes that are behind on level s € N+ “catch
up” with a delay that is proportional to the current value of the potential from
the previous level s — 1 (or the global skew, in case s = 1).

Lemma 8.25 (Catch-up Lemma). Let s € N.q and ty, t1 be times. Suppose

that 6w
fo e —
tlz{t0+—y ifs=1

\IJS—I (IO)
u

to + otherwise.

Then, for any w €'V,
Lw(tl) - Lw(t(]) >t —ty+ lPi;(IO)-

Together, these lemmas imply not only that large skews cannot build up, but
also that they decrease at an amortized rate of roughly u — (¥ — 1). Assuming
that u > 2(¢—1), we can use this to show that the initial global skew is reduced
to an asymptotically optimal amount at amortized rate Q(u).

Lemma 12.16. If u > 2( — 1), there is Ty = O(G(0)/u) such that for all
t > Ty it holds that G(t) = O(«D). If G(0) = O(kD), then Ty = 0.

Proof. Seto = pu/(9—-1) > 2,19 :=0,and G\¥ := G(0). We claim that for
i € Nog, at time ) := (=D 4 g(i‘l)/u it holds that

(i-1)
61"y <6V :=«kD + gg , (12.5)

which we prove by induction on i.



(12.6)

G has diam. D

(12.5).

Lemma 8.21

Lemma 8.25

def. of ()

def. of o0

def. of o~ and

g(i*l)
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For i = 0, the claim holds by induction, so we only need to perform the step
fromi—1 € Ntoi. Assume towards a contradiction that G (1) > G(). Thus,
there are v, w € V such that

Ly(t") = Ly(") > ", (12.6)
implying that
YLty > L, (1) - L, (1D) - ke dist(v, w)
> G\ — kdist(v, w)
> G — kD
g(i—l)
==
We apply Lemmas 8.21 and 8.25 with 7o = t“~D and 1, = 9, yielding the
contradiction
W, (1) < W, (197D) = (L (1) = Ly (170)) + 90 = 17Y)
< (@ - 1D -0
_@-1gih

u
g(i—l)

(o

Therefore, the step succeeds, completing the induction.
Moreover, for alli € N and ¢ € [+~ ], we claim that

(1) < (1 + 1) Gl
o

which due to o > 2 is bounded by 3G"""D/2. To see this, again assume
towards contradiction that the claim is violated, for some time ¢ € [t(i‘l), t(i)].
Analogously to above, we get that there is w € V such that

1 .
! (1) > (1 + ;)g“—” —«kD

> G kD + (9 - 1)(r —t7V).
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However,

W, (1) < W, (177D) = (Lu (1) = Ly (179) + 90 = 2071) Lemma 821
<, () + (@ = (- 10D) =g
< max {L,(70) = Ly (1) - kdist(x, 1)} + (@ = D(e = 7D) - defof

x,yevV wl (=)
SQ(I(’;I))—KD+(19— ])(t_t(ifl)) G has diam. D
<G kD + (9 - 1)(r —£17D). (12.5)
In summary, the claim of the lemma follows if we can show that there is
some i € N.g such that 1) = O(G(0)/u) (or 0, if G(0) = O(«xD)) and
G = 0(kD). If G(0) < 2«kD, we can pick i = 0, so assume that G(0) > 2«D.
We fix iy := [log,, G /(xD)]. By induction on i, we get that
0 io—1
Gl = Q(V) kD
oo — o'
<D+ S P def. of i
< 24 o
i

< 3kD. o2
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=0

def. of ()

def. of (=)

def. of iy

log(y/x) <
y/xfory > x

def. of g
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Similarly,

io
t(iO) - Z t(l) - t(i_l)

i=1

o G-

i=1 H

g0 (KD

= —+ — +

Ju Z Ju

i=2

g(i—2>
a

O (o= 1DkD 1 ¢ gl-D
G0  G-DkD 1 G

U U e

(0 in— DD o)
L G7  lo-DkD 1%

H U 2

(0) (0) (io)
< 67 ., kDlog, G /(D) +t7
M

u
26 ;G0
g 1
u 2

(io)
_260)
u 2
which can be rearranged to show that () < 4G(0). O

<

This bounds the global skew of the algorithm, and the bound on the local
skew follows as in Chapter 8.

Lemma 12.17. There is Ty = O((G(0) + kD) /u) such that for all s € N5
and t > Ty, Algorithm 5 guarantees for each w € V that ¥, (t) = O(«kD /o),
where o = u/(9 - 1).

Proof. By Lemma 12.16, there is Tj = O(G(0)/u) so that G(t) = O(kD)
at times ¢ > 7;;. The lemma is now shown analogously to Lemma 8.27 for
times t > Ty := Ty + G(T)) /u = T + O (kD /) = O((G(0) + kD) /), which
circumvents the need for the prerequisite that H,(0) — H,(0) < « for all
{v,w} € E of Lemma 8.27. O

Putting these results together, we see that Algorithm 14 indeed achieves small
global and local skews in a self-stabilizing manner.

Theorem 12.18. Suppose that

« Algorithm 13 with T = d is used to compute clock estimates,
« 2(9-1) < u=0(u/d), and
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o« k=0, where ¢ is as in Lemma 8.31.

Then Algorithm 14 is a self-stabilizing solution to the task of guaranteeing that

. %([) < dd—Lt”(t) < (1+w dg” () for all nodes v and times t,

« G=0(uD), and
« L=0(ulog, D), where o = pu/ (¢ - 1).

These properties are established within O (G(0)/u) time.

Proof. By Corollary 12.15, after ®(d) time estimates of neighbors’ clock
values with error § = O(u) are available to the nodes. From this time on,
we can make use of Lemmas 8.21 and 8.25, and by Lemma 12.16 within
0(G(0)/p) additional time the global skew has stabilized to G = O(«D) =
0O(6D) = O(uD).

By Lemma 12.17, after at most O(«D/u) more time, we have for s :=
[log, (G/«)] and any {v, w} € E that

L,(t) = Ly(t) = (25 — Dk = L,(t) = Ly, (¢) — (25 = Dk dist(v, w) {o.w} e E
<P (1) def. of ¥$,
< g Lemma 12.17
=5
< k. s > log, (G/k)

By exchanging the roles of v and w, we analogously obtain that L,, () — L, (¢) —
(2s — 1)k < k. Rearranging these inequalities, we conclude

£0) = max (1200~ L)) < 206 =24 bog, .
{v,w}eE K
for sufficiently large times ¢, i.e.,

L(t)y=0 (Klog(r %) =0O(xlog, D) =O(ulog, D).

Since Algorithm 14 satisfies the bounds on clock rates at all times, this com-
pletes the proof. O

Carefully note that Theorem 12.18 does not offer any bound on the stabi-
lization time. This means that we do not get any actual guarantee, regardless
of how far in the past the most recent transient fault lies! In addition, as we
mentioned earlier, a large global skew renders implementation of Algorithm 13
impractical. Hence, a different mechanism for (re-)establishing small global
skew is needed.
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12.3.2 Self-stabilizing GCS in asymptotically optimal time

Our approach is simple: We add a simple subroutine that runs in the back-
ground, detects excessive global skew, and in this case triggers a global reset.
If no reset occurs during the stabilization process, the global skew must have
been small to begin with, and stabilization is quick. If the global skew is too
large, a reset is guaranteed to occur within O (dD) time. By making sure that
areset (i) reduces the global skew to O (uD) and (ii) leaving enough slack that
after a reset, there can be no other reset until the GCS algorithm had enough
time to stabilize, we prevent that a sequence of repeated resets interferes with
stabilization.

Our approach makes use of a breadth-first-search (BFS) tree of known depth
D < D. If G isknown at design time, we can simply hardcode this structure into
the algorithm, i.e., the FSMs of the nodes (and their circuit implementations)
are designed to take into account, e.g., which neighbor is the parent. This way,
the BFS tree is not part of the state and therefore cannot be affected by transient
faults. However, this also means that the algorithm cannot handle unknown
or changing network topology—and one of the nice properties one gets for
free from self-stabilization is that such algorithms automatically adjust if the
topology changes! We will discuss afterwards how to remove the assumption
of a pre-defined BFS tree, by employing a self-stabilizing BFS tree construction
as subroutine.

The birds eye view of the algorithm, whose pseudocode is given in Algo-
rithm 15, is as follows:

« The BEFS tree is used for regular broadcasts of the root, which on reception
allow each node to estimate their logical clock offset to the root with an error
of at most

(u+9(1+p) - Dd)D < (u+9(1 +u) - 1)d)D = O(uD),

where the last step uses the assumption that 2(¢ — 1) < u = O(u/d).

- Denote by G the target bound on the global skew after stabilization (as D is
known, because G is known, this bound can be computed; we can also use D
as a factor-2 approximation to derive an upper bound). If a node estimates a
skew of more than 2G + (u + 9(1 + u) — 1)d) D to the root, it alerts the root
(with the help of its ancestors in the tree).

- If the root is alerted of large skew, it broadcasts a reset message through the
tree, causing nodes in distane dist from the root to set their logical clocks to
(d — u) dist.
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Algorithm 15 Mechanism to reduce global skew to O(G + uD) after transient
faults, for a given target global skew G. The procedure setL({’) is specific to
Algorithm 14 and resets its variables ¢ and # to set the logical clock to ¢’. The
logical clocks are affected by the algorithm only if the global skew exceeds 2G
or a fault directly triggers a reset. The algorithm assumes a pre-defined BFS
tree of depth D to be given.
1: if root then
while true do
send (getL.()) to each child
wait for 2¢#d D local time
if received alert message from any child in this loop iteration then
call setL.(0)
send (reset) to each child
end if
wait for #d D local time
10: end while
11: end if
12: if received (¢’) from parent then
13: if £/ +d —u—getL()| > 2G + (u+ 9(1 + p) — 1)d)D then

R A A o

14: send (alert) to parent

15: else

16: send (¢’ + d — u) to each child

17: end if

18: end if

19: if not root and received (alert) from any child then
20: send (alert) to parent

21: end if

22: if received (reset) from parent then

23: call setL((d — u) dist), where dist is the distance to the root

24: send (reset) to each child

25: end if

26: procedure setL((){’) > resets variables ¢ and & of Algorithm 14
27: {1

28: h « getH()

29: end procedure

As our first step in formalizing the above intuition, we show that any stale
information still present due to transient faults is flushed out in O(dD) =
0 (dD) time.
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Lemma 12.19. [f any node executing Algorithm 15 sends a related message
or calls setL(t’) for any €’ at a time t > (20 + 3)dD, then this is a result of a
message chain initiated by a message {getL()) by the root no later than time
t— (29 +3)dD.

Proof. Suppose node v € V performs any such action at time ¢ > (2 + 3)dD.
Calling setL(¢’) at non-root nodes is triggered by receiving a reset message.
Such messages are only caused by nodes receiving them from their parent.
Tracing the respective message chain back to the root, the root must have called
setL(0) no earlier than time ¢ — dD. In particular, the root must have received
an alert message by time 7 — (2@ — 1)dD, since this is the earliest possible time
when it could have started its respective loop iteration.

Any alert message received at or after time ¢ — (21 — 1)d D can be backtracked
to some node finding that | + d — u + getL()| > 2G + (u + 9(1 + u) — 1)d)D
on reception of a message (£’) from a parent, which must have happened no
earlier than time ¢t — (29 — 2)dD.

Finally, any message (£’) can be traced back to the root sending a (getL.())
no earlier than time 7 — (2¢ — 3)dD. Since there are no other message types,
this completes the proof. O

Next, we show that the message cascade triggered by the root broadcasting a
(getL()) message results in sufficiently good estimates of clock offsets to the
root.

Lemma 12.20. If the root r of the BES tree sends a {getL()) message at time

t and % < 4 (1 +/1)d£” for some v € V during [t,t + dD], then v

dt
receives a corresponding (¢’ — d + u) message at a time t’ € [t +dist(r, v)(d —

u),t +dist(r, v)d], such that

6" = Lo(t") = (Lr (1) = Lo())] < (9(1 + p) = Dd +u)D.

Proof. There is a message chain from the root to v that causes v to receive
a message with value ¢’ —d +u = L,(t) + (dist(r,v) — 1)(d — u) at a time
t' € [t +dist(r,v)(d — u), t + dist(r, v)d]. We have that
L,(t") — L,(¢) — dist(r,v)(d —u) > H,(t") — H,(t) — dist(r,v)(d — u)
>t — 1t —dist(r,v)(d — u)
>0
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and
L,(t") — L,(t) — dist(r,v)(d — u)
< (1+p)(Hy(t') = Hy(1)) — dist(r,v)(d — u)
<O+ )@ —1) —dist(r,v)(d — u)
< (1 + p) dist(r,v)d — dist(r,v)(d — u)
=(0(1+ p) — 1)d + u) dist(r, v)
<@ +u) - 1)d+u)D.

Thus

|6 = Ly(t") = (Lr(t) = Ly(1))] = [Ly(t") = Ly (2) = dist(r,v)(d — u)]
< (O +p)-1d+u)D. O

Using the previous statements, we can show that a too large global skew will
be detected successfully, resulting in the root broadcasting a reset message.

Lemma 12.21. If
G(t) > 4G + (du+ (60 +4)(9(1 + u) - )d)D

for a time t > (20 + 3)dD, then the root r broadcasts a reset message during
[t —dD,t+ (59 +2)dD).

Proof. Assume towards a contradiction that the root does not broadcast a
reset message during [t — dD,t + (59 + 2)dD]. By Lemma 12.19, any node
v € V calling setL.({") for some ¢’ at or after time ¢ is caused by a message chain
initiated by the root. Such a message chain would, in particular, require the root
to send a reset message at most d D time earlier. Since this by assumption is not
the case, it follows that #dt) < di” < (14w dg” dllring [t,t+(59+2)dD].

Since G(t) > 4G + (4u+ (69 +4)(9(1 + u) — 1)d) D, there are v, w € V with
this skew at time . Hence, it must hold that the skew from v or w to the root
r € V is at least half as much. Assuming w.l.0.g. that this applies to v, we have
that

L, (1) = Lo(0)] = 2G + Qu + (39 +2)(9(1 + p) — )d)D. (12.7)

Within 39dD local time, r will broadcast a (getL()) message, say at time 7.
We get that

|L,(tB) = Lo(tB)| 2 |Lr(2) = Ly()] = (1 + ) = 1)(tp — 1)
>2(G+ (u+ @1 +p) - )d)D).  (12.8)

dL < (1+u)dH
dr = dt

dH,
T < v
t' <

t +dist(r, v)d

D is depth of
tree

rate bounds

(12.7)
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By Lemma 12.20, v will receive a message (¢’ — d + u) at some time ¢’ <
tp +dist(r,v)d < t + (39 + 1)dD such that

Ly (") = (€' +dist(r, v)(d — )|
>|Ly(tg) — Lr(tp)| = |Ly(t') — (€' +dist(r,v)(d —u)) = (Ly(t8) — Lr(t5))]
> |Ly(tg) = Ly (t3)| = (9(1 + ) = 1)d +u) D
>2G + (u+ (31 +p) —1)d)D

Thus, v sends an alert message to its parent, causing a chain of alert messages
that reaches the root no later than time ' + dD. At most 29dD time after
reception, by time

t'+ 29+ 1)dD <t+(59+2)dD,

the root broadcasts a reset message. O

Once a reset message is sent, we need that it results in a sufficiently small
global skew. However, this global skew will be maintained by Algorithm 14,
which relies on the estimates computed by Algorithm 13. The latter in turn
relies on bounded logical clock rates, which Algorithm 15 deliberately violates
in order to quickly remove skew from the system. To avoid this becoming a
chicken-and-egg problem, we need to also show that after correcting the global
skew, Algorithm 15 does not interfere for long enough so that Algorithm 14
can take the helm. The following lemma shows both properties.

Lemma 12.22. Ifthe root broadcasts a reset message at a timet > (29+3)dD,
then G(t +dD) < (u + (9(1 + p) — 1)d) D and no node calls setL(£’) for any
¢’ during [t +dD,t + (2G — uD)/(9(1 + u) — 1))].

Proof. By Lemma 12.19, any node calling setL.(()¢’) for any £’ at or after time
¢t must do so because of a message chain started by the root, which in particular
involves it broadcasting a reset message. Since the root sends such a message
at time ¢, it does not send such a message during [¢ —2dD, t] due to the waiting
instruction and the fact that local time advances at most at rate ©J. Hence, the
triggered messages (and the reset of the root r itself) cause each v € V to call
setL((d — u) dist(v,r)) at a time #, € [t + (d — u) dist(v,r),t + d dist(v,r)].
Moreover, the root sends no other messages during [¢, ¢ +dD] due to a waiting
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instruction. Therefore, for any v, w € V, we get that

L,(t+dD) - L,(t+dD)
=Ly(1,) + (Ly(t + dD) = Ly(1,)) = (Luy(tw) + Ly (1 + dD) = Ly (1))
< Ly(ty) = L (tw) + (1 + @) (Hy (1 + dD) = Hy(1,))
— (Hy(t +dD) — Hy(ty))
<Ly(ty) = Ly(ty) +9(1 +u)(t+dD —t,) — (t +dD —t,)
< L,(t,) = Ly(ty) + (1 + u)(dD — (d — u) dist(v, 7)) — (dD — d dist(w, r))
= (dist(v, r) — dist(w, r))(d — u)
+9(1 +u)(dD - (d — u) dist(v, 7)) — (dD — d dist(w, r))
=(9(1 + p) — 1)dD + u dist(w, r)
<(u+ (1 +u)-1)d)D.

As this holds for any v, w € V, this establishes the desired bound on G (¢ + df)).

It remains to show that no node calls setL.(¢’) for any ¢’ during [t + dD,t +
2G/[(u+ (9(1+pu) —1)d)]. By Lemma 12.19, this must be caused by message
chain triggered by a (getL()) message of the root after time t — 2dD. Due
to the waiting instructions, this entails that this message was sent after time
t+dD. Let 7 be the infimal time larger than ¢ + dD when the root sends a
reset message. Since no node calls setL() during [t + dD, 7], we need to show
that 7 > t +2G/(u + (9(1 + u) — 1)d). Moreover, note that dg” < d;‘t” <
(1+ y)% for all v € V during this time interval. Therefore, we can apply
Lemma 12.20 to see that if the root r sends an (getl.()) message at any time
t, € [t+dD,t+2G/(u+(9(1+u)—1)d)], any caused reception of an (£’ —d+u)
message at a time ¢’ by node v € V satisfies that

1 = Lo (1) < |Ly(tr) = Lo (1) + (u + (§(1 + ) = 1)d) D.

Thus, it is sufficient to bound G(t,) < 2G for all t, € [t +dD,t +2G/(u +
(3(1 + u) — 1)d)], as then

|6/ = Ly(t")] < G(tr) + ($(1 + ) = 1)d) D
<2G + (u+ (91 +p) — 1)d)D,

no alert message is triggered, and accordingly no reset message is sent by the
root. Since due to the rate bounds we have that

G(t,) < Gt +dD) + (B(1 + ) - 1)(t, — (1 +dD)),

forany time ¢, < f, we conclude thatindeed? > t+(2G—uD) /(9 (1+u)-1). O

adding 0
dH 1L
(L+ ) g

<

dH
1< 4f

<9

bounds on t,, ty,

dist(w, r) <
D <D
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As our final ingredient, we observe that if the global skew remains sufficiently
small, then Algorithm 15 does not interfere with the operation of Algorithm 14,
i.e., does not reset the logical clocks.

Corollary 12.23. If for times tg > (209 + 3)dD and t| > to we have that
G(t) < 2G forallt € [ty,11], then no node calls setL({’) for any ' during
[to + (29 +3)dD, 11].

Proof. Analogously to the proof of Lemma 12.22, we get that no resets are
triggered due to the root broadcasting (getl.()) messages during [fg, #1]. Thus,
by Lemma 12.19, no resets are triggered. O

Putting the above pieces together, we arrive at a variant of Algorithm 14
that stabilizes in time O(dD). Note that this stabilization time is trivially
asymptotically optimal, as it might Q(dD) for distant nodes in the network to
affect each other.

Theorem 12.24. Suppose that

« Algorithm 6 with T = d is used to compute clock estimates,
¢« 2(0-1) < u=0(u/d),

e« k=0, where ¢ is as in Lemma 8.31, and

« Algorithm 15 is run with a sufficiently large value for G = O (uD).

With this modification, Algorithm 14 is a self-stabilizing solution to the task of
guaranteeing that

. dgv (1) < %(r) <(1+p) dg” () for all nodes v and times t,
« G=0(uD), and

« L=0(ulog, D), where o = pt/ (¢ - 1).

It has a stabilization time of O(dD).

Proof. Let C be a sufficiently large constant C and set G = CuD for Algo-
rithm 15.

We distinguish two cases. The first is that there is a time t € [(29 +
4)dD,CdD] when G(t) > 4G + (4u + (69 + 4)(9(1 + u) — 1)d)D. By
Lemma 12.21, the root broadcasts a reset message at some time t’ € [f —
dD,t + (59 +2)dD]. Tt follows that

G(t'+dD) < (u+ (9(1 +p) — 1)d)D
= 0(uD).
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Moreover, Lemma 12.21 guarantees that no calls to setL.() occur after time
'+ dD for at least

2G —uD _o (2G —uD)d
(ﬁ(lw)—l)'( u )
:Q(Q_d)

u

time. Because G = CuD for a sufficiently large constant C, this time period is at
least C'dD for a sufficiently large constant C’. By Corollary 12.15, after O(d)
additional time, say from time ¢ on, Algorithm 13 provides suitable estimates
of neighbors’ clock values to nodes, and we may apply Lemma 12.16 to show
that the global skew remains bounded by O (kD) = O(6§D) = O(uD)—at least
until some node calls setl() again.

Now let 7 be the infimal time larger than # that (i) the global skew exceeds
O(uD) or (ii) a node calls setL(). Because G = CuD is sufficiently large,
Corollary 12.23 shows that no node calls setL() at time 7. However, in absence
of such a reset Lemma 12.16 guarantees a global skew of O(uD). Therefore,
f = oo, i.e., no resets occur after time ¢ and the global skew remains bounded
by O(uD).

Without calls to setL(), Algorithm 15 does not affect the execution of Algo-
rithms 13 and 14, and Theorem 12.18 can be applied to prove that the remaining
properties are satisfied, too. Because

t=t+(59+2)dD +0(d) = CdD + 0(dD) = 0(dD),
the stabilization time is indeed O (dD). O

Handling unknown network topology

Algorithm 15 assumes that each node knows its parent and its distance to the
root in a BFS tree, and that all nodes know the depth of this tree. This will
not do if the network topology is not fixed at design time. Fortunately, we can
overcome this obstacle by another building block, which can be run without
relying on synchronization: a self-stabilizing BFS tree construction algorithm.
Our synchronization algorithm then simply uses the output variables of this
algorithm to determine parents, distance to the root, and depth of the tree.
While transient faults might mess with these variables, too, we can make sure
that the tree construction algorithm stabilizes in O(dD) time, after which the
analysis of the synchronization algorithm kicks in.

E12.13Assume that a node » € V has been pre-selected. Provide a self-stabilizing
algorithm that lets each node determine (i) its parent and (ii) its distance to the root
in a BFS tree rooted at r. (Hint: Let nodes broadcast their state to all neighbors

200-1) <p=
O(u/d)

G > uD
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every O(d) time. Let nodes update their state whenever an inconsistency is
observed, e.g., the current parent claims a different distance to the root than the
own minus 1 or another neighbor claims to be closer to the root than the current
parent.)

E12.14Augment your algorithm such that nodes learn about the depth of the tree. (Hint:
Reverse the distance game: Let leafs assign themselves value 0 and other nodes
the maximum of their children plus 1. Then copy the value of the root to
everyone.)

E12.1Modify your algorithm to handle the case that no root is pre-determined, but all
nodes have (hardcoded) distinct identifiers from a known range. (Hint: Let the
smallest identifier win!)




