
13 Self-Stabilizing Lynch-Welch Algorithm

Chapter Contents
13.1 Overview 169
13.2 First Attempt: Reset on Heartbeats 170
13.3 Second Attempt: Adding Feedback 171
13.4 Third Attempt: Reset on Unexpected Heart-

beats Only 172
13.5 Analysis of The Self-Stabilizing Lynch-Welch

Algorithm 176

13.1 Overview

In previous chapters we considered having a bound on the ratio of faulty nodes
(𝑛 > 3 𝑓). In Chapter 12 we extended our fault model, so far comprising
only permanently damaged (Byzantine) nodes, to include transient faults. We
studied two algorithms: one self-stabilizing, but unable to withstand a single
permanent fault; the other resilient to 𝑓 < 𝑛/3 Byzantine faults (whether
transient or not), but unable to recover if there are ever more than 𝑓 faults at
the same time. So, is it possible to recover after facing more than 𝑓 concurrent
faults?

Overcoming such a case, and allowing for having up to 𝑓 permanent faults,
requires a different approach. In the current chapter, we present such an
approach, albeit with a caveat: we assume that there is an underlying algorithm
that eventually enables us to obtain some synchronization among the correct
nodes. In later chapters, we will present algorithms providing such rough
synchronization without additional assumptions. Given such an underlying
algorithm, we present Algorithm 17, which converges from an arbitrary initial
state—the result of transient faults—to a globally consistent state, despite any
𝑓 < 𝑛/3 nodes remaining faulty or failing again.

170 Chapter 13 Self-Stabilizing Lynch-Welch Algorithm

Recall that the Lynch-Welch algorithm achieves asymptotically optimal skew,
tolerates the maximum possible number of d𝑛/3e − 1 Byzantine faults, and
is straightforward to implement. As the algorithm we construct is going to
be a variant of the Lynch-Welch algorithm from Chapter 10, we would add
self-stabilization to this list, resulting in an extremely robust synchronization
primitive!

Alas, we will not get self-stabilization largely “for free,” as with the GCS
algorithm. The Lynch-Welch algorithm relies on some initial degree of syn-
chronization to maintain the abstraction of rounds it uses. It is simulating
synchronous execution, but self-stabilization requires that we can deal with a
complete (initial) lack of synchrony! It turns out that this is an incredibly hard
problem, and we will take one step at a time. Our first step is to reduce the task
to finding an (efficient) self-stabilizing solution to pulse synchronization with
a much weaker bound on the skew, which we perform in this chapter.

The execution suffixes meeting our task specification for the Lynch-Welch
algorithm (Algorithm 11) are easily identified: There should be a time 𝑡 from
which on the algorithm behaves just like expected, i.e., as if it was initialized
at this time and thus exhibits the skew and period bounds from Theorem 10.9.
We will address the challenge to reliably achieve this behavior in stages, which
showcase the tools we use to achieve the end result presented in Algorithm 17.

13.2 First Attempt: Reset on Heartbeats

In the following, we assume that we already have an underlying self-stabilizing
pulse synchronization algorithm with skew 𝜎ℎ in place (such an algorithm is
presented later in the book) Thus, as we assume, there is some time 𝑡 when it
stabilized from which on the correct nodes generate pulses ℎ𝑣,𝑖 , 𝑣 ∈ 𝑉𝑔, 𝑖 ∈ N,
satisfying that max𝑖∈N,𝑣,𝑤∈𝑉𝑔 {|ℎ𝑣,𝑖 − ℎ𝑤,𝑖 |} ≤ 𝜎ℎ . Moreover, we have lower
and upper bounds on the time between pulses. Observe that the index 𝑖 ∈ N
is counted after time 𝑡 as a notational reference. Nodes are not aware of the
specific index and will not exchange such an index. We will refer to these
pulses as heartbeats, or simply beats. They are supposed to be fairly slow
in comparison to the pulses of the (modified) Lynch-Welch algorithm. From
here on, when we refer to pulses, we will refer to those of the Lynch-Welch
algorithm only.

There is a single hurdle keeping the Lynch-Welch algorithm from being self-
stabilizing: the need for a (known) bound on the initial deviation between
correct nodes’ local times. Recall that the bound is being used explicitly in
Algorithm 11. The heartbeats provide exactly that—they are at most 𝜎ℎ apart
from each other. So we could simply reset the Lynch-Welch algorithm on every

13.3 Second Attempt: Adding Feedback 171

heartbeat, setting S B 𝜎ℎ for the initialization of the algorithm. This is going
to work splendidly, as we will not even have to change the analysis—until the
next beat comes along and messes things up.

E13.1 Spend a few moments to think about the issues that could be caused by the
interference of (unsynchronized!) heartbeats.

As the beats are not as well-synchronized as the Lynch-Welch pulses (other-
wise we would not go through all this trouble), the reset will destroy the better
synchronization guarantee again. Even worse, it may interrupt the Lynch-Welch
algorithm generating a pulse!

Remark 13.1. Actually, one needs to be slightly more careful when resetting,
in that any messages sent by a node just before it is reset by its beat should
not be confused with his “round 1”-message following the reset. This is easily
addressed by offsetting the first round by 𝜗𝑑 local time compared to ℎ𝑣,𝑖 , or
by using the last message received during the time window in which receivers
listen for messages from other nodes.

13.3 Second Attempt: Adding Feedback

The naive solution does not work, because heartbeats may arrive at inconvenient
times. However, the “first” beat (in our analysis) establishes a timing relation
between the Lynch-Welch instance and the instance of the self-stabilizing pulse
synchronization algorithm generating the beats. If we add the additional re-
quirement that the pulse synchronization algorithm generating the heartbeats
accepts some external input that can shift the time when the next beat occurs
(within certain bounds), we could align them with the pulses generated by the
Lynch-Welch instance.

More specifically, after a (suitably chosen) fixed number of Lynch-Welch
pulses, nodes will issue a NEXT signal to their local instance of the pulse
algorithm generating the heartbeats. Thus, the beat generation mechanism
needs only be “responsive” to the NEXT signal within a specific time window
in relation to the previous beat. Under some mild conditions on 𝜗, this will
turn out to be a fairly harmless constraint. We use this to trigger the next
beat, aligned up to O(𝜎ℎ + S) time with when the nodes issue the NEXT
signals (where S is the skew of the Lynch-Welch algorithm). This can be kept
within a single round of the Lynch-Welch algorithm (without affecting more
than constants), as both 𝜎ℎ ∈ O(𝑑) and S ∈ O(𝑑), and the round duration of
the Lynch-Welch algorithm 𝑇 ∈ Ω(𝑑) anyway.

172 Chapter 13 Self-Stabilizing Lynch-Welch Algorithm

E13.2 Spend a few moments to think about whether there any issues remain for the
revised approach.

Is this good enough? Not yet, as resets may cause large skew every time —
unless, in addition, we require that well-synchronized NEXT signals result in an
equally well-synchronized heartbeat. Instead of adding even more constraints
on the self-stabilizing algorithm (not knowing whether they can be satisfied),
we use a different approach.

13.4 Third Attempt: Reset on Unexpected Heartbeats Only

The final adjustment is to not perform a reset when a beat arrives on schedule,
i.e., within a time window of size O(𝜎ℎ + S) around the point when it would
occur in a world of perfect synchrony. The size of this window is chosen
such that once the heartbeat generation has stabilized, after the first “proper”
heartbeat, no resets are triggered at correct nodes any more. Yet, the reset
mechanism still guarantees that a heartbeat will enforce synchronization up to
a skew of O(𝜎ℎ + S): either a node is not reset, defining an O(𝜎ℎ + S)-sized
window in which the iteration of the Lynch-Welch algorithm’s loop is started,
or it is, aligning the timing of the node with this window.

It remains to formalize this approach and prove it correct. W.l.o.g., we assume
in the following that the heartbeats stabilized by time 0, and start to reason from
there. (Note, however, that there still might be arbitrary messages in transit at
time 0!). Let us first specify our expectations on the feedback mechanism.

Definition 13.2 (Feedback Mechanism). Nodes 𝑣 ∈ 𝑉𝑔 generate beats at times
ℎ𝑣,𝑖 ∈ R, 𝑖 ∈ N, such that for parameters 0 < 𝐵1 < 𝐵2 < 𝐵3 ∈ R and 𝜎ℎ (a
skew bound) the following properties hold, for all 𝑖 ∈ N.
1. For all 𝑣, 𝑤 ∈ 𝑉𝑔, we have that |ℎ𝑣,𝑖 − ℎ𝑤,𝑖 | ≤ 𝜎ℎ .
2. If no 𝑣 ∈ 𝑉𝑔 triggers its NEXT signal during [min𝑤∈𝑉𝑔 {ℎ𝑤,𝑖} + 𝐵1, 𝑡] for

some 𝑡 < min𝑤∈𝑉𝑔 {ℎ𝑤,𝑖} + 𝐵3, then min𝑤∈𝑉𝑔 {ℎ𝑤,𝑖+1} > 𝑡.
3. If all 𝑣 ∈ 𝑉𝑔 trigger their NEXT signals during [min𝑤∈𝑉𝑔 {ℎ𝑤,𝑖} + 𝐵2, 𝑡]

for some 𝑡 ≤ min𝑤∈𝑉𝑔 {ℎ𝑤,𝑖} + 𝐵3, then max𝑤∈𝑉𝑔 {ℎ𝑤,𝑖+1} ≤ 𝑡 + 𝜎ℎ .
𝐵1, 𝐵2, and 𝐵3 and the skew bound 𝜎ℎ cannot be chosen arbitrarily for our

approach to work. We will determine sufficient constraints from the analysis.
In order to describe the algorithm, we assume that each node is running an

instance of the Lynch-Welch Algorithm, the beat generation algorithm, and
some additional high-level control we present now. We restate the (loop of the)
Lynch-Welch Algorithm 11 in Algorithm 16.

13.4 Third Attempt: Reset on Unexpected Heartbeats Only 173

Algorithm 16 The loop of Algorithm 11, which is run alongside the local
instances of the beat generation algorithm and Algorithm 17. Note that Algo-
rithm 17 may reset the loop for stabilization purposes.

1: while true do
2: generate pulse // assume that 𝑟 ∈ N is the pulse index
3: ℎ← getH()
4: wait until getH() = ℎ + 𝜗S // all nodes are in round 𝑟
5: broadcast empty message to all nodes (including self)
6: wait until getH() = ℎ + (𝜗2 + 𝜗)S + 𝜗𝑑

// denote this time by 𝜏𝑣,𝑟
// correct nodes’ messages should have arrived

7: for each node 𝑤 ∈ 𝑉 do
8: compute Δ(𝑤) ∈ [𝑝𝑤,𝑟 − 𝑝𝑣,𝑟 , 𝑝𝑤,𝑟 − 𝑝𝑣,𝑟 + 𝛿]

// denote 𝑝𝑟 B max𝑤∈𝑉𝑔 {𝑝𝑤,𝑟 }
9: end for

10: 𝑈 ← {Δ(𝑤) | 𝑤 ∈ 𝑉} (as multiset, i.e., values may repeat)
11: Δ← (

𝑈 (𝑓 +1) +𝑈 (𝑛− 𝑓)) /2
12: wait until getH() = ℎ + Δ + 𝑇
13: end while

E13.3 Take a look at Algorithm 16. Why is it ok that we removed the first line of
Algorithm 11?

E13.4 Can we do the same in Algorithm 12 from Chapter 12?

The high-level control may (re-)initialize the instance of Algorithm 16, which
is described in the subroutine reset(𝜏) it may call. It has a few parameters:

𝑀: The pulses of Algorithm 16 are counted modulo 𝑀 . Every 𝑀 pulses, a
heartbeat is expected, which is checked by Algorithm 17.

𝑅−: If a beat arrives at time 𝑡 and the pulse number is 0 mod 𝑀 , it should take
at least 𝑅− local time before the node generates the next pulse. Instead of
trying to compute upfront when Algorithm 16 would generate a pulse, we
simply “catch” the event and perform a reset if the pulse would be generated
too early.

𝑅+: This is the matching upper bound, i.e., under the same conditions, it should
take at most 𝑅+ local time before the node generates the next pulse.

174 Chapter 13 Self-Stabilizing Lynch-Welch Algorithm

Algorithm 17 Interface algorithm, actions for node 𝑣 ∈ 𝑉𝑔 in response to a
local event at time 𝑡. Runs in parallel to local instances of the beat generation
algorithm and Algorithm 16.

1: ⊲ The algorithm maintains local variable 𝑖 ∈ [𝑀]
2: if 𝑣 generates a pulse at time 𝑡 then
3: 𝑖 := 𝑖 + 1 mod 𝑀
4: if 𝑖 = 0 then
5: wait until local time 𝐻𝑣 (𝑡) + 𝜗S(𝑀)
6: trigger next signal
7: end if
8: end if
9: if 𝑣 generates a beat at time 𝑡 then

10: if 𝑖 ≠ 0 then
⊲ beats should align with every 𝑀 𝑡ℎ pulse, hence reset

11: reset(𝑅+)
12: else if Algorithm 16 requires generating a pulse before 𝐻𝑣 (𝑡) +𝑅− then
13: ⊲ reset at pulse time 𝑡 ′ to avoid early pulse or message
14: reset(𝑅+ − (𝐻𝑣 (𝑡 ′) − 𝐻𝑣 (𝑡))), where 𝑡 ′ is the current time
15: else if next pulse is not generated by local time 𝐻𝑣 (𝑡) + 𝑅+ then
16: ⊲ reset to avoid late pulse and
17: ⊲ start listening for other nodes’ pulses on time
18: reset(0)
19: end if
20: end if
21: Function(reset(𝜏))
22: stop local instance of Algorithm 16
23: wait for 𝜏 local time
24: 𝑖 := 0
25: initialize a new local instance of Algorithm 16

S(𝑟): This denotes the skew bound guaranteed by Algorithm 16 for pulse 1 <

𝑟 ∈ {1, . . . , 𝑀}, provided the algorithm is initialized with skew S(1) := S.
Algorithm 17 needs to make use of S(1) and S(𝑀) only.

Algorithm 17 triggers the NEXT signal 𝜗S(𝑀) local time after generating a
beat (i.e., at the earliest time when certainly all nodes have generated the beat),
and checks whether pulse 1 modulo 𝑀 occurs between 𝑅− and 𝑅+ local time
after the beat (which necessitates that the beat occurs after pulse 0 modulo 𝑀).
If this is not the case, the algorithm generates a pulse and restarts the loop of
Algorithm 16 exactly 𝑅+ local time after the beat was generated. Moreover, it

13.4 Third Attempt: Reset on Unexpected Heartbeats Only 175

Figure 13.1
Interaction of the beat generation and Algorithm 16 in the stabilization process, con-
trolled by Algorithm 17. Beat ®ℎ1 forces pulse ®𝑝1 to be roughly synchronized. The
approximate agreement steps then result in tightly synchronized pulses. By the time
the nodes trigger beat ®ℎ2 by providing NEXT signals based on ®𝑝𝑀 , synchronization is
tight enough to guarantee that the beat results in no resets.

ensures that no other pulse is generated between the beat and then. Figure 13.1
illustrates how the control algorithm ensures stabilization.

This properly “initializes” Algorithm 16 with skew S B S(1) B 𝑅+ + 𝜎ℎ −
𝑅−/𝜗, which then ensures that the skew has been reduced to S(𝑀) by the time
the next beat is due. By choosing all parameters right, we ensure that the 𝑀 𝑡ℎ

pulse (after stabilization) falls in the time window provided by Definition 13.2
for making use of the NEXT signals, which then triggers the next beat such
that no 𝑣 ∈ 𝑉𝑔 performs another abrupt reset. From there, inductive reasoning
shows that no 𝑣 ∈ 𝑉𝑔 ever performs an abrupt reset again (so as long as there
are no more transient faults), and the analysis of Algorithm 11 from Chapter 10
yields a bound on the skew achieved. Figure 13.2 illustrates how the nodes
locally check whether they should perform a reset or not.

176 Chapter 13 Self-Stabilizing Lynch-Welch Algorithm

NEXT

#S(M)

pulse 0 mod M

R�

R+

beat

Figure 13.2
After 𝑀 pulses a node 𝑣 waits for S(𝑀) local time and then generates the NEXT signal.
After stabilization, the next heartbeat occurs shortly after. If the next pulse (which is
going to be generated by the Lynch-Welch algorithm), with number 𝑖 = 1, is not going
to be generated at least 𝑅− and at most 𝑅+ local time after the heartbeat (i.e., within the
green box), the node resets the Lynch-Welch algorithm, restarting its loop 𝑅+ local time
after the beat.

13.5 Analysis of The Self-Stabilizing Lynch-Welch Algorithm

In the following, we assume that in Algorithm 16, estimates are computed
according to Lemma 10.8 (yielding 𝛿 = 𝑢 + (𝜗 − 1)𝑑 + (𝜗2 + 𝜗 − 2)S),
7 − 6𝜗2 > 0, and set 𝑇 = (𝜗2 + 𝜗 + 1)S + 𝜗𝑑. Under certain constraints,
we then can show analogously to Theorem 10.9 that all pulses will have skew
at most S. However, we will in fact use that with each pulse, we get a stronger
bound on the skew, i.e., S = S(1) ≥ S(2) ≥ . . . ≥ S(𝑀), which follows from
a minor adjustment to the analysis, see Corollary 13.4.

For the outlined approach to work, in addition to the above, the following
constraints need to be satisfied; note that we will not mention explicitly using
the first inequality, but it is certainly necessary for the algorithm to operate as

13.5 Analysis of The Self-Stabilizing Lynch-Welch Algorithm 177

intended.

𝑅+ ≥ 𝑅− (13.1)
S = 𝑅+ + 𝜎ℎ − 𝑅−/𝜗 (13.2)

S ≥ 2(2𝜗 − 1)𝛿 + 2(𝜗 − 1)𝑇
2 − 𝜗 (13.3)

𝑅−

𝜗
≥ 𝜎ℎ + 𝜗S + 𝑑 (13.4)

𝐵2
𝜗
> 𝜎ℎ + 𝑅+ + 𝑇 + 3S (13.5)

𝐵1 > 𝜎ℎ + 𝑅+ (13.6)
𝐵3 > 𝑅

+ + (𝑀 − 1) (𝑇 + 3S) + (𝜗 + 1)S(𝑀) + 𝜎ℎ (13.7)

𝐵2 ≤ 𝑅−

𝜗
+ (𝑀 − 1)

(
𝑇 − (𝜗 + 1)S

𝜗

)
+ S(𝑀) (13.8)

𝑅+

𝜗
≥ (𝜗 + 1)S(𝑀) + 𝜎ℎ (13.9)

S(𝑀) < 𝜗S − 𝜎ℎ

𝜗 + 1
(13.10)

We will worry about satisfying all of these constraints later. For now, we
assume that they hold; what follows is conditional on this assumption.

We first establish that the first beat guarantees to “initialize” the synchroniza-
tion algorithm such that it will run correctly from this point on (neglecting for
the moment the possible intervention by further beats). We use this do define
the “first” pulse times 𝑝𝑣,1, 𝑣 ∈ 𝑉𝑔, as well; we enumerate consecutive pulses
accordingly.

Lemma 13.3. Let ℎ := min𝑣∈𝑉𝑔 {ℎ𝑣,1}. We have that
1. Each 𝑣 ∈ 𝑉𝑔 generates a pulse at a unique time 𝑝𝑣,1 ∈ [ℎ + 𝑅−/𝜗, ℎ +𝜎ℎ +

𝑅+].
2. ‖ ®𝑝(1)‖ ≤ S.
3. At time 𝑝𝑣,1, 𝑣 ∈ 𝑉𝑔 sets 𝑖 := 1.
4. At the time min𝑣∈𝑉𝑔 {𝑝𝑣,1}, no message (of Algorithm 16) sent by node

𝑣 ∈ 𝑉𝑔 before time 𝑝𝑣,1 is in transit any more.

Proof. Assume for the moment that min𝑣∈𝑉𝑔 {ℎ𝑣,2} is sufficiently large, i.e., no
second beat will occur at any correct node for the times relevant to the proof of
the lemma; we will verify this at the end of the proof.

From the pseudocode given in Algorithm 17, it is straightforward to verify
that 𝑣 ∈ 𝑉𝑔 generates a pulse at a local time from [𝐻𝑣 (ℎ𝑣,1)+𝑅−, 𝐻𝑣 (ℎ𝑣,1)+𝑅+],
and does not generate a pulse at a local time from [𝐻𝑣 (ℎ𝑣,1), 𝐻𝑣 (ℎ𝑣,1) + 𝑅−).

178 Chapter 13 Self-Stabilizing Lynch-Welch Algorithm

Denote by 𝑝𝑣,1 the time when 𝑣 ∈ 𝑉𝑔 generates its first pulse after time ℎ𝑣,1.
Following Algorithm 16, no 𝑣 ∈ 𝑉𝑔 will send a message or generate another
pulse during (𝑝𝑣,1, 𝑝𝑣,1 + S), where

𝑝𝑣,1 + S ≥ ℎ𝑣,1 + 𝑅−/𝜗 + S
= ℎ + 𝜎ℎ + 𝑅+. (13.2)

Because ℎ𝑣,1 ∈ [ℎ, ℎ + 𝜎ℎ] for all 𝑣 ∈ 𝑉𝑔 by Definition 13.2, this implies that
for each 𝑣 ∈ 𝑉𝑔, 𝑝𝑣,1 ∈ [ℎ + 𝑅−/𝜗, ℎ +𝜎ℎ + 𝑅+] and 𝑝𝑣,1 is indeed unique. The
second claim is now immediate from Definition 13.2 and Equation (13.2).

Concerning the third claim, observe that if at time ℎ𝑣,1 it held that the 𝑖-
variable of 𝑣 ∈ 𝑉𝑔 was not 0, it was set to 0. Thus, when 𝑣 generates its next
pulse at time 𝑝𝑣,1, it is increased to 1. Concerning the final claim, we have
established that 𝑣 ∈ 𝑉 generates no pulse during [ℎ + 𝜎ℎ , ℎ + 𝑅−/𝜗); thus, it
sends no message during [ℎ + 𝜎ℎ + 𝜗S, ℎ + 𝑅−/𝜗) (cf. Algorithm 16), and
Inequality (13.4) ensures that no message of 𝑣 ∈ 𝑉𝑔 sent before time ℎ𝑣,1 is in
transit any more at time 𝑝𝑤,1 for any 𝑤 ∈ 𝑉𝑔.

It remains to show that indeed min𝑣∈𝑉𝑔 {ℎ𝑣,2} is sufficiently large to not
interfere with the above reasoning. Clearly, this is the case if round 1 ends at
all nodes before this time. Let 𝐻 be the infimum8 of times 𝑡 such that some
𝑣 ∈ 𝑉𝑔 executes reset at a time 𝑡 > 𝑝𝑣,1. Clearly, 𝐻 ≥ min𝑣∈𝑉𝑔 {ℎ𝑣,2}.

By Definition 13.2 and Inequality (13.5) (and 𝜗 > 1), we can conclude that
𝐻 ≥ ℎ + 𝐵2 ≥ ℎ + 𝜎ℎ + 𝑅+ + 𝑇 + 3S. All parts of the statements of this
lemma that refer to times smaller than 𝐻 hold. As 𝐻 > ℎ + 𝜎ℎ + 𝑅+, this
implies that Algorithm 16 behaves exactly as if it was initialized with skew S
at time ℎ + 𝑅−/𝜗. We can thus apply all results from Chapter 10 (for times
𝑡 < 𝐻) accordingly. In particular, we get the same results as in Theorem 10.9
(as Inequality (13.3) and our choice of 𝑇 and 𝛿 make sure that we can apply all
lemmas), yielding that

max
𝑣∈𝑉𝑔

{𝑝𝑣,2} ≤ min
𝑣∈𝑉𝑔

{𝑝𝑣,1} + 𝑃max

≤ ℎ + 𝜎ℎ + 𝑅+ + 𝑇 + 3S
< 𝐻. �

Lemma 13.3 serves as induction anchor for the argument showing that all
rounds of the algorithm are executed correctly. Let 𝐻 be defined as in the

8 This means “smallest upper bound,” which is defined also if there is no minimum. In particular,
we will see that 𝐻 = ∞, as no such time exists.

13.5 Analysis of The Self-Stabilizing Lynch-Welch Algorithm 179

previous proof. From the results in Chapter 10, we can bound S(𝑟) for rounds
𝑟 ∈ N that are complete before time 𝐻, by tightening one inequality in the proof
of Lemma 10.7.

Corollary 13.4. Suppose for 𝑟 ∈ N that max𝑣∈𝑉𝑔 {𝑝𝑣,𝑟 } < 𝐻. Then

‖ ®𝑝𝑟 ‖ ≤ S(𝑟)

B
S

2𝑟−1 +
(
2 − 1

2𝑟−2

) (
𝛿 +

(
1 − 1

𝜗

)
(𝑇 + S + 𝛿)

)

=
S

2𝑟−1 + O(𝑢 + (𝜗 − 1) (S + 𝑑)).

Moreover, the generated pulses satisfy 𝑃min ≥ (𝑇 − (𝜗 + 1)S)/𝜗 and 𝑃max ≤
𝑇 + 3S.

Proof. Since for each 𝑟 ∈ N>0 with 𝜆 = 1/2𝑟−1 ∈ (0, 1) we have that

𝜗S ≥ 2(2𝜗 − 1)𝛿 + 2(𝜗 − 1) (𝑇 + S)(13.2)

⇔S ≥ 2𝛿 + 2
(
1 − 1

𝜗

)
(𝑇 + S + 𝛿)

⇔S ≥ 𝜆S + (1 − 𝜆)2
(
𝛿 +

(
1 − 1

𝜗

)
(𝑇 + S + 𝛿)

)
= S(𝑟),convex

combination

we have that S ≥ S(𝑟) for each 𝑟. We reason analogously as in Chapter 10 for
obtaining Theorem 10.9, but in Lemma 10.7 we do not bound ‖ ®𝑝𝑟 ‖/2 by S/2
when bounding ‖ ®𝑝𝑟+1‖, but rather by S(𝑟)/2; since this bound is stronger the
induction is otherwise unaffected. In the induction step, inserting the stronger
induction hypothesis yields

‖ ®𝑝𝑟+1‖ ≤ S(𝑟)2
+ 𝛿 +

(
1 − 1

𝜗

)
(𝑇 + S + 𝛿)

=
S

2 · 2𝑟−1 +
(
2 − 1

2 · 2𝑟−2

) (
𝛿 +

(
1 − 1

𝜗

)
(𝑇 + S + 𝛿)

)
= S(𝑟 + 1),

i.e., the stronger bound indeed holds. Since 𝛿 = 𝑂 (𝑢 + (𝜗 − 1) (𝑑 + S)) and
𝑇 = 𝑂 (S + 𝑑), it follows that ‖ ®𝑝𝑟 ‖ = S/2𝑟−1 + O(𝑢 + (𝜗 − 1) (S + 𝑑)) for all
𝑟 ∈ N>0. �

In other words, all we need to show is that 𝐻 = ∞, i.e., no further resets
occur after the first beat. In fact, it suffices to show this for the second beat,
as this constitutes the necessary induction step. To this end, we first show
that the NEXT signals occur within the “window of opportunity” provided by
Definition 13.2.

180 Chapter 13 Self-Stabilizing Lynch-Welch Algorithm

Lemma 13.5. For all 𝑣 ∈ 𝑉𝑔, it holds that ℎ𝑣,2 ∈ (𝑝𝑣,𝑀 + S(𝑀), 𝑝𝑣,𝑀 + (𝜗 +
1)S(𝑀) + 𝜎ℎ]. In particular, no node calls the reset subroutine due to its
second beat.

Proof. Checking Algorithm 17 (and noting that by Lemma 13.3 we have that
𝑖 is set to 1 at time 𝑝𝑣,1), we see that after time 𝑝𝑣,1, 𝑣 ∈ 𝑉𝑔 will not lo-
cally trigger a NEXT signal before either time 𝑝𝑣,𝑀 + S(𝑀) or 𝐻. De-
note 𝑝 B min𝑣∈𝑉𝑔 {𝑝𝑣,𝑀 }. As Lemma 13.3 and Inequality (13.6) show that
max𝑣∈𝑉𝑔 {𝑝𝑣,1} ≤ ℎ + 𝜎ℎ + 𝑅+ ≤ ℎ + 𝐵1, no NEXT signal is triggered during
[ℎ + 𝐵1,min{𝑝 + S(𝑀), 𝐻}]. However, by Definition 13.2, in absence of any
NEXT signal, ℎ′ B min𝑣∈𝑉𝑔 {ℎ𝑣,2} satisfies ℎ′ ≥ ℎ + 𝐵3, implying that no
NEXT signal is triggered during [ℎ + 𝐵1,min{𝑝 + S(𝑀), ℎ + 𝐵3}]. By Defi-
nition 13.2, this entails that 𝐻 ≥ ℎ′ ≥ min{𝑝 + S(𝑀), ℎ + 𝐵3}, where equality
can hold only if ℎ′ = ℎ + 𝐵3.

Next, we show that ℎ′ < ℎ + 𝐵3. Assuming the contrary, we have that
𝐻 ≥ ℎ′ ≥ ℎ + 𝐵3, and get from Lemma 13.3 and Corollary 13.4 that

𝑝 + (𝜗 + 1)S(𝑀) + 𝜎ℎ

≤min
{
max
𝑣∈𝑉𝑔

{𝑝𝑣,1} + (𝑀 − 1) (𝑇 + 3S) + (𝜗 + 1)S(𝑀) + 𝜎ℎ , 𝐻

}
≤min

{
ℎ + 𝜎ℎ + 𝑅+ + (𝑀 − 1) (𝑇 + 3S) + (𝜗 + 1)S(𝑀) + 𝜎ℎ , ℎ + 𝐵3

}
< ℎ + 𝐵3 ,

where the last step uses Inequality (13.7). Thus, as 𝐻 is larger than this
time, each 𝑣 ∈ 𝑉𝑔 triggers its NEXT signal before time ℎ + 𝐵3 − 𝜎ℎ , because
the corollary also shows that max𝑣∈𝑉𝑔 {𝑝𝑣,𝑀 } ≤ 𝑝 +S(𝑀), and nodes wait for
𝜗S(𝑀) local time before triggering the signal. On the other hand, Lemma 13.3,
Corollary 13.4, and Inequality (13.8) show that

𝑝 + S(𝑀) ≥ min
𝑣∈𝑉𝑔

{𝑝𝑣,1} + (𝑀 − 1)𝑇 − (𝜗 + 1)S
𝜗

+ S(𝑀)

≥ ℎ + 𝑅
−

𝜗
+ (𝑀 − 1)𝑇 − (𝜗 + 1)S

𝜗
+ S(𝑀)

≥ ℎ + 𝐵2 ,

i.e., all of these NEXT signals are triggered no earlier than time ℎ + 𝐵2. By
Definition 13.2, this entails that ℎ′ ≤ 𝑝 + (𝜗 + 1)S(𝑀) + 𝜎ℎ < ℎ + 𝐵3,
contradicting the assumption that ℎ′ ≥ ℎ + 𝐵3.

Knowing that ℎ′ < ℎ + 𝐵3, we can conclude that max𝑣∈𝑉𝑔 {𝑝𝑣,𝑀 } ≤ 𝑝 +
S(𝑀) < ℎ′ ≤ 𝐻. As we can derive the same bounds as above, we also get that
max𝑣∈𝑉𝑔 {ℎ𝑣,2} ≤ 𝑝+(𝜗+1)S(𝑀)+𝜎ℎ = min𝑣∈𝑉𝑔 {𝑝𝑣,𝑀 }+ (𝜗+1)S(𝑀)+𝜎ℎ ,

13.5 Analysis of The Self-Stabilizing Lynch-Welch Algorithm 181

provided that no node performs a reset before triggering its NEXT signal, i.e.,
𝐻 > 𝑝 + (𝜗 + 1)S(𝑀) + 𝜎ℎ . Recall that we already established that 𝐻 ≥ ℎ′ >
max𝑣∈𝑉𝑔 {𝑝𝑣,𝑀 }, i.e., the local 𝑖 variables have been set to 0 mod 𝑀 again and
will not change before the next pulse. Checking Algorithm 17, we see that such
a reset thus would either occur 𝑅+ local time after the (local) beat or due to the
next pulse occuring before local time ℎ𝑣,2 + 𝑅−. As 𝑅+/𝜗 ≥ (𝜗+1)S(𝑀) +𝜎ℎ

by Inequality (13.9), the former cannot happen.
Observe that if the latter does not take place either, it would indeed follow

that no node performs a reset on its second beat. Therefore, we conclude that
𝐻 ≥ min𝑣∈𝑉𝑔 {𝑝𝑣,𝑀+1, 𝑝+(𝜗+1)S(𝑀)+𝜎ℎ} (where we slightly abuse notation
in that if 𝑣 would generate pulse 𝑀 + 1, but Algorithm 17 prevents this and
performs a reset instead, we still denote this time by 𝑝𝑣,𝑀+1). Finally, assume
for contradiction that 𝐻 < 𝑝 + (𝜗 + 1)S(𝑀) + 𝜎ℎ . Thus, there is some 𝑣 ∈ 𝑉𝑔
so that 𝐻 = 𝑝𝑣,𝑀+1 < 𝑝 + (𝜗 + 1)S(𝑀) + 𝜎ℎ . However, as 𝑣 is the first node
performing a reset, the period bound applies, i.e.,

𝑝𝑣,𝑀+1 ≥ 𝑝 + 𝑇 − (𝜗 + 1)S
𝜗

= 𝑝 + 𝜗S + 𝑑
> 𝑝 + (𝜗 + 1)S(𝑀) + 𝜎ℎ ,

where the last step uses Inequality (13.10). Thus all possible cases lead to the
desired bounds on ℎ𝑣,2 for all 𝑣 ∈ 𝑉𝑔. �

We summarize the above discussions in the following theorem.

Theorem 13.6. Assume that 7 − 6𝜗2 > 0 and (13.1)-(13.10) hold. Set
𝑇 B 𝜗((𝜗2 +𝜗+1)S +𝜗𝑑). If the beats behave as required by Definition 13.2,
Algorithm 17 running in conjunction with Algorithm 16 (where estimates are
computed according to Lemma 10.8) is a self-stabilizing solution to the pulse
synchronization problem. Its skew is in 𝑂 (𝑢 + (𝜗 − 1) (𝑑 + S)) and the gen-
erated pulses satisfy 𝑃min ≥ (𝑇 − (𝜗 + 1)S)/𝜗 and 𝑃max ≤ 𝑇 + 3S. The
stabilization time (not accounting for the beats) is 𝑂 (𝑀𝑇) = 𝑂 (𝑀 (S + 𝑑)).

Proof. We apply Lemma 13.5 to each beat but the first, showing that 𝐻 = ∞.
Corollary 13.4 then yields the claims. �

Satisfying the constraints
Lemma 13.7. Suppose for some constant 𝐵 ∈ R>0 we are given a family of self-
stabilizing pulse synchronization algorithms A(𝑏), 𝑏 ∈ [𝐵,∞), that satisfies
Definition 13.2 with the following constraints:
• 𝜎ℎ = 𝑂 (𝑑),

182 Chapter 13 Self-Stabilizing Lynch-Welch Algorithm

• 𝐵1 = 𝐶𝑑 for a sufficiently large constant 𝐶,
• 𝐵2 = 𝑏, and
• 𝐵3 ≥ 𝛼𝐵2 −𝑂 (𝑑) for a sufficiently large constant 𝛼.
If 𝜗 ≤ 𝜗0 for a constant 𝜗0 > 1, then there is 𝑏 = 𝑂 (𝑑 log 𝑑/𝑢) and choices
of parameters such that (13.1)-(13.10) hold for A(𝑏), where S(𝑀) = 𝑂 (𝑢 +
(𝜗 − 1)𝑑), 𝑇 = 𝑂 (𝑑), and 𝑀 = 𝑂 (log(1 + 𝑑/𝑢)).

Proof. We choose

𝑅+ B 𝑅− + (𝜗 + 1)S(𝑀) + 𝜎ℎ (13.11)

and S in accordance with (13.2), immediately ensuring (13.1), (13.2), and
(13.9). This also guarantees (13.10), because

S = 𝑅+ + 𝜎ℎ − 𝑅
−

𝜗
(13.2)

> (𝜗 + 1)S(𝑀) + 𝜎ℎ
(13.11), 𝜗 > 1

In particular,

S > S(𝑀) (13.10)

=
S

2𝑀−1 +
(
1 − 1

2𝑀−1

)
2
(
𝛿 +

(
1 − 1

𝜗

)
(𝑇 + S + 𝛿)

)
,

which is equivalent to

S > 2
(
𝛿 +

(
1 − 1

𝜗

)
(𝑇 + S + 𝛿)

)
.

Using that 2 − 𝜗 > 0, this yields that

S > 2 (𝜗𝛿 + (𝜗 − 1) (𝑇 + 𝛿))
2 − 𝜗 =

2(2𝜗 − 1)𝛿 + 2(𝜗 − 1)𝑇
2 − 𝜗 ,

i.e., shows that (13.3) holds.
We now turn to prove (13.4). Due to the choice of 𝑅+, (13.4) becomes

𝑅− ≥ 𝜗(𝜎ℎ + 𝜗S + 𝑑) (13.4)

= 𝜗(𝜎ℎ + 𝜗(𝑅+ + 𝜎ℎ) − 𝑅− + 𝑑) (13.2)

= 𝜗(𝜎ℎ + 𝜗(𝑅− + (𝜗 + 1)S(𝑀) + 2𝜎ℎ) − 𝑅− + 𝑑). (13.11)

Since 𝜗 is small enough, 1+𝜗−𝜗2 > 0 and we choose to satisfy this inequality
without slack, by setting

𝑅− :=
(2𝜗2 + 𝜗)𝜎ℎ + (𝜗3 + 𝜗2)S(𝑀) + 𝜗2𝑑

1 + 𝜗 − 𝜗2 . (13.12)

13.5 Analysis of The Self-Stabilizing Lynch-Welch Algorithm 183

Next, observe that

S < 𝜎ℎ + 𝑅+(13.2)

= 𝑅− + (𝜗 + 1)S(𝑀) + 2𝜎ℎ
(13.11)

= 𝑂 (S(𝑀) + 𝜎ℎ)(13.12)

= 𝑂 (S(𝑀) + 𝑑)𝜎ℎ = 𝑂 (𝑑)

= 𝑂

(
𝛿 + (𝜗 − 1)𝑇 + 𝑑 +

(
𝜗 − 1 + 1

2𝑀−1

)
S
)

def. of S(𝑀)

= 𝑂

(
𝑑 +

(
𝜗 − 1 + 1

2𝑀−1

)
S
)

def. of 𝛿 and 𝑇 ,
𝑢 < 𝑑

.

Using that 𝜗−1 is a sufficiently small constant and assuming that 𝑀 is at least a
large enough constant, we can ensure that 𝜗 − 1 + 1/2𝑀−1 < 𝜀 for any constant
𝜀 > 0.

Fixing 𝑀 = 𝑘 dlog(1 + 𝑑/𝑢)e ≥ 𝑘 for a sufficiently large constant 𝑘 ∈ N>0,
we can thus conclude that S = 𝑂 (𝑑). In particular,

𝑅+ + 𝜎ℎ < S = 𝑂 (𝑑),

implying by the assumptions of the lemma that (13.6) is satisfied. Moreover,
𝑇 = 𝑂 (S + 𝑑) = 𝑂 (𝑑) and

S(𝑀) = S
2𝑀−1 +𝑂 (𝛿 + (𝜗 − 1) (𝑇 + S))def. of S(𝑀)

= 𝑂 (𝑢 + (𝜗 − 1) (𝑇 + S + 𝑑))choice of 𝑀 ,
def. of 𝛿

= 𝑂 (𝑢 + (𝜗 − 1)𝑑).𝑇 + S = 𝑂 (𝑑)

To complete the proof, we need to show that we can choose 𝑏 = 𝑂 (𝑑 log 𝑑/𝑢)
so that the remaining inequalities (13.5), (13.8), and (13.7) are satisfied. Note
that due to the established bounds, the r.h.s. of (13.5) is𝑂 (𝑑), implying that any
choice of 𝑏 ≥ 𝐵 that is at least a sufficiently large constant guarantees (13.5).
The inequalities (13.8) and (13.7) are now of the form

𝐵2 ≤ (𝑀 − 1)𝑇 − (𝜗 − 1)S
𝜗

+𝑂 (𝑑) = (𝑀 − 1) (𝜗S + 𝑑) +𝑂 (𝑑)
𝐵3 > (𝑀 − 1) (𝑇 + 3S) +𝑂 (𝑑) = (𝑀 − 1) ((𝜗2 + 𝜗 + 4)S + 𝜗𝑑) +𝑂 (𝑑).

Therefore, if 𝛼 > 6𝜗, choosing 𝑏 = 𝑂 (𝑀𝑇) = 𝑂 (𝑑 log 𝑑/𝑢) maximal such that
(13.8) holds entails that

𝐵3 ≥ 𝛼𝐵2 −𝑂 (𝑑) = (𝑀 − 1) ((𝜗2 + 𝜗 + 4)S + 𝜗𝑑) + (𝑀 −𝑂 (1))𝑑.

Since 𝑀 ≥ 𝑘 and we chose 𝑘 sufficiently large, this implies (13.7). �

Bibliography

[1] Hopkins, A. L., T. B. Smith, and J. H. Lala. 1978. Ftmp – a highly reliable fault-
tolerant multiprocess for aircraft. Proceedings of the IEEE 66 (10): 1221–1239.
doi:10.1109/PROC.1978.11113.

[2] Kopetz, H. 2003. Fault containment and error detection in the time-triggered archi-
tecture. In The sixth international symposium on autonomous decentralized systems,
2003. isads 2003., 139–146. doi:10.1109/ISADS.2003.1193942.

[3] Pease, M., R. Shostak, and L. Lamport. 1980. Reaching agreement in the
presence of faults. J. ACM 27 (2): 228–234. doi:10.1145/322186.322188.
http://doi.acm.org/10.1145/322186.322188.

[4] Srikanth, T. K., and Sam Toueg. 1987. Optimal clock synchronization. J. ACM 34
(3): 626–645. doi:10.1145/28869.28876. https://doi.org/10.1145/28869.28876.

