
14 Consensus

Chapter Contents
14.1 Overview 186
14.2 The Power of Consensus 190
14.3 The Phase King Algorithm 197
14.4 Reducing Consensus to Binary Consensus 201
14.5 Impossibility of Consensus with one Third

of Faulty Nodes 204
14.6 Running Time Lower Bound 207

Learning Goals
• The Consensus problem and its relevance.
• A simple Binary Consensus algorithm tolerating 𝑓 < 𝑛

3 Byzantine faults and
running in 𝑂 (𝑓) synchronous rounds.

• Corresponding lower bounds showing that 𝑓 < 𝑛
3 is necessary and at least

𝑓 + 1 rounds are required.
• An algortithm for multivalued Consensus based on a Binary Consensus al-

gorithm.

186 Chapter 14 Consensus

Consensus is a key component in a distributed setting. The Consensus
problem encapsulates the intention to bring all nodes to agree on a common
input value that is a function of their individual input values.

In a fault free synchronous setting solving this task is trivial: each individual
node collects the inputs of all other nodes and applies a given function on the set
of values. In the presence of faults, the problem becomes challenging, and the
ratio of faulty to non-faulty nodes determines our ability to solve the problem.

Consensus is a fundamental and extremely well-studied fault-tolerance prim-
itive. There is a large number of variants of the problem, varying in terms of
the model and the requirements on the solution. The common theme is the
following question: In a system with faults, how can the correct nodes agree
on a decision that is consistent with the given inputs? We will obtain intuition
on the possibility of achieving consensus, as well as the fundamental limits on
our ability to solve the problem.

14.1 Overview

Overcoming faults often boils down to finding a way for correct nodes to reach
agreement on (some aspect of) the state of the system, despite inconsistent
communication by faulty nodes. In the case of crash faults, this happens due
to the failing node sending some information to a subset of the correct nodes,
but not all of them. Byzantine nodes may exhibit more complicated behavior,
but the key issue remains the same. Many tasks become much simpler when
assuming that faulty nodes are forced to send the same information to all nodes.
We refer to this as communication by Safe Broadcast.

E14.1 Recall the algorithm from Section 9.5. Can you simplify it under the assump-
tion of Safe Broadcast, i.e., a “propose” signal is always sent to all nodes,
even if the sender is faulty?

E14.2 Recall the algorithms from Section 10.2 and Section 10.3. Can you simplify
them under the assumption of Safe Broadcast?

As a more general example, suppose the nodes want to vote on two possible
courses of action. Each node has an opinion which course of action is best,
based on its local state. Clearly, if all correct nodes have the same opinion,
this choice should be taken. We also need to ensure that if opinions are mixed,
all correct nodes agree on a single strategy, although any strategy proposed by
a correct node is a valid choice. We cannot simply follow a pre-determined
leader’s opinion, as a Byzantine leader could “lie” about their perception of the
system. Nonetheless, if each node is forced to send the same message in each
round to all other nodes, there is a trivial solution: have everyone broadcast

14.1 Overview 187

their opinion, replace any missing or invalid value by a default choice, and
output the majority value.

E14.3 Convince yourself that this simple strategy achieves the stated goals provided
that 𝑓 < 𝑛

2 , i.e., the majority of nodes is correct, and communication is by
Safe Broadcast.

E14.4 Think about how the situation changes when faulty nodes may send conflicting
messages to different nodes. How does the above strategy fail?

The above task turns out to be a—if not the—fundamental fault-tolerance
primitive, and goes by the name of (binary) Consensus.
Definition 14.1 (Consensus). Each node 𝑣 ∈ 𝑉𝑔 is given an input 𝑥𝑣 ∈ 𝑋 .
To solve Consensus, an algorithm must compute output values 𝑜𝑣 ∈ 𝑋 at all
correct nodes 𝑣 ∈ 𝑉𝑔 meeting the following conditions:
• Agreement: There is 𝑜 ∈ 𝑋 so that 𝑜𝑣 = 𝑜 for all 𝑣 ∈ 𝑉𝑔. We refer to 𝑜 as

the output of the Consensus algorithm.
• Validity: If there is 𝑥 ∈ 𝑋 so that for all 𝑣 ∈ 𝑉𝑔 it holds that 𝑥𝑣 = 𝑥, then
𝑜 = 𝑥.

• Termination: There is 𝑟 ∈ N satisfying that each 𝑣 ∈ 𝑉𝑔 terminates and
outputs 𝑜𝑣 by the end of round 𝑟 .

The algorithm has round complexity 𝑅 ∈ N, if it terminates in 𝑅 rounds in all
executions.

If 𝑋 = {0, 1}, we refer to the task as Binary Consensus, and denote the input
of node 𝑣 by 𝑏𝑣 (to indicate that it is a bit).

In the special case of Binary Consensus, Definition 14.1 guarantees that the
output 𝑜 equals the input of at least one correct node. If |𝑋 | > 2, this is not true
anymore, and one could consider stronger validity conditions. However, the
stated condition is the minimal meaningful requirement and at the same time
sufficient for all applications in this book.

In this chapter, we will study this task in SMP. Note that once we have a (fault-
tolerant!) way of simulating lock-step execution, we can use any Consensus
algorithm for the synchronous model in the simulating system as well. This
renders Consensus a highly useful primitive even under the strong assumption
of synchronous operation.

E14.5 Think of objectives you can achieve using a Consensus primitive.

Throughout this chapter, we make the additional assumption that nodes are
uniquely labeled 1, . . . , 𝑛, where node 𝑣 knows for each of its incoming ports
what the label of the node 𝑤 sending messages to this port is. To simplify

188 Chapter 14 Consensus

notation, we will simply refer to a node by its label, i.e., 𝑉 = {1, . . . , 𝑛}.
While this assumption can be relaxed, it is realistic in the kind of systems we
consider in this book, as the designer chooses the interconnection network. All
lower bounds and impossibility results discussed in this chapter hold under this
additional assumption.

Consensus can be seen as a universal task. Maybe the best way of driving
this message home is the following observation: in a fully connected system,
we can use Consensus to simulate communication by Safe Broadcast.

Theorem 14.4. Suppose that 𝐺 is a complete graph on 𝑛 nodes, 𝑋 is a set of
feasible messages, andA is a Consensus algorithm for input set 𝑋 ¤∪{⊥} on𝐺 of
round complexity 𝑅. Then we can simulate communication by Safe Broadcast
for messages in 𝑋 on 𝐺, where 𝑅 + 1 rounds are required for each simulated
round. Denoting by 𝑀 the maximum message size ofA, the maximum message
size of the simulation is 𝑛 ·max{𝑀, dlog(|𝑋 | + 1)e}.

Note that this simulation is inefficient, as it is slow—messages are received
𝑅 rounds later—and causes large overheads in message size and computations.
Nonetheless, from the perspective of what can be computed in the presence of
faults, it is extremely powerful. It completely strips away the ability of faulty
nodes to present inconsistent information to the system, which enables joint
simulation of a single state machine by all nodes, even if its input is distributed
among the nodes. In other words, we can limit the effect of faults to uncertainty
about the local inputs to the joint state machine perceived at faulty nodes, so
long as we can perform Consensus. This is clearly the best we can do under
the Byzantine fault model, as a faulty node could claim different inputs, but
otherwise follow the algorithm to the letter. Moreover, because this works for
every possible state machine, this simulation is considered to be universal.

The above results are for fully connected graphs. However, they can be
generalized to any known network topology if and only if it is (2 𝑓 + 1)-node
connected.

Definition 14.2 (Node Connectivity). Graph𝐺 = (𝑉, 𝐸) is 𝑘-node connected if
after deleting up to 𝑘−1 arbitrary nodes the remaining graph is still connected,
i.e., there is a path between any pair of remaining nodes.
Theorem 14.5. Suppose 𝐺 is an 𝑛-node graph that is not (2 𝑓 + 1)-node
connected. Then Consensus with 𝑓 Byzantine faults cannot be solved on 𝐺.
Theorem 14.11. Suppose that A is a Consensus algorithm for a complete
graph on 𝑛 nodes with up to 𝑓 Byzantine faults. Fix an arbitrary (2 𝑓 +1)-node
connected 𝑛-node graph 𝐺. Then there is an algorithm simulating A on 𝐺.

14.1 Overview 189

Its round complexity is at most factor 𝑛 larger and it uses messages of size
𝑂 (𝑛2 (𝑀 + log 𝑛)), where 𝑀 is the maximum message size of A.

Again, this simulation can be very inefficient, but it demonstrates that Con-
sensus is a fundamental fault-tolerance primitive. We remark that analogous
statements hold for crash faults and (𝑓 + 1)-node connectivity.

E14.6 Show that any Consensus algorithm for a fully connected graph with 𝑛 nodes
and up to 𝑓 crash faults can be simulated in any (𝑓 + 1)-node connected
𝑛-node graph.

E14.7 Show that Consensus with 𝑓 crash faults is impossible in graphs that are not
(𝑓 + 1)-connected.

After showing these statements demonstrating the relevance and fundamental
nature of Consensus, in Section 14.3 we turn towards practical solutions in fully
connected networks. Section 14.3 presents the Phase King algorithm, which
solves Binary Consensus.

Theorem 14.18. Algorithm 18 solves Binary Consensus in the synchronous
model. It runs for 𝑅(𝑓) = 3(𝑓 + 1) ∈ 𝑂 (𝑓) rounds and correct nodes commu-
nicate exclusively by 1-bit broadcasts.

At first glance, it might seem that the Phase King algorithm is of limited
utility, as it can handle only the case of binary inputs. This intution turns out
to be false. In Section 14.4, we efficiently reduce the general case to Binary
Consensus.

Theorem 14.22. Suppose we are given a fully connected network𝐺 of 𝑛 nodes
and a Binary Consensus algorithm A for it that tolerates 𝑓 < 𝑛

3 Byzantine
faults. Then Algorithm 19 is a Consensus algorithm on 𝐺 for inputs from 𝑋

that tolerates 𝑓 faults. In addition to calling A once as a subroutine, it runs
for 2

⌈
log |𝑋 |

𝐵

⌉
rounds, during which nodes broadcast messages of size 𝐵; here,

𝐵 ∈ N>0 can be chosen freely.
Plugging in the Phase King algorithm, we obtain a Consensus algorithm that

uses 1-bit broadcast messages only and runs for 𝑂 (𝑓 + log |𝑋 |) rounds.

Corollary 14.3. Algorithm 19 with Algorithm 18 as Binary Consensus subrou-
tine solves Consensus with input set 𝑋 in a fully connected network with 𝑓 < 𝑛

3
Byzantine faults. It runs for 3(𝑓 + 1) + 2dlog |𝑋 |e ∈ 𝑂 (𝑓 + log |𝑋 |) rounds and
correct nodes send 1-bit broadcast messages only.

This result leads to two questions. First, is it possible to tolerate more faults?
As might not surprise in light of the corresponding impossibility result for pulse
synchronization (see Theorem 9.14), the answer is no.

190 Chapter 14 Consensus

Theorem 14.29. If 3 ≤ 𝑛 ≤ 3 𝑓 , Consensus with Byzantine faults cannot be
solved.

Second, can we further reduce the running time of the algorithm? The answer
is a bit more involved here, but is also mostly no. The 𝑂 (log |𝑋 |) term can be
reduced by simply using larger messages, see Theorem 14.22. The 𝑂 (𝑓) term
from Binary Consensus, on the other hand, can at best be reduced by a factor
of 3.

Theorem 14.35. Consensus with 𝑓 faults cannot be solved in fewer than 𝑓 + 1
rounds, even if faults are restricted to crashing nodes.

There is a lot more to say about the Consensus problem. For instance, a round
complexity of 𝑓 + 1 can be achieved, but the respective algorithms use larger
messages and are computationally much more involved. Recursive solutions
can reduce the overall number of bits that need to be sent. Randomized
algorithms can terminate much faster and/or send even fewer bits, but this
requires additional model assumptions and more complex algorithms. Last but
not least, there is a huge body of work on manifold variants of the problem. We
focus here on simple statements that demonstrate the importance of the task or
are of practical interest in the setting of this book. ?? very briefly discusses
some further results and provides the reader with entry points to the topic at
large.

14.2 The Power of Consensus

E14.8 Think of how to achieve the following in SMP:

• Self-stabilizing FSM replication;
• Distributed storage and logs (where with Consensus consistency can be re-established

after a partition);
• Self-stabilizing pulse synchronization (obtaining regular beats).

Theorem 14.4. Suppose that 𝐺 is a complete graph on 𝑛 nodes, 𝑋 is a set of
feasible messages, andA is a Consensus algorithm for input set 𝑋 ¤∪{⊥} on𝐺 of
round complexity 𝑅. Then we can simulate communication by Safe Broadcast
for messages in 𝑋 on 𝐺, where 𝑅 + 1 rounds are required for each simulated
round. Denoting by 𝑀 the maximum message size ofA, the maximum message
size of the simulation is 𝑛 ·max{𝑀, dlog(|𝑋 | + 1)e}.
Proof. For each simulated round 𝑟 ∈ N>0, we run 𝑛 instances of A, one for
each node 𝑖 ∈ 𝑉 . To run all of these instances in parallel, in each round of the
actual system, each node sends a vector of 𝑛 many max{𝑀, dlog(|𝑋 | + 1)e}-bit

14.2 The Power of Consensus 191

words, one for each instance. To correctly map the words to the instances, node
𝑖 sends the word belonging to the instance of node 𝑗 in position 𝑗 . To encode
the potential messages, we fix some enumeration of the elements of 𝑋 and ⊥
and transmit the binary encoding of the index in this enumeration, i.e., we need
log(|𝑋 | + 1) bits to encode all elements of 𝑋 and the special symbol ⊥. We
use ⊥ to denote that no message is sent, i.e., w.l.o.g. we can assume that the
simulated algorithm always sends a message from a set of size |𝑋 | +1. Observe
that this means that all messages satisfy the stated bound on message size.

Assume that we have completed simulation of 𝑟 ∈ N rounds within 𝑟 (𝑅 + 1)
rounds of the actual system. To simulate round 𝑟 + 1, in round 𝑟 (𝑅 + 1) + 1
each node 𝑣 ∈ 𝑉𝑔 computes and broadcasts the (encoded) message 𝑥 ∈ 𝑋 it
wants to send in simulated round 𝑟 + 1, or ⊥ if it does not send a message. In
rounds 𝑟 (𝑅+1) +2, . . . , (𝑟 +1) (𝑅+1), we run for each 𝑣 ∈ 𝑉𝑔 an instance ofA
with input set 𝑋 ¤∪{⊥}, where node 𝑤 ∈ 𝑉𝑔 uses as input the (alleged) message
it received from 𝑣 in round 𝑟 (𝑅 + 1) + 1. If no (valid encoding of a) message
is received by 𝑤, it uses ⊥ as default input value for the instance. At the end
of round (𝑟 + 1) (𝑅 + 1), node 𝑤 ∈ 𝑉𝑔 feeds back the output of the Consensus
instance to the simulation, as the message received from 𝑣 in simulated round
𝑟 + 1.

It remains to argue that carrying out the above procedure inductively results
in correct simulation of communication by Safe Broadcast. The base case of
the induction is trivial: each node can initialize the simulated state machine
locally, anchoring the induction at 𝑟 = 0. For the induction step, assume that
𝑖 ∈ 𝑉𝑔 knows the state of its FSM at the end of round 𝑟 and, if 𝑟 > 0, the
messages it received in round 𝑟 . Then it can compute the state the FSM attains
in round 𝑟 + 1, as well as the message 𝑥 ∈ 𝑋 ¤∪{⊥} it broadcasts. As correct
nodes follow the protocol, each node 𝑗 ∈ 𝑉𝑔 thus receives 𝑥 from 𝑖 in round
𝑟 (𝑅 + 1) + 1. By validity and termination or the Consensus protocol, each
𝑗 ∈ 𝑉𝑔 thus computes output 𝑥 for the Consensus instance by the end of round
(𝑟 + 1) (𝑅 + 1).

This guarantee does not hold for faulty nodes 𝑖 ∈ 𝑉 \𝑉𝑔. However, agreement
and termination of the Consensus protocol ensure that by the end of round
(𝑟 + 1) (𝑅 + 1), each 𝑗 ∈ 𝑉𝑔 has determined the same output 𝑥 ∈ 𝑋 ¤∪{⊥} for
the instance of A corresponding to 𝑖, implying that the simulation proceeds as
if 𝑖 had broadcast 𝑥 to all nodes in round 𝑟 (𝑅 + 1) + 1. Thus, the induction step
succeeds, completing the proof. �

14.2.1 Consensus in General Networks
Our first goal in this section is to establish that sufficient connectivity is neces-
sary for solving consensus.

192 Chapter 14 Consensus

Theorem 14.5. Suppose 𝐺 is an 𝑛-node graph that is not (2 𝑓 + 1)-node
connected. Then Consensus with 𝑓 Byzantine faults cannot be solved on 𝐺.

To prove Theorem 14.5, we need to reason similarly to Section 9.4. We
assume for contradiction that a Consensus algorithm A for a graph 𝐺 with
insufficient connectivity exists. Then we construct a sequence of executions,
where any pair of adjacent executions satisfies that some correct nodes cannot
distinguish the two executions. Accordingly, they need to behave in the same
way, and in particular will compute the same output; the termination property
forces them to eventually take a decision. Agreement then forces all correct
nodes to output the same value, even those that could observe that the two
executions are different. By induction, this forces all correct nodes in all
executions to output the same value. However, our construction also ensures
that there is an execution in which all correct nodes have inputs of 0 and
one where they all have inputs of 1, respectively (w.l.o.g., we assume that
0, 1 ∈ 𝑋). Thus, validity forces different outputs for these executions, implying
the contradiction we seek.

There are some differences to the argument in Section 9.4, however. As
we are operating in the synchronous model, the different executions all run
at the same speed. In addition, Consensus is an “exact” task requiring to
agree on the same input value—unlike pulse synchronization (Definition 9.6)
or approximate agreement (Definition 10.1), for example. This simplifies our
reasoning, providing us with a very elegant way of “encoding” all considered
executions on 𝐺.

The idea of the proof is to run the Consensus algorithm on a helper graph 𝐻
without faulty nodes, which has three copies of each node (each with the identity
of the original node). WhileA is not designed for 𝐻—it assumes fewer nodes
and unique identities of nodes—we can show for each node indistinguishability
of the execution on 𝐻 from an execution on 𝐺 with at most 𝑓 faults. This
means that the nodes must behave as if they were running the algorithm on 𝐺.
Byzantine nodes can simulate this “imaginary” execution on 𝐻 to determine
which messages to send in the derived executions on 𝐺. We remark that we
will make use of the same technique to prove Theorem 14.29.

We now execute the above plan. Fix an 𝑛-node graph 𝐺 = (𝑉, 𝐸) that is not
(2 𝑓 + 1)-node connected. Thus, removing a set of at most 2 𝑓 nodes results in
two disjoint non-empty sets 𝐴, 𝐵 ⊆ 𝑉 such that there are no edges between the
two sets. We split the removed set arbitrarily into two disjoint sets 𝐶 and 𝐷 of
at most 𝑓 nodes each. Thus, we have partitioned 𝑉 = 𝐴 ¤∪𝐵 ¤∪𝐶 ¤∪𝐷 such that (i)
there are no edges between 𝐴 and 𝐵, and (ii) |𝐶 | ≤ 𝑓 and |𝐷 | ≤ 𝑓 . As you
might expect, 𝐶 and 𝐷 are going to be the potentially faulty sets, and for each

14.2 The Power of Consensus 193

Figure 14.1
Abstract representation of the helper graph 𝐻. Nodes represent copies of sets, e.g. 𝐴1,
𝐴2, and 𝐴3 are copies of 𝐴, and are labeled by the input all of their nodes receive. Edges
indicate that nodes from these sets are connected by an edge if and only if the nodes
they are copies of are connected by an edge in 𝐺.

adjacent pair of executions, one will have faulty node set𝐶 and one faulty node
set 𝐷.

The construction of 𝐻 is illustrated in Figure 14.1. We copy each set three
times and arrange these sets as shown in the figure. Any two node copies are
joined by an edge in 𝐻 if and only if their was an edge between their originals
in 𝐺 and they belong to sets connected by an edge in Figure 14.1.

We first observe that we can execute A on 𝐻, where we assume that the
state machine of A is allowed to halt whenever presented with a situation that
cannot occur in an execution on𝐺 with at most 𝑓 faults. By “halting” we mean
that the FSM of the node may transition to an additional state ⊥ which it will
not leave and in which it sends no messages. We remark that this is a mere

194 Chapter 14 Consensus

formality breaking down the proof into smaller units: we later show that this
cannot happen.

Lemma 14.6. Fix a graph𝐺 that is not (2 𝑓 +1)-node connected and construct
𝐻 as described above, where each node in𝐻 has the same label from {1, . . . , 𝑛}
as the node in 𝐺 it is a copy of. Suppose A is a Consensus algorithm on 𝐺
that tolerates 𝑓 Byzantine nodes. Then we can execute A on 𝐻.

Proof. We need to show that the state transition and output functions of a node
𝑣 in 𝐻 receive syntactically correct inputs. This means that (each!) node 𝑣 with
label 𝑖 ∈ {1, . . . , 𝑛} in 𝐻 has the same number of neighbors as the node with
label 𝑖 in 𝐺, and that these neighbors have the same set of labels as the set of
neighbors of 𝑖 in𝐺. As nodes in 𝐻 have the same labels as their originals in 𝐻,
this is equivalent to showing that if the node 𝑖 in 𝐺 has a neighbor with label 𝑗 ,
then 𝑣 has exactly one neighbor 𝑤 that is a copy of 𝑗 .

To see this, take a look at Figure 14.1. Observe that if 𝑆′ is a copy of set 𝑆 in
𝐺, for each neighboring set 𝑇 of 𝑆 in 𝐺, there is precisely one adjacent copy of
the set in 𝐻. As we connect nodes in 𝐻 by an edge if and only if the belong to
adjacent copies of sets and their originals are joined by an edge in 𝐺, the claim
follows. �

Denote by E the execution ofA on𝐻 in which each node receives as input the
value its set is labeled by in Figure 14.1. By Lemma 14.6, E is well-defined,
although we cannot yet excludes that nodes may halt in E without properly
computing an output and terminating. With E well-defined, we can proceed
to show that there are several executions of A on 𝐺 that are indistinguishable
from E to a subset of the nodes.

Lemma 14.7. For 𝑘 ∈ {0, 1, 2}, consider the copies 𝐴′, 𝐵′, and 𝐶 ′ of 𝐴, 𝐵,
and 𝐶, respectively, that in Figure 14.1 appear after 𝐷𝑘 in clockwise direction
(e.g., for 𝑘 = 0, 𝐴′ = 𝐴1, 𝐵′ = 𝐵1, and 𝐶 ′ = 𝐶1). Then there is an execution
A𝐷𝑘 of A on 𝐺 with fault set 𝐷 such that the unique node with label 𝑖 in
𝐴′ ∪ 𝐵′ ∪ 𝐶 ′ cannot distinguish E from E𝐷𝑘 at 𝑖.

Proof. Denote for 𝑖 ∈ 𝐴 ∪ 𝐵 ∪ 𝐶 by 𝑣(𝑖) the unique node with the same label
in 𝐴′ ∪ 𝐵′ ∪ 𝐶 ′. For each 𝑖 ∈ 𝐴 ∪ 𝐵 ∪ 𝐶, the indistinguishability relation we
want to show defines its input (the same as of 𝑣(𝑖)) and the message it receives
in E𝐷𝑘 from a neighbor with label 𝑗 in round 𝑟 ∈ N. Thus, our task is to show
that the (faulty) nodes in 𝐷 can send messages such that node 𝑖 ∈ 𝐴 ∪ 𝐵 ∪ 𝐶
receives the same messages as 𝑣(𝑖).

We prove this by induction on the round number 𝑟 , where the induction
hypothesis is that for all 𝑖 ∈ 𝐴 ∪ 𝐵 ∪ 𝐶, the FSMs of 𝑖 and 𝑣(𝑖) are in the

14.2 The Power of Consensus 195

same state at the end of round 𝑟 and they receive the same messages in round
𝑟 . The induction is anchored at 𝑟 = 0, for which the claim is trivially satisfied
because 𝑖 and 𝑣(𝑖) have the same input in both executions (and no messages are
sent in “round 0”). For the step from 𝑟 to 𝑟 + 1, observe that by the induction
hypothesis, 𝑖 and 𝑣(𝑖) transition to the same state in round 𝑟 + 1 and thus send
the same messages. Accordingly, 𝑖 and 𝑣(𝑖) receive the same messages over
incoming edges from neighbors with label 𝑗 ∈ 𝐴∪ 𝐵∪𝐶. Consider a neighbor
of 𝑣(𝑖) with label 𝑗 ∈ 𝐷. There is a unique neighbor 𝑤 of 𝑣(𝑖) in 𝐻 with
label 𝑗 . In E𝐷𝑘 , the (faulty) node 𝑗 simply sends the same message to 𝑖 that
𝑣(𝑖) receives in E. Hence, 𝑖 and 𝑣(𝑖) receive the same messages in round 𝑟,
completing the induction step. �

Lemma 14.8. For 𝑘 ∈ {0, 1, 2}, consider the copies 𝐴′, 𝐵′, and 𝐷 ′ of 𝐴, 𝐵,
and 𝐷, respectively, that in Figure 14.1 appear after 𝐶𝑘 in clockwise direction
(e.g., for 𝑘 = 0, 𝐴′ = 𝐴1, 𝐵′ = 𝐵0, and 𝐷 ′ = 𝐷0). Then there is an execution
A𝐶𝑘 of A on 𝐺 with fault set 𝐶 such that the unique node with label 𝑖 in
𝐴′ ∪ 𝐵′ ∪ 𝐷 ′ cannot distinguish E from E𝐶𝑘 at 𝑖.

Proof. Analogous to the one of Lemma 14.7. �

These indistinguishability results can be easily used to prove Theorem 14.5.

Corollary 14.9. In E, each node terminates and outputs the same value.

Proof. Suppose first that 𝑣 and 𝑤 are nodes (i) from a set and the next set in
clockwise direction in Figure 14.1, (ii) from 𝐴𝑘 and 𝐵𝑘 for some 𝑘 ∈ {0, 1, 2},
or (iii) from 𝐵𝑘 and 𝐴𝑘+1 mod 2 for some 𝑘 ∈ {0, 1, 2}. A straightforward case
distinction shows that we can always apply Lemma 14.8 or Lemma 14.7 for
some 𝑘 ∈ {0, 1, 2} such that 𝑣, 𝑤 ∈ 𝐴′ ∪ 𝐵′ ∪ 𝐶 ′. By Lemma 14.7, 𝑣 and 𝑤
cannot distinguish E from an execution on 𝐺 at the (non-faulty) nodes with
the same labels. By agreement and termination ofA, they must terminate and
output the same value.

Now consider the general case. Because 𝐴 and 𝐵 are non-empty, the same
is true for 𝐴𝑘 and 𝐵𝑘 for all 𝑘 ∈ {0, 1, 2}. Using cases (ii) and (iii) above
inductively following the cycle in clockwise direction, we can show that all
nodes in

⋃2
𝑘=0 𝐴𝑘 ∪ 𝐵𝑘 have the same output. All other nodes are in sets that

can be reached from one these sets using case (i). �

Corollary 14.10. In E, nodes in 𝐴1 output 0, while nodes in 𝐴2 output 1.

Proof. If 𝑣 ∈ 𝐴1, we apply Lemma 14.8 with 𝑘 = 0. By the lemma, 𝑣 cannot
distinguish E from the execution E𝐶0 at the node of the same label. In this
execution, the correct nodes in 𝐴 ∪ 𝐵 ∪ 𝐷 have input 0, because nodes in

196 Chapter 14 Consensus

𝐴′ ∪ 𝐵′ ∪ 𝐷 ′ = 𝐴1 ∪ 𝐵1 ∪ 𝐷1 have input 0 in E. Therefore, by validity A
must output 0 at 𝑣. If 𝑣 ∈ 𝐴2, we apply Lemma 14.8 with 𝑘 = 1 and reason
analogously. �

We now have all the pieces in place for showing Theorem 14.5.

Theorem 14.5. Suppose 𝐺 is an 𝑛-node graph that is not (2 𝑓 + 1)-node
connected. Then Consensus with 𝑓 Byzantine faults cannot be solved on 𝐺.

Proof. Assume that there is a Consensus algorithm for a graph 𝐺 that is not
(2 𝑓 + 1)-node connected. Thus, we can construct 𝐻 and an execution E on 𝐻
to which Corollaries 14.9 and 14.10 apply. By construction, 𝐴 is non-empty,
implying the same for 𝐴1 and 𝐴2. Thus, by Corollary 14.10, there are two nodes
in 𝐻 that can only output different values in E. This contradicts Corollary 14.9,
which asserts that in E all nodes terminate and output the same value. �

We proceed to proving the matching positive result.

Theorem 14.11. Suppose that A is a Consensus algorithm for a complete
graph on 𝑛 nodes with up to 𝑓 Byzantine faults. Fix an arbitrary (2 𝑓 +1)-node
connected 𝑛-node graph 𝐺. Then there is an algorithm simulating A on 𝐺.
Its round complexity is at most factor 𝑛 larger and it uses messages of size
𝑂 (𝑛2 (𝑀 + log 𝑛)), where 𝑀 is the maximum message size of A.

Proof. We use communication in 𝐺 = (𝑉, 𝐸) to simulate a fully connected
network. We discuss how to simulate a single round; using this inductively, the
general result follows.

Fix a pair of nodes 𝑣, 𝑤 ∈ 𝑉 . By Menger’s theorem, there are 2 𝑓 + 1 (simple)
node-disjoint paths from 𝑣 to 𝑤. As 𝐺 is fixed, these can be precomputed. We
fix 2 𝑓 + 1 such paths and have all nodes on the paths store the next node on
these paths together with the information that they are 𝑣-𝑤 paths (by marking
down the labels of 𝑣 and 𝑤) in the algorithm’s code. When (correct) node 𝑣
needs to send a message to node 𝑤, it will send it to each of the 2 𝑓 +1 neighbors
it has on these paths, indicating that the message is to be transmitted from 𝑣 to
𝑤. These nodes then forward it to the next node on their respective path, and
so on. Nodes will only forward messages from 𝑣 to 𝑤 if they are on one of the
paths and receive them from their predecessor of their path.

After 𝑛 rounds 𝑤 evaluates whether it received from at least 𝑓 + 1 of its
predecessors on the 2 𝑓 + 1 fixed 𝑣-𝑤 paths the same message marked as com-
munication from 𝑣 to 𝑤. As 2(𝑓 + 1) > 2 𝑓 + 1, there can be at most one such
message. If this is the case, 𝑤 accepts this message as communication from 𝑣

to 𝑤 for this simulated round.

14.3 The Phase King Algorithm 197

Hence, it remains to show that for 𝑣, 𝑤 ∈ 𝑉𝑔, 𝑤 accepts message 𝑚 from 𝑣 if
and only if 𝑣 decided to send 𝑚 to 𝑤 in this simulated round. To see this, note
first that out of the 2 𝑓 +1 paths from 𝑣 to 𝑤, at most 𝑓 can contain a faulty node.
Hence, if 𝑣 decides to send𝑚, 𝑚 will reach 𝑤 via the at least 𝑓 +1 paths without
a faulty node. As the paths are simple, they contain each node at most once.
Hence, 𝑤 will receive these at least 𝑓 + 1 copies of 𝑚 in time and accept 𝑚. On
the other hand, if 𝑣 does not send 𝑚, the above restrictions on which messages
are forwarded imply that 𝑤 will receive messages from its predecessors on at
most 𝑓 paths and accept no message.

We use the above strategy for all pairs of nodes concurrently. Nodes simply
batch all messages they need to send to a neighbor in a given round together
into a single message. This can be done as a list, where each entry contains the
pair (𝑣, 𝑤) the communication belongs to followed by the respective message.
By using our knowledge of 𝐺 and the simulated algorithm A, each entry in
the list can be made to have a fixed number of bits: 2dlog 𝑛e bits to encode the
labels of 𝑣 and 𝑤, followed by 𝑀 many bits, where 𝑀 is the maximum message
size of A. To ensure that the resulting message size bound holds even when
faulty nodes send longer messages, correct nodes simply discard any messages
that are inconsistent with this format. As each node can participate in at most
𝑛(𝑛 − 1) paths as internal node, the total message size is thus bounded by
(𝑛(𝑛 − 1) + 2 𝑓 + 1) (2dlog 𝑛e + 𝑀) ∈ 𝑂 (𝑛2 (𝑀 + log 𝑛)). �

We remark that the factor 𝑛 slowdown and factor roughly 𝑛2 increase in
message size are pessimistic. There are many (2 𝑓 + 1)-connected graphs in
which much better results are possible. However, there are examples where
things get as bad as stated.

E14.9 For constant 𝑓 and 𝑀 ≥ log 𝑛, come up with a graph in which the speed and
message size of the simulation are the best possible up to constant factors.

E14.10 How do the speed and message size of the simulation depend on 𝑓 ?

14.3 The Phase King Algorithm

14.3.1 Uniform and Non-uniform Algorithms
In general, the round 𝑟 by which all correct nodes have terminated may depend
on the execution. However, we are interested in algorithms that guarantee
termination within 𝑅(𝑓) ∈ N rounds, regardless of the inputs and the behavior
of faulty nodes. Analogously to Definition 14.1, we refer to 𝑅(𝑓) as the
round complexity of “the” algorithm. This is a slight abuse of notation. A
precise statement in accordance with Definition 14.1 might instead read “there

198 Chapter 14 Consensus

is a family of Consensus algorithms A(𝑓) parametrized by 𝑓 ∈ N, such that
A(𝑓) has round complexity at most 𝑅(𝑓).” However, the first way of phrasing
this is much more convenient, and there is no risk of misinterpretation: the
dependency on 𝑓 will be visible both in 𝑅(𝑓) and the pseudocode of the (family
of) Consensus algorithm(s), and as each algorithm from the family is designed
for a specific value of 𝑓 , it “knows” 𝑓 and, by extension, 𝑅(𝑓). The latter means
that the algorithm can always be modified to delay termination at correct nodes
until the end of round 𝑅(𝑓).

Similarly, one could argue that the state machine of each node depends on 𝑛 as
well, meaning that A(𝑓) should actually be viewed as a family of algorithms
A(𝑓 , 𝑛). Further, one could observe that the distinct identities of nodes,
which the algorithm makes use of, mean that each node is running a different
algorithm. This interpretation is the position that “algorithm” is a synonym
for “state machine.” Instead, for the purpose of this book an algorithm is a
template for all of the FSMs in the system.

Definition 14.12 (Uniform and Non-uniform Algorithms). An algorithm is a
template that, given all required parameters, can be translated into a collection
of FSMs, one for each node of the system. If the template depends on a
system parameter like, e.g., 𝑛, the algorithm is non-uniform in this parameter.
Otherwise, it is uniform in this parameter.

We now describe the Phase King algorithm, which solves Binary Consensus
in fully connected systems. The algorithm lets correct nodes communicate by
single-bit broadcasts. The algorithmic idea is as follows. Nodes maintain an
opinion what the output should be, which initially is their input value. In each
phase (i.e., iteration of the while loop in Algorithm 18), these opinions are
updated, with the goal to reach agreement. This is facilited by a leader – the
phase king – which instructs all nodes to switch to opinion 0 or 1. A correct
leader can help to overcome confusion spread by faulty nodes. However, this
introduces the complication that the leader might be faulty.

A faulty leader may seek to sow discord, by instructing different nodes to
switch to different values. Blindly following the instructions of the leader could
hence fail to achieve agreement. It could also break validity. The strategy to
overcome this has two components. First, the algorithm has 𝑓 + 1 phases with
different leaders, ensuring that there is at least one phase in which a correct
leader ensures that all correct nodes adopt the same opinion. Second, in each
phase nodes exchange their opinion, refusing to follow the advice of the leader
if it might be the case that all correct nodes already agree. This ensures that
existing agreement, which is achieved at the latest by the end of the first phase
with a correct leader, will be maintained. By extension, this also guarantees

14.3 The Phase King Algorithm 199

Algorithm 18 Phase King Algorithm at node 𝑖 ∈ 𝑉𝑔. Note that for convenience
the code assumes that 𝑖 also receives its own broadcasts and all messages are
consistent with the format required by the algorithm (i.e., invalid or missing
messages by faulty nodes are replaced by valid default values).

1: 𝑜𝑝 ← 𝑏𝑖
2: for 𝑗 = 1 . . . 𝑓 + 1 do
3: strong← 0
4: broadcast 𝑜𝑝 ⊲ first broadcast
5: if received at least 𝑛 − 𝑓 times 𝑜𝑝 then
6: strong← 1
7: end if
8: if strong = 1 then
9: broadcast 𝑜𝑝 ⊲ second broadcast

10: end if
11: if received fewer than 𝑛 − 𝑓 times 𝑜𝑝 then
12: strong← 0
13: end if
14: if 𝑖 = 𝑗 then ⊲ king’s broadcast
15: if received at least 𝑓 + 1 times 0 then
16: broadcast 0
17: else
18: broadcast 1
19: end if
20: end if
21: if strong = 0 and received 𝑏 ∈ {0, 1} from node 𝑗 then
22: 𝑜𝑝 ← 𝑏 ⊲ if not sure, obey the king
23: end if
24: end for
25: return 𝑜𝑝

validity, as all correct nodes having the same input means that there is agreement
right from the start.

The above strategy has to be slightly refined to deal with the complication
that the leader must be able to give advice that ensures agreement. While it
is straightforward to see that no two correct nodes with different opinions can
refuse to change their opinion, the leader might not know the opinion from
which correct nodes might refuse to deviate. This is addressed by a second
broadcast, in which nodes with strong opinion repeat their support for this
opinion. Only if it still looks like there might be existing agreement on this

200 Chapter 14 Consensus

opinion, nodes will remain stubborn—and in this case the leader will observe
sufficient support for this opinion to correctly identify and support it.

Algorithm 18 shows the pseudocode of the algorithm. Recall that we refer to
one iteration of the loop as a phase. We now formalize the intuition as individual
statements and prove them, which will ultimately imply Theorem 14.18.

Lemma 14.13. If, for some 𝑏 ∈ {0, 1} and all 𝑖 ∈ 𝑉𝑔, 𝑜𝑝𝑖 = 𝑏 at the beginning
of a phase of Algorithm 18, then the same holds at the end of the phase.

Proof. As |𝑉𝑔 | ≥ 𝑛− 𝑓 , each 𝑖 ∈ 𝑉𝑔 will set strong to 1 after the first broadcast.
Thus, in the second broadcast, |𝑉𝑔 | ≥ 𝑛 − 𝑓 nodes will broadcast 𝑏, and all
correct nodes will maintain strong = 1. Thus, for no 𝑖 ∈ 𝑉𝑔 𝑜𝑝𝑖 is changed by
the king’s broadcast. �

Corollary 14.14. Algorithm 18 satisfies validity.

Proof. Suppose 𝑏𝑖 = 𝑏 for some 𝑏 ∈ {0, 1} and all 𝑖 ∈ 𝑉𝑔. Then each 𝑖 ∈ 𝑉𝑔
initializes 𝑜𝑝𝑖 B 𝑏, which by inductive use of Lemma 14.13 never changes.
Thus each 𝑖 ∈ 𝑉𝑔 outputs 𝑏. �

Lemma 14.15. Fix a phase 𝑗 ∈ {1, . . . , 𝑓 +1}. There is a 𝑏 ∈ {0, 1} satisfying
that each 𝑖 ∈ 𝑉𝑔 holding strong = 1 after the first broadcast of phase 𝑗 has
𝑜𝑝𝑖 = 𝑏.

Proof. Assuming towards a contradiction that the claim is false, for 𝑏 ∈ {0, 1}
there are nodes 𝑖𝑏 ∈ 𝑉𝑔, such that 𝑖𝑏 receives at least 𝑛 − 𝑓 messages 𝑏. As
each correct node sends the same message to all nodes. Pick any 𝑛− 𝑡 votes for
each of the two nodes. The union of these two sets contain at most 𝑛 + |𝑉 \𝑉𝑔 |
differeent votes, since only the faulty nodes may send different votes to both
nodes. Thus,

2(𝑛 − 𝑓) ≤ 𝑛 + |𝑉 \𝑉𝑔 | ≤ 𝑛 + 𝑓 . |𝑉 \ 𝑉𝑔 | ≤ 𝑓

This is equivalent to 𝑛 ≤ 3 𝑓 , a contradiction. �

Lemma 14.16. Let phase 𝑗 ∈ {1, . . . , 𝑓 + 1} satisfies that node 𝑗 ∈ 𝑉𝑔. There
is some 𝑏 ∈ {0, 1} so that 𝑜𝑝𝑖 = 𝑏 for all 𝑖 ∈ 𝑉𝑔 at the end of phase 𝑗 .

Proof. By Lemma 14.15, there is 𝑏 ∈ {0, 1} satisfying that each 𝑖 ∈ 𝑉𝑔 with
strong = 1 after the first broadcast in phase 𝑗 has 𝑜𝑝𝑖 = 𝑏. Accordingly, only
faulty nodes may send a value different from 𝑏 in the second broadcast of phase
𝑗 . We distinguish two cases. The first is that there is no 𝑖 ∈ 𝑉𝑔 with strong = 1
after the second broadcast. In this case, each 𝑖 ∈ 𝑉𝑔 sets 𝑜𝑝𝑖 B 𝑏′ ∈ {0, 1}
after the king’s broadcast of phase 𝑗 , where 𝑏′ is the value broadcasted by the
king, i.e., node 𝑗 .

14.4 Reducing Consensus to Binary Consensus 201

The other case is that some node received 𝑛 − 𝑓 times 𝑏 in the second
broadcast. At least 𝑛 − 2 𝑓 of these messages must originate at correct nodes.
Hence, the king (i.e., node 𝑗) received at least 𝑛 − 2 𝑓 ≥ 𝑓 + 1 times 𝑏, where
we again use that 𝑛 > 3 𝑓 . On the other hand, there are at most 𝑓 faulty nodes,
so no node, including the king, did receive more than 𝑓 times 1 − 𝑏. It follows
that the king broadcasts 𝑏 in the king’s broadcast. As 𝑓 < 𝑛 − 𝑓 , each 𝑖 ∈ 𝑉𝑔
with 𝑜𝑝𝑖 = 1 − 𝑏 satisfies that strong = 0 after the second broadcast, and hence
sets 𝑜𝑝𝑖 B 𝑏 after the king’s broadcast. �

Corollary 14.17. Algorithm 18 satisfies agreement.

Proof. As there are at most 𝑓 faults, {1, . . . , 𝑓 + 1} ∩ 𝑉𝑔 ≠ ∅. Let 𝑗 ∈
{1, . . . , 𝑓 + 1} ∩𝑉𝑔. By Lemma 14.16, there is some 𝑏 ∈ {0, 1} so that 𝑜𝑝𝑖 = 𝑏
for all 𝑖 ∈ 𝑉𝑔 at the end of phase 𝑗 . By inductive use of Lemma 14.13, these
variables do not change any more. Hence all 𝑖 ∈ 𝑉𝑔 output 𝑏. �

Theorem 14.18. Algorithm 18 solves Binary Consensus in the synchronous
model. It runs for 𝑅(𝑓) = 3(𝑓 + 1) ∈ 𝑂 (𝑓) rounds and correct nodes commu-
nicate exclusively by 1-bit broadcasts.

Proof. Agreement and validity hold by Corollary 14.17 and Corollary 14.14,
respectively. The round complexity bound holds, because each of the 𝑓 + 1
phases takes three rounds, one for each broadcast. That communication is by
1-bit broadcasts only is immediate from the pseudocode. �

We remark that it might not be possible for nodes to not send a message,
e.g. when communication is implemented by sampling whether the voltage
on an incoming wire is 0 or 1 at some point during each synchronous round.
In this case, either a 2-bit connection is required, where one wire indicates
whether the sender has a strong opinion, or two rounds are used for encoding
this information sequentially.

14.4 Reducing Consensus to Binary Consensus

We now describe the algorithm reducing Consensus with inputs from 𝑋 to
Binary Consensus. The algorithm assumes a fully connected network. Its
pseudocode is given in Algorithm 19.

The main idea of the algorithm is to eliminate all but two possible choices
and then apply the Binary Consensus algorithm to decide between these two.
To do so, correct nodes will only support outputting a value different from the
default choice of 0 (or any other fixed default value), if it might be the case that
validity requires this. Accordingly, in the first broadcast nodes announce their

202 Chapter 14 Consensus

Algorithm 19 Consensus algorithm for input set 𝑋 based on a Binary Consensus
algorithm. The code is for node 𝑖 ∈ 𝑉𝑔. For convenience, we assume that nodes
also receive their own messages and that all received messages not adhering to
the used format are replaced by valid default values.

1: 𝑐 ← 0 ⊲ default output value, w.l.o.g. 0 ∈ 𝑋
2: broadcast 𝑥𝑖 ⊲ first broadcast
3: if received at least 𝑛 − 𝑓 times 𝑥𝑖 then
4: 𝑐 ← 𝑥𝑖 ⊲ all correct nodes might have this input
5: end if
6: 𝑏 ← 0 ⊲ input value for binary instance
7: broadcast 𝑐 ⊲ second broadcast
8: if received at least 𝑛 − 𝑓 times 𝑐′ ∈ 𝑋 \ {0} then
9: 𝑐 ← 𝑐′ ⊲ there can be at most on such 𝑐′

10: 𝑏 ← 1 ⊲ 𝑐′ is known to all nodes
11: else if received at least 𝑓 + 1 times 𝑐′ ∈ 𝑋 \ {0} then
12: 𝑐 ← 𝑐′ ⊲ there can be at most on such 𝑐′
13: end if
14: participate in binary consensus instance with input 𝑏
15: if output is 1 then
16: return 𝑐 ⊲ can only happen if everyone knows 𝑐
17: else
18: return 0
19: end if

inputs. They adopt them as candidate value 𝑐 if and only if they see at least
𝑛 − 𝑓 nodes claiming to have this input (counting themselves as well). As due
to the condition that 𝑛 > 3 𝑓 only one value 𝑐 ≠ 0 can have sufficient support
to pass this simple check, this already eliminates all candidate values different
from 𝑐 and 0.

However, similarly to the Phase King algorithm, there is a catch. While
only two candidate values remain, we cannot guarantee that all correct nodes
can determine which value 𝑐 passed the test at some correct node. Also very
similarly to the Phase King algorithm, we resolve this issue by performing a
second broadcast. As in the second broadcast the only candidate value different
from 0 supported by correct nodes is 𝑐, no other value can be received more
than 𝑓 times. Thus, if any correct node sets 𝑏 to 1, each correct node receives 𝑐
at least 𝑛−2 𝑓 > 𝑓 times in the second broadcast, while not receiving more than
𝑓 messages supporting any non-zero 𝑐′ ≠ 𝑐. Hence, if any correct node uses
input 1 in the Binary Consensus instance, all nodes agree on 𝑐. Together with

14.4 Reducing Consensus to Binary Consensus 203

these observations, the agreement property of the Binary Consensus routine
implies agreement for Algorithm 19. At the same time, validity is maintained:
if all correct nodes have the same input, it will be received at least 𝑛 − 𝑓 times
both in the first and second broadcast, all correct nodes will use input 1 for
the Binary Consensus routine, and validity of the Binary Consensus routine
implies validity of Algorithm 19.

We now formalize the above intuition and prove Theorem 14.22.

Lemma 14.19. If the Binary Consensus algorithm called in Algorithm 19
satisfies validity, so does Algorithm 19.

Proof. Assume first that all correct nodes have input 𝑥 ∈ 𝑋 \ {0}. Then each
𝑣 ∈ 𝑉𝑔 receives 𝑥 from at least |𝑉𝑔 | ≥ 𝑛 − 𝑓 nodes in the first broadcast.
Consequently, the same applies in the second broadcast. Thus, each 𝑣 ∈ 𝑉𝑔
uses input 1 for the Binary Consensus instance. By validity of the Binary
Consensus algorithm, the output of this instance is 1. Therefore, each 𝑣 ∈ 𝑉𝑔
outputs 𝑐𝑣 , which by the above observations equals 𝑥.

Now consider the case that all correct nodes have input 0. Then in the second
broadcast no correct node will receive more than 𝑓 messages 𝑐′ ∈ 𝑋 \ {0}.
Hence, each correct node usese input 0 for the Binary Consensus instance. By
validity of the Binary Consensus algorithm, the output of this instance is 0.
Thus, each 𝑣 ∈ 𝑉𝑔 outputs 0. �

The proof of the following lemma is analogous to that of Lemma 14.15.

Lemma 14.20. If 𝑛 > 3 𝑓 , there is at most one value 𝑐 ∈ 𝑋 \ {0} sent by correct
nodes in the second broadcast.

E14.11 Prove Lemma 14.20.

Lemma 14.21. If 𝑛 > 3 𝑓 and the Binary Consensus algorithm called in
Algorithm 19 satisfies agreement and validity, Algorithm 19 satisfies agreement.

Proof. By Lemma 14.20, there is a value 𝑐 ∈ 𝑋 \ {0} such that no correct
node broadcasts a value different from both 𝑐 and 0 in the second broadcast.
We distinguish two cases. First, assume that some 𝑣 ∈ 𝑉𝑔 uses input 1 for the
Binary Consensus instance. Thus, it received 𝑛 − 𝑓 messages supporting some
value 𝑐′ ≠ 0. Of these messages, 𝑛 − 2 𝑓 > 𝑓 must originate from correct
nodes. Thus, 𝑐′ = 𝑐 and each correct node receives 𝑐 at least 𝑓 + 1 times in the
second broadcast. By agreement of the Binary Consensus algorithm, either all
correct nodes output 1 or all output 0 for the Binary Consensus instance. We
conclude that they either all output 𝑐 or all output 0, satisfying agreement.

204 Chapter 14 Consensus

The second case is that no correct node uses input 1 for the Binary Consensus
instance. By validity of the Binary Consensus algorithm, the instance thus
outputs 0. We conclude that all correct nodes output 0, i.e., agreement holds
in this case as well. �

Theorem 14.22. Suppose we are given a fully connected network𝐺 of 𝑛 nodes
and a Binary Consensus algorithm A for it that tolerates 𝑓 < 𝑛

3 Byzantine
faults. Then Algorithm 19 is a Consensus algorithm on 𝐺 for inputs from 𝑋

that tolerates 𝑓 faults. In addition to calling A once as a subroutine, it runs
for 2

⌈
log |𝑋 |

𝐵

⌉
rounds, during which nodes broadcast messages of size 𝐵; here,

𝐵 ∈ N>0 can be chosen freely.

Proof. Validity and agreement hold by Lemmas 14.19 and 14.21, respectively.
Apart from callingA, the algorithm has correct nodes perform two broadcasts
of values from 𝑋 . This requires to broadcast dlog |𝑋 |e bits, which using 𝐵-bit
broadcasts takes

⌈
log |𝑋 |

𝐵

⌉
rounds each. �

14.5 Impossibility of Consensus with one Third of Faulty Nodes

We now show that Consensus cannot be solved if 3 ≤ 𝑛 ≤ 3 𝑓 . We use the
same approach as for Theorem 14.5. Assume for contradiction that there is an
algorithmA solving Consensus on an 𝑛-node graph𝐺 = (𝑉, 𝐸) in the presence
of up to 𝑓 faults, such that 3 ≤ 𝑛 ≤ 3 𝑓 . Thus, we can partition 𝑉 = 𝐴 ¤∪𝐵 ¤∪𝐶
such that 1 ≤ |𝑉𝑘 | ≤ 𝑓 for 𝑘 ∈ {1, 2, 3}. We construct a new graph𝐻 by making
two copies of each set, resulting in the partition 𝐴0 ¤∪𝐵0 ¤∪𝐶0 ¤∪𝐴1 ¤∪𝐵1 ¤∪𝐶1. Two
copies of nodes are joined by an edge in 𝐻 if and only if their was an edge
between their originals in 𝐺 and they belong to sets connected by an edge in
Figure 14.2. Nodes in the sets indexed with 0 receive input 0, nodes in sets
with index 1 receive input 1.

We first observe that we can execute A on 𝐻, where we assume that A
is allowed to halt whenever presented with a situation that cannot occur in an
execution on𝐺 with at most 𝑓 faults. By “halting” we mean that the FSM of the
node may transition to an additional state⊥which it will not leave and in which
it sends no messages. The following statement is analogous to Lemma 14.23.

Lemma 14.23. Assume that 3 ≤ 𝑛 ≤ 3 𝑓 and fix an 𝑛-node graph𝐺. Construct
𝐻 as described above, where each node in𝐻 has the same label from {1, . . . , 𝑛}
as the node in 𝐺 it is a copy of. Suppose A is a Consensus algorithm on 𝐺
that tolerates 𝑓 Byzantine nodes. Then we can execute A on 𝐻.

E14.12 Verify that the same arguments as used to prove Lemma 14.6 apply here.

14.5 Impossibility of Consensus with one Third of Faulty Nodes 205

Figure 14.2
Illustration of 6 nodes confusion strategy

Denote by E the execution ofA on𝐻 in which each node receives as input the
value its set is labeled by in Figure 14.2. By Lemma 14.23, E is well-defined,
although we cannot yet exclude that nodes may halt in E without properly
computing an output and terminating. With E well-defined, we can proceed
to show that there are several executions of A on 𝐺 that are indistinguishable
from E to a subset of the nodes. This statement is analogous to Lemma 14.7.

Lemma 14.24. For 𝑘 ∈ {0, 1}, consider the copies 𝐵′ and 𝐶 ′ of 𝐵 and 𝐶,
respectively, that in Figure 14.2 appear after 𝐴𝑘 in clockwise direction (e.g.,
for 𝑘 = 0, 𝐵′ = 𝐵0, 𝐶 ′ = 𝐶0). Then there is an execution A𝐴𝑘 of A on 𝐺 with
fault set 𝐴 such that the unique node with label 𝑖 in 𝐵′ ∪𝐶 ′ cannot distinguish
E from E𝐴𝑘 at 𝑖.

E14.13 Verify that the same arguments as used to prove Lemma 14.7 apply here.

Symmetric statements hold for 𝐵 and 𝐶.

Lemma 14.25. For 𝑘 ∈ {0, 1}, consider the copies 𝐶 ′ and 𝐴′ of 𝐶 and 𝐴,
respectively, that in Figure 14.2 appear after 𝐵𝑘 in clockwise direction. Then

206 Chapter 14 Consensus

there is an executionA𝐵𝑘 ofA on 𝐺 with fault set 𝐵 such that the unique node
with label 𝑖 in 𝐶 ′ ∪ 𝐴′ cannot distinguish E from E𝐵𝑘 at 𝑖.

Proof. Analogous to the proof of Lemma 14.24. �

Lemma 14.26. For 𝑘 ∈ {0, 1}, consider the copies 𝐴′ and 𝐵′ of 𝐴 and 𝐵,
respectively, that in Figure 14.2 appear after 𝐶𝑘 in clockwise direction. Then
there is an executionA𝐶𝑘 ofA on𝐺 with fault set 𝐶 such that the unique node
with label 𝑖 in 𝐴′ ∪ 𝐵′ cannot distinguish E from E𝐶𝑘 at 𝑖.

Proof. Analogous to the proof of Lemma 14.24. �

These indistinguishability results can be easily used to prove Theorem 14.5.

Corollary 14.27. In E, each node terminates and outputs the same value.

Proof. Suppose first that 𝑣 and 𝑤 are nodes from a set and the next set in
clockwise direction in Figure 14.2. A straightforward case distinction shows
that we can always apply Lemma 14.24, Lemma 14.25, or Lemma 14.26 for
some 𝑘 ∈ {0, 1} such that both 𝑣 and 𝑤 have corresponding nodes in 𝐺 that
are not faulty. As neither 𝑣 nor 𝑤 can distinguish E from an execution on 𝐺
at the (non-faulty) nodes with the same labels, by agreement of A they must
terminate and output the same value.

Now consider the general case. Because 𝐴, 𝐵, and 𝐶 are each non-empty,
the same is true for 𝐴𝑘 , 𝐵𝑘 , and 𝐶𝑘 for 𝑘 ∈ {0, 1, 2}. Using the above special
case inductively following the cycle in clockwise direction, we can show that
all nodes in

⋃2
𝑘=0 𝐴𝑘 ∪ 𝐵𝑘 ∪ 𝐶𝑘 have the same output. �

Corollary 14.28. In E, nodes in 𝐴0 output 0, while nodes in 𝐴1 output 1.

Proof. If 𝑣 ∈ 𝐴0, we apply Lemma 14.26 with 𝑘 = 0. By the lemma, 𝑣
cannot distinguish E from the execution E𝐶0 at the node of the same label.
In this execution, the correct nodes in 𝐴 ∪ 𝐵 have input 0, because nodes in
𝐵′ ∪ 𝐶 ′ = 𝐵 ∪ 𝐶 have input 0 in E. Therefore, by validity A must output 0 at
𝑣. For 𝑣 ∈ 𝐴1, we can reason analagously using 𝑘 = 1. �

Theorem 14.29. If 3 ≤ 𝑛 ≤ 3 𝑓 , Consensus with Byzantine faults cannot be
solved.

Proof. Assume that there is a Consensus algorithm for an 𝑛-node graph 𝐺
that tolerates 𝑓 faults, where 3 ≤ 𝑛 ≤ 3 𝑓 . Thus, we can construct 𝐻 and an
execution E on 𝐻 to which Corollaries 14.27 and 14.28 apply. By construction,
𝐴 is non-empty, implying the same for 𝐴1 and 𝐴2. Thus, by Corollary 14.28,

14.6 Running Time Lower Bound 207

there are two nodes in 𝐻 that can only output different values in E. This
contradicts Corollary 14.27, which asserts that in E all nodes terminate and
output the same value. �

14.6 Running Time Lower Bound

We now prove that any (deterministic) Consensus algorithm must run for at
least 𝑓 + 1 rounds in the worst case. In fact, we will show this for a much
weaker fault model: crash faults.

Definition 14.30 (Crash Faults). If node 𝑣 ∈ 𝑉 crashes in round 𝑟 ∈ N>0, it
operates like a non-faulty node in rounds 1, . . . , 𝑟 − 1, does nothing at all in
rounds 𝑟 +1, 𝑟 +2, . . ., and in round 𝑟 sends an arbitrary subset of the messages
it would send according to the algorithm.

Crashing nodes fail in a well-organized fashion. They do not lie, we do not
have to care about getting them up to speed again later, and by requiring that
nodes always send messages to each other in each round, nodes will learn that
a node failed from not receiving a message from the node. None of this affects
the worst-case running time lower bound in any way—regardless of whether
we consider Byzantine or crash faults, the bound of 𝑓 + 1 rounds turns out to
be tight.

We will show this lower bound now by a straightforward inductive argument.
The key ingredient is the following definition.

Definition 14.31 (Pivotal Nodes). Observe that an execution in the synchronous
model with crash faults is fully determined by specifying the node inputs and,
for each node, whether it crashes and, if so, in which round and which of its
messages of this round get sent. Given an execution E of a Consensus algorithm
with at most 𝑛 − 2 crash faults and a node 𝑣 ∈ 𝑉 that does not crash in E, we
call 𝑣 pivotal in round 𝑟 (of E) if changing E by crashing 𝑣 in round 𝑟 of E
without 𝑣 sending any messages results in an execution with a different output
(the execution does have an output, because at least one node does not crash).

In order to anchor the induction, we need to show that such nodes exist.

Lemma 14.32. There is a fault-free execution with a node that is pivotal in
round 1.

Proof. Consider executions E𝑖 , 𝑖 ∈ [𝑛 + 1], which are fault-free with node
𝑗 ∈ 𝑉 having input 0 if 𝑗 > 𝑖 and input 1 otherwise. By validity, E0 has output
0 and E1 has output 1. Thus, there must be some 𝑖 ∈ [𝑛] with the property that
E𝑖 has output 0 and E𝑖+1 has output 1. Consider the execution E ′ obtained by
crashing node 𝑖 + 1 in round 1, without 𝑖 + 1 getting any messages out. If E ′

208 Chapter 14 Consensus

has output 0, 𝑖 + 1 is pivotal in round 1 of execution E𝑖+1; if E ′ has output 1,
𝑖 + 1 is pivotal in round 1 of execution E𝑖 . �

The induction step works the same way, except that the inputs are replaced
by, for each node, the decision whether the pivotal node crashing in round 𝑟
sends a message to the node or not.

Lemma 14.33. Suppose 0 ≤ 𝑓 ≤ 𝑛 − 3 and E is an execution with 𝑓 failing
nodes, one in each round 1, . . . , 𝑓 , that has a pivotal node in round 𝑓 +1. Then
there is an execution E ′ which differs from E only in that this pivotal node
crashes in round 𝑓 + 1 and satisfies that there is a pivotal node in round 𝑓 + 2.

Proof. For 𝑖 ∈ [𝑛+1], define E𝑖 by having the pivotal node of E crash in round
𝑓 + 1 and succeed in sending its message for that round to node 𝑗 ∈ {1, . . . , 𝑛}
if and only if 𝑗 > 𝑖. As we crashed a pivotal node, we know that E0 and E𝑛
have different outputs. Thus, there must be some 𝑖 for which E𝑖 and E𝑖+1 have
different outputs. Now consider the executions E ′𝑖 and E ′𝑖+1 obtained from E𝑖
and E𝑖+1, respectively, in which node 𝑖+1 crashes in round 𝑓 +2 without sending
any messages. The only difference between these executions is whether 𝑖 + 1
received the message from the crashing node in round 𝑓 + 1 or not; as 𝑖 + 1
does not get a message out telling anyone of this difference, the outputs of E ′𝑖
and E ′𝑖+1 are the same. Thus, either E𝑖 and E ′𝑖 have different outputs or E𝑖+1
and E ′𝑖+1 have different outputs, i.e., either 𝑖 + 1 is pivotal in round 𝑓 + 2 of E𝑖
or it is pivotal in round 𝑓 + 2 of E𝑖+1. �

Corollary 14.34. Any Consensus algorithm has an execution with a pivotal
node in round min{ 𝑓 , 𝑛 − 2}.

Theorem 14.35. Consensus with 𝑓 faults cannot be solved in fewer than 𝑓 + 1
rounds, even if faults are restricted to crashing nodes.

Proof. Consider the execution E with a pivotal node in round min{ 𝑓 , 𝑛 − 2}
guaranteed to exist by Corollary 14.34, as well as the execution E ′ obtained
by crashing the pivotal node in round min{ 𝑓 , 𝑛 − 2}. The two executions have
different output, but at all nodes but the pivotal one, the only difference to be
observed before round min{ 𝑓 + 1, 𝑛 − 1} is whether the respective message
from the pivotal node in round min{ 𝑓 , 𝑛 − 2} was received or not.

Assume for contradiction that, in both executions, the (at least two) non-
crashed nodes terminate by the end of round min{ 𝑓 , 𝑛−2}. Let 𝑖, 𝑗 ∈ 𝑉 be two
such nodes crashing in neither E nor E ′. These nodes must also terminate in
the execution E ′′ in which the pivotal node sends its message to 𝑖, but does not
send its message to 𝑗 : To 𝑖, this execution is indistinguishable from E before

14.6 Running Time Lower Bound 209

round min{ 𝑓 +1, 𝑛−1}, and for 𝑗 it is indistinguishable from E ′. However, this
indistinguishability implies that they also output the same values as in E and
E ′, respectively. As these values differ, this violates agreement and hence is
a contradiction. We conclude that our assumption must be wrong and there is
some execution of the algorithm in which not all nodes terminate before round
min{ 𝑓 + 1, 𝑛 − 1}. �

Bibliography

[1] Hopkins, A. L., T. B. Smith, and J. H. Lala. 1978. Ftmp – a highly reliable fault-
tolerant multiprocess for aircraft. Proceedings of the IEEE 66 (10): 1221–1239.
doi:10.1109/PROC.1978.11113.

[2] Kopetz, H. 2003. Fault containment and error detection in the time-triggered archi-
tecture. In The sixth international symposium on autonomous decentralized systems,
2003. isads 2003., 139–146. doi:10.1109/ISADS.2003.1193942.

[3] Pease, M., R. Shostak, and L. Lamport. 1980. Reaching agreement in the
presence of faults. J. ACM 27 (2): 228–234. doi:10.1145/322186.322188.
http://doi.acm.org/10.1145/322186.322188.

[4] Srikanth, T. K., and Sam Toueg. 1987. Optimal clock synchronization. J. ACM 34
(3): 626–645. doi:10.1145/28869.28876. https://doi.org/10.1145/28869.28876.

