
15 Self-stabilizing Pulse Synchronization

Chapter Contents
15.1 Overview 212
15.2 Silent Consensus 217
15.3 Stabilization based on a resynchronization

algorithm 223
15.4 Providing the feedback mechanism for Al-

gorithm 16 236
15.5 Deterministic resynchronization using ex-

ponential clocks 236
15.6 Resynchronization using randomized time-

outs for resynchronization messages 238

Learning Goals
CL: todo

212 Chapter 15 Self-stabilizing Pulse Synchronization

15.1 Overview

In the previous chapter, we introduced and studied consensus in SMP (see
Definition 14.1). In this chapter, we will utilize this tool to achieve self-
stabilizing pulse synchronization (in TMP with the additional assumption that
nodes have known labels 1, . . . , 𝑛) in fully connected networks. The resulting
algorithms exhibit skew Θ(𝑑), but using the techniques from Chapter 13, this
can be improved to Θ(𝑢 + (𝜗 − 1)𝑑).

On the highest level, our plan is to repeatedly simulate consensus instances,
which after stabilization will always output 1, triggering a synchronized pulse.

E15.1 Recall the pulse synchronization algorithm from Chapter 9, whose state ma-
chine is given in Figure 9.5. If all correct nodes decide to start simulation of
a run of a consensus instance within a time interval of length at most 𝜏, how
can this algorithm be used to ensure that the simulation is successful? How
far apart are the times at which correct nodes complete the simulation of the
consensus routine?

E15.2 Assuming that max𝑣,𝑤∈𝑉𝑔 {𝐻𝑣 (0) − 𝐻𝑤 (0)} ≤ 𝜏/𝜗, provide a (not self-
stabilizing) pulse synchronization algorithm based on the above simulation.

After transient faults, an instance might output 0, letting nodes transition
into a recovery state. Being in the recovery state is a proof that some misstep
occurred, allowing nodes the freedom to diverge from the behavior they would
exhibit in regular operation. They use this freedom to try to convince other
nodes that recovery is needed, too. If successful, all nodes transition to the
recovery state, from which then a consistent “reboot” is performed.

A closer look suggests that this strategy might run into chicken-and-egg
problems: How do nodes reach consensus on when to start simulating a con-
sensus instance? Given that they are, initially, in arbitrary states, only some
of them might execute the consensus subroutine, breaking its guarantees and,
as a result, preventing to establish the required synchrony for starting the next
instance consistently. Similarly, we cannot expect to guarantee that all correct
nodes transition to the recovery state without first solving consensus. If 𝑓 or
fewer correct nodes observed an inconsistent state, the remaining at least 𝑛−2 𝑓
correct nodes could be fooled by the faulty nodes into believing that the system
works correctly; from their perspective, the resulting execution would be indis-
tinguishable from the one in which indeed all correct nodes are synchronized,
while the at most 𝑓 nodes in the recovery state are faulty.

Our key ingredient to overcoming these challenges will be to allow for an
“intermediate” option. This intermediate option is that not all correct nodes
participate, but in this case use input 0. The non-participating nodes will be

15.1 Overview 213

considered to support output 0 by virtue of their very non-participation; while
they will not explicitly generate a local output of 0, we can let them switch to
the recovery state based on the lack of a consensus instance they participate
in. This behavior of a consensus algorithm is formalized in the following
definition.

Definition 15.1 (Silent binary consensus). We call a binary consensus protocol
silent, if in each execution in which all correct nodes have input 0, correct nodes
send no messages.

Thus, if no correct node has input 1, non-participation of correct nodes is
indistinguishable (to others) from them having input 0 and, by validity of the
consensus protocol, participating correct nodes output 0.

In SMP, silent consensus can be achieved without significant overhead.

Theorem 15.8. Assume that we are given an SMP consensus protocol for a
fully connected network. Then there is an SMP silent binary consensus protocol
of the same resilience and message size, whose round complexity is larger by 2
extra rounds.
Corollary 15.2. For any 𝑛 > 3 𝑓 , there is an SMP silent binary consensus
protocol running for 𝑅(𝑓) = 3(𝑓 + 1) + 2 ∈ 𝑂 (𝑓) rounds, in which correct
nodes communicate exclusively by 1-bit broadcasts.

Proof. We apply Theorem 15.8 to Algorithm 18, whose properties are estab-
lished in Theorem 14.18. �

From here on, we will use 𝑅 as a shorthand to refer to the round complexity
of the SMP silent binary consensus algorithm we employ.

In order to leverage this result in TMP, we need to repeatedly simulate an SMP
protocol. Moreover, we will need that this simulation is self-stabilizing, in the
sense that if the calls to the subroutine satisfy certain timing requirements, then
the simulation wrapper will recommence operating according to specification
from any initial state. We capture the behavior we require in the following
definition.

Definition 15.3 (Recurrent TMP simulation of SMP silent binary consensus).
An algorithm is a recurrent TMP simulation of SMP silent binary consensus
algorithm A if and only if it meets the following specification. Nodes 𝑣 ∈ 𝑉𝑔
may generate run events “run 0” or “run 1”, which locally initiate simulation
of a consensus instance with input 0 or 1, respectively. Run events satisfy the
following constraints:
• All run events corresponding to a simulated instance fall into a time interval

of length at most 𝜏.

214 Chapter 15 Self-stabilizing Pulse Synchronization

• During each such interval, each 𝑣 ∈ 𝑉𝑔 generates at most one run event. If it
does, it is a participating node in this instance.

• If any node 𝑣 ∈ 𝑉𝑔 does not participate in an instance, each participating
node generates a run 0 event for the instance.

• No node 𝑣 ∈ 𝑉𝑔 generates another run event until each participating node
locally generated a unique corresponding output event, i.e., either “output
0” or “output 1.”

The output events simulate the behavior ofA, by which we mean the following:
• Agreement: All output events corresponding to an instance are of the same

type, i.e., either all are output 0 events or all are output 1 events.
• Validity: If all run events of an instance are run 0 events, the corresponding

output events are output 0 events. If all run events are run 1 events, the
corresponding output events are output 1 events.

• Termination: The output events of an instance occur within 𝑂 (𝜏 + 𝑅𝑑) time
of their run events, where 𝑅 is the round complexity of A.

• Timeliness: If the output of an instance is 1, all corresponding output events
occur within a time interval of length 𝜆 = 𝑂 (𝑑). Regardless of the output,
no output events occurs earlier than 𝜏 time after the first run event of the
instance.
The additional condition of timeliness is imposed to ensure a required timing

relation between the relevant outputs. In the synchronous model, such timing
is trivial to achieve by simply deciding on which round the output is “used,”
but more care is needed in the context of our simulation.

Due to the careful choice of constraints on run events, it is straightforward
not only to devise an algorithm meeting the requirements of Definition 15.3,
but to also make it self-stabilizing.

E15.3 Recall the algorithm you devised for Section 15.1. Can you modify it such that
is satisfies Definition 15.3. Hint: Apart from wrapping the previous routine
into a loop, you will have to account for the case that not all correct nodes
participate. Tackle this by locally aborting the simulation if it cannot progress
fast enough for any reason.

E15.4 What, if anything, needs to be done to make your routine self-stabilizing?

Theorem 15.9. Assume that we are given an SMP silent binary consensus
protocolA for a fully connected network that terminates after exactly 𝑅 rounds
at all correct nodes. Fix any 𝜏 ∈ R>0. Set 𝐻0 = 𝜗(𝜏+𝑑) and choose𝑇1, 𝑇2, and
𝑇3 in accordance with Theorem 9.18 for 𝑇 = (2𝜗2 + 3𝜗)𝑑. Then Algorithm 20

15.1 Overview 215

with A is a self-stabilizing recurrent TMP simulation of A, i.e., meets the
requirements of Definition 15.3. It has stabilization time 𝑂 (𝜏 + 𝑅𝑑).

To meet the input constraints, we employ the recovery mechanism mentioned
earlier. That is, by default consensus is initiated regularly by all correct nodes
in synchrony, which then results in output 1 (due to everyone using input 1
and validity), which triggers the next synchronized pulse. If this scheme is
(visibly) disrupted, nodes use input 0 instead, essentially voting for transition
to recovery. In the extreme case that a node does not observe enough pulses
to even participate in an instance, the silent consensus algorithm implicitly
interprets this as voting for a transition to the recovery state. This achieves
the goal of either forcing a synchronized pulse by all correct nodes—resulting
in stabilization due to established timing relations—or eventually getting all
correct nodes into the recovery state, in which they refuse to support generating
further pulses.

Naturally, eventually nodes in recovery must decide to start producing pulses
again. Unfortunately, the above scheme relies on nodes in the recovery state to
try to stop generation of (inconstent) pulses. In order to get out, they would all
have to decide to change strategy with sufficient synchrony. Nonetheless, all
this effort went not to waste. If we end up with all correct nodes in the recovery
state, this amounts to all of them having proof that something is amiss. We
exploit this by relying on a subroutine that only every now and then produces
a synchronized pulse.

Definition 15.4 (Resynchronization algorithm). 𝐵 is an 𝑓 -resilient resynchro-
nization algorithm with skew 𝜌 and separation window Ψ that stabilizes in time
𝑆(𝐵), if the following holds. Regardless of initial states, there exists a time
𝑡 ≤ 𝑆(𝐵) such that every correct node 𝑣 ∈ 𝑉𝑔 locally generates a resynchro-
nization pulse at time from [𝑡, 𝑡 + 𝜌) and no resynchronization pulse during
time [𝑡 −Ψ, 𝑡). We call such a resynchronization pulse good.

A good pulse can be used to jump-start the pulse generation in case all correct
nodes end up in the recovery state. Subsequently, pulses will be generated as
expected. Hence, correct nodes will not transition to recovery again, and
therefore safely ignore any future (possibly inconsistent) resynchronization
pulses.

Theorem 15.16. If (15.1)–(15.12) hold and the network is fully connected, the
pulse synchronization algorithm given by the state machines in Figures 15.1
and 15.2 stabilizes on a good resynchronization pulse. It has skew 2𝑑, 𝑃min =
3𝜆 + 3𝑑, and 𝑃max = 𝑂 (𝑇4 + 𝑇5 + 𝜏 + 𝑅𝑑).

216 Chapter 15 Self-stabilizing Pulse Synchronization

The remaining piece to the puzzle is to provide a resynchronization algorithm.
A very simple solution is given by having each correct node consider each of
𝑓 + 1 nodes the leader for some (local) time in a round-robin fashion. By
chosing for each subsequent node the speed at which switches between leaders
by a constant factor larger, we ensure that, eventually, each of the 𝑓 +1 candidates
will be considered the leader for some time by all correct nodes. Thus, a correct
leader can generate a resynchronization pulse.

Theorem 15.18. For any Ψ and 𝑓 < 𝑛, there is an 𝑓 -resilient determinis-
tic resynchronization algorithm with skew 𝑢 and separation window Ψ that
stabilizes in 𝑂 ((Ψ + 𝑑) (𝜗(𝑓 + 2))𝑛) time.
Corollary 15.5. For any fully connected network of 𝑛 > 3 𝑓 nodes, there
is a self-stabilizing pulse synchronization algorithm tolerating 𝑓 faults that
stabilizes in time 𝑂 (𝑓 𝑑 (𝜗(𝑓 + 2))𝑛). It has skew 2𝑑, 𝑃min = 3𝜆 + 3𝑑, and
𝑃max = 𝑂 (𝑅𝑑).

Proof. Follows from Corollary 15.2 and Theorems 15.9, 15.16, and 15.18
after determining suitable constraints so that Ψ = 𝑂 (𝑅𝑑), which is done in
Lemma 15.17. �

For a very small number of nodes, the above approach might yield an accept-
able stabilization time. Yet, even for tolerating 𝑓 = 2 faults with the smallest
corresponding number of nodes, 𝑛 = 7, (𝑓 + 1)𝑛 > 2000.

A much faster and still simple resynchronization algorithm can be obtained
using randomization. The idea is to have nodes spontenously declare them-
selves leader. If this is unpredictable (due to randomization), faulty nodes need
to constantly interfere to prevent a successful resynchronization pulse. How-
ever, by limiting how frequently nodes may generate such pulses and ignoring
them if they violate this constraint, eventually a good pulse emerges with a
large probability. This would result in stabilization time Θ(𝑛2Ψ) for a suitable
choice of parameters.

We present an improved scheme which adds a voting step: In order for a
resynchronization pulse to be locally accepted, 𝑛 − 𝑓 nodes must claim to have
observed it. Thus, 𝑛 − 2 𝑓 correct nodes must have done so, meaning that
faulty nodes use up their “budget of distraction” much faster. This leads to
stabilization time Θ(𝑛Ψ) with a large probability.

Theorem 15.21. If the assumptions in Definition 15.19 hold and 3 𝑓 < 𝑛,
Algorithm 22 with timeouts given by (15.16)–(15.18) is an 𝑓 -resilient resyn-
chronization algorithm with skew 2𝑑 that stabilizes in time 𝑂 ((Ψ + 𝑑)𝑛) with
probability 1 − 2−Ω(𝑛) .

15.2 Silent Consensus 217

Corollary 15.6. For any fully connected system of 𝑛 > 3 𝑓 nodes to which Def-
inition 15.19 applies, there is a randomized self-stabilizing pulse synchroniza-
tion algorithm tolerating 𝑓 faults that stabilizes in time𝑂 (𝑓 𝑛𝑑) with probability
1 − 2−Ω(𝑛) . It has skew 2𝑑, 𝑃min = 3𝜆 + 3𝑑, and 𝑃max = 𝑂 (𝑅𝑑).

Proof. Follows from Corollary 15.2 and Theorems 15.9, 15.16, and 15.21
after determining suitable constraints so that Ψ = 𝑂 (𝑅𝑑), which is done in
Lemma 15.17. �

Throughout this chapter, we assume a fully connected network of 𝑛 > 3 𝑓
nodes, in which nodes have known labels 1, . . . , 𝑛.

E15.5 Derive variants of Corollaries 15.5 and 15.6 in which all occurences of 𝑛 are
replaced by 𝑂 (𝑓).

E15.6 For Corollary 15.6, in case 𝑓 � 𝑛 this results in a much smaller probability
of stabilization in the stated time. Does this imply a trade-off between the two
variants of the corollary?

Remark 15.7.
It is possible to reduce the stabilization time of the second approach by avoiding
consensus in favor of using similar ideas with the pulse generation scheme from
Figure 9.5. The resulting algorithm is also simpler. However, we opted to not
analyze two very similar algorithms in this chapter.
In terms of the asymptotic behavior, the best known results are obtained by
using the approach we presented here recursively. This results in a deterministic
algorithm with stabilization time𝑂 (𝑛𝑑) and randomized algorithms stabilizing
in (log 𝑛)𝑂 (1)𝑑 time with probability 1 − 1/𝑛𝑐 for a constant 𝑐 that can be
chosen freely. These algorithms are also communication-efficient in that only
(log 𝑛)𝑂 (1) bits need to be broadcast by correct nodes in Θ(𝑑) time.
However, since all of these algorithms require full connectivity, they scale
poorly. However, these asymptotic bounds matter little for small numbers of
nodes.

15.2 Silent Consensus

In order to obtain silent binary consensus protocols, we take an arbitrary (non-
silent) consensus protocol 𝑅-round A and add an initial voting procedure, in
which sending no message implicitly supports the default output of 0. Nodes
with input 1 broadcast an (empty or 1-bit) message. If no correct node has input
1, then no node will receive any kind of message from more than 𝑓 distinct
nodes. Thus, they can safely opt for output 0 without ever running the protocol.
This requires some care, however, since some nodes might receive more than

218 Chapter 15 Self-stabilizing Pulse Synchronization

𝑓 messages, while others do not. To address this, we add a second round of
voting and let the nodes behave as follows based on the number of distinct
senders (also counting themselves) from which the receive messages:

1. ≤ 𝑓 messages in first vote: decide on output 0 and terminate;
2. > 𝑓 , but < 𝑛 − 𝑓 messages in first vote: send no message in second vote;
3. ≥ 𝑛 − 𝑓 messages in first vote: broadcast message in second vote;
4. ≤ 𝑓 messages in second vote: execute A with input 0, but output 0

regardless of the result;
5. > 𝑓 , but < 𝑛 − 𝑓 messages in second vote: execute A with input 0 and

output the result; and
6. ≥ 𝑛 − 𝑓 messages in second vote: execute A with input 1 and output the

result.

We remark that in the event that not all nodes executeA, the execution ofA is
inconsistent with the model assumptions. Thus, A might fail to specify state
updates or messages to send, or it might fail to terminate within 𝑅 rounds at a
correct node. If any of this applies, the respective node immediately aborts the
local execution of A and terminates with output 0.

Theorem 15.8. Assume that we are given an SMP consensus protocol for a
fully connected network. Then there is an SMP silent binary consensus protocol
of the same resilience and message size, whose round complexity is larger by 2
extra rounds.

Proof. We claim that the protocol described above meets all the requirements.
Note first that by Theorem 14.29, the resilience ofA cannot exceed d𝑛/3e − 1,
so it holds that 𝑛 > 3 𝑓 . Since correct nodes abort the local execution of A
after at most 𝑅 rounds, the new protocol runs for at most 𝑅 + 2 rounds. Clearly,
A will also have to use some kind of messages, so the initial two rounds of
voting do not increase the message size.

With these things out of the way, it remains to show silence, validity, and
agreement of the new protocol. To this end, we consider the following cases.

Case 1: No correct node has input 1. Then all correct nodes output 0 and terminate
right away.

Case 2: Some correct node terminates after the first vote. Then no correct node
received more than 2 𝑓 messages in the first vote. Hence, no correct node
sends a message in the second vote. Thus, all correct nodes running (or
aborting) A ignore the result and output 0.

Case 3: No correct node terminates after the first vote, but some node ignores the
result of executing A. Then no correct node received more than 2 𝑓 < 𝑛 − 𝑓

15.2 Silent Consensus 219

messages in the second vote. Since all correct nodes executeA with input 0,
by validity of A all correct nodes output 0.

Case 4: No correct node terminates after the first vote or ignores the result of executing
A. Then, by agreement of A, all correct nodes output the same value.

Case 5: All correct nodes have input 1. Then all correct nodes execute A with input
1 and output the result. By validity of A, they hence all output 1.

Case 1 shows silence. Cases 1 and 5 prove validity. Cases 2, 3, and 4 are
exhaustive and hence establish agreement. �

Knowing that the requirement of silence comes at no additional asymptotic
cost, we can move on to simulating silent binary consensus in TMP. Here, we
can leverage any non-stabilizing pulse synchronization algorithm, exploiting
that we only need to generate 𝑅 pulses. Therefore, wrapping the non-stabilizing
algorithm in a loop that resets it after completion and running a thread per-
forming simple consistency checks, we readily obtain the desired simulation.
For simplicity, we choose to employ the algorithm from Chapter 9 in our
construction.

We remark that, at first glance, the possibility that some nodes might not
participate in the simulation might seem like an obstacle. However, recall that
in this case the assumption is that no correct node participates with input 1, so
no messages are sent by correct nodes and all participating nodes immediately
terminate. In the event that a correct node wants to executeA, all correct nodes
participate and can therefore take part in running the pulse synchronization
algorithm driving the simulation (even if they immediately terminate in the
simulated synchronous consensus protocol).

Theorem 15.9. Assume that we are given an SMP silent binary consensus
protocolA for a fully connected network that terminates after exactly 𝑅 rounds
at all correct nodes. Fix any 𝜏 ∈ R>0. Set 𝐻0 = 𝜗(𝜏+𝑑) and choose𝑇1, 𝑇2, and
𝑇3 in accordance with Theorem 9.18 for 𝑇 = (2𝜗2 + 3𝜗)𝑑. Then Algorithm 20
with A is a self-stabilizing recurrent TMP simulation of A, i.e., meets the
requirements of Definition 15.3. It has stabilization time 𝑂 (𝜏 + 𝑅𝑑).
Proof. First, observe that in absence of run events, each node will set 𝑟 to 0
within 𝑂 (𝜏 + 𝑅𝑑) due to the local time window of [𝑐, 𝑐 + 𝑂 (𝜏 + 𝑅𝑑)]. By
Definition 15.3, each run event a node 𝑣 ∈ 𝑉𝑔 is followed by an output event
before the next run event at the node. Therefore, after discarding at most one
initial output event (occuring within 𝑂 (𝜏 + 𝑅𝑑) time) for each 𝑣 ∈ 𝑉𝑔, we can
associate each output event with the respective preceding run event at the node.
Noting that in the absence of run events, any 𝑣 ∈ 𝑉𝑔 with 𝑟 = 1 will set 𝑟 = 0 and
generate an output event within𝑂 (𝜏+𝑅𝑑) time, we have a one-to-one mapping

220 Chapter 15 Self-stabilizing Pulse Synchronization

Algorithm 20 TMP simulation of silent binary consensus at node 𝑣 ∈ 𝑉𝑔. Mem-
ory is allocated for exactly one instance of simulate. Thus, calling simulate
will effectively terminate any running instance by clearing any associated state.

1: if run event run b occurs then
2: 𝑟 ← 1 ⊲ indicates that an instance is (supposed to be) running
3: 𝑐 ← getH() ⊲ store local time of call
4: call simulate(𝑏)
5: end if
6: if (getH() ≥ 𝑐 + 2𝜗2𝜏 + 11𝜗4 (𝑅 + 1)𝑑 or getH() < 𝑐)) and 𝑟 = 1 then
7: 𝑟 ← 0 ⊲ terminate current instance
8: generate output 0 event
9: end if

10: procedure simulate(𝑏)
11: initialize local instance of state machine from Figure 9.5 to reset
12: run instance with getH() replaced by getH() − 𝑐 ⊲ “initialize” 𝐻𝑣 to 0
13: initialize local instance of A with input 𝑏
14: for each generated pulse do
15: ℎ← getH()
16: update state of A based on stored messages (𝑚← (𝑤))𝑤∈𝑉
17: if state of A indicates termination with output 𝑏 and 𝑟 = 1 then
18: generate output b event
19: 𝑟 ← 0 ⊲ terminate current instance
20: end if
21: for each 𝑤 ∈ 𝑉 \ {𝑣} do
22: compute the message 𝑚→ (𝑤) that 𝑣 sends to 𝑤 next in A
23: 𝑚← (𝑤) ← ⊥ // indicating no message received from 𝑤 (yet)
24: end for
25: wait until getH() = ℎ + 2𝜗𝑑
26: for each 𝑤 ∈ 𝑉 \ {𝑣} do
27: send 〈A, 𝑚→ (𝑤)〉 to 𝑤
28: end for
29: wait until getH() = ℎ + (2𝜗2 + 3𝜗)𝑑
30: for each 𝑤 ∈ 𝑉 \ {𝑣} do
31: if received 〈A, 𝑚〉 from 𝑤 during current loop iteration then
32: 𝑚← (𝑤) ← 𝑚 ⊲ can be arbitrary if received more than one
33: end if
34: end for
35: end for
36: end procedure

15.2 Silent Consensus 221

between input and output events. In particular, termination is satisfied, and for
each “instance” ofA (defined by the run events and resulting calls to simulate)
occuring within a time interval of length 𝜏) we have well-defined output events
at each participating 𝑣 ∈ 𝑉𝑔.

Accordingly, it is sufficient to show that for each instance whose first run
event occurs after the last discarded output event that agreement, validity,
and timeliness hold. Observe that the constraints on run events imposed by
Definition 15.3 guarantee that for each instance, all its output events occur before
any new run events, i.e., the next instance is started at any correct node. Thus,
non-participating nodes are not executing simulate during the instance, i.e., at
any time in the interval spanned by the run and output events of the instance.
Denote by 𝑉𝑝 ⊆ 𝑉𝑔 the set of participating nodes. By Definition 15.3, each
𝑣 ∈ 𝑉𝑝 has a run event at some time 𝑡𝑣 , where max𝑣∈𝑉𝑔 {𝑡𝑣} −min𝑣∈𝑉𝑔 {𝑡𝑣} ≤ 𝜏.
Since 𝐻0 > 𝜗(𝜏+𝑑), no 𝑣 ∈ 𝑉𝑝 can generate a pulse before time min𝑣∈𝑉𝑔 {𝑡𝑣}+
𝜏 + 𝑑 ≥ max𝑣∈𝑉𝑔 {𝑡𝑣}. Hence, the second part of the timeliness condition is
satisfied and no participating node will receive any 〈A, 𝑚〉 messages that do
not “belong” to this instance from correct nodes after generating its first pulse.

We distinguish two cases, the first being that not all correct nodes participate.
In this case, Definition 15.3 requires that all run events of the instance are run
0 events, i.e., all participating nodes use input 0 in their local instance of A.
Because A is silent, this entails that correct nodes will not send any 〈A, 𝑚〉
messages without receiving any such message from another correct node first.
However, as all calls to simulate at participating nodes use input 0, no correct
node will send a first such a message belonging to the instance. Since there are
also no stray messages not belonging to the instance are received, we conclude
that no 〈A, 𝑚〉 messages are sent by correct nodes that are received after the
first pulse at any participating nodes, but before the instance is terminated at
all participating nodes. We conclude that all participating nodes generate an
output 0 event, establishing validity and agreement; timeliness is satisfied, as
only the second, already established part of the condition applies in case no
output 1 events are generated.

The second case is that all correct nodes participate, i.e., 𝑉𝑝 = 𝑉𝑔. Consider
the time 𝑡0 := max𝑣∈𝑉𝑔 {𝑡𝑣} + 𝑑. By this time, all correct nodes have set their
local copy of the state machine from Figure 9.5 to reset at least 𝑑 time ago,
i.e., no propose messages from earlier instances are still in transit. At time
𝑡0, at 𝑣 ∈ 𝑉𝑔 a call to getH() − 𝑐 will return the value 𝐻𝑣 (𝑡0) − 𝑐𝑣 (𝑡0) =

222 Chapter 15 Self-stabilizing Pulse Synchronization

𝐻𝑣 (𝑡0) − 𝑐𝑣 (𝑡𝑣) = 𝐻𝑣 (𝑡0) − 𝐻𝑣 (𝑡𝑣) satisfying that

0 ≤ 𝐻𝑣 (𝑡0) − 𝐻𝑣 (𝑡𝑣) 𝑑𝐻𝑣
𝑑𝑡 > 0

≤ 𝜗(𝑡0 − 𝑡𝑣) 𝑑𝐻𝑣
𝑑𝑡 ≤ 𝜗

≤ 𝜗(𝜏 + 𝑑) defition of 𝑡0

≤ 𝐻0. choice of 𝐻0

Since the instances of Figure 9.5 run by the nodes use getH() − 𝑐 as their
hardware clock function, this establishes Equation (9.13) with time 0 replaced
by time 𝑡0. As we chose 𝑇1, 𝑇2, and 𝑇3 in accordance with Theorem 9.18 for
𝑇 = (2𝜗2 + 3𝜗)𝑑, we may hence “shift” time such that 𝑡0 = 0 and apply the
theorem to conclude that the correct nodes will produce pulses with skew 2𝑑,
𝑃min = 𝑇 , and 𝑃max = 𝜗𝑇 + (2𝜗+4)𝑑, where the first pulse of each correct node
is generated by time 𝑡0 +𝐻0 + (𝜗− 1)𝑇 + (2𝜗 + 2)𝑑; as no new run events occur
until all correct nodes generated their output events, this continues at least until
then.

By induction on the pulse index, which is equal to the round index of the
simulated execution of A, we now claim that synchronous execution of A is
correctly simulated with inputs matching the run events of the instance (until
a new run event occurs at a correct node), simulation of round 𝑖 ∈ N>0 is
complete by time 𝑡0 + 𝐻0 + (𝜗 − 1)𝑇 + (2𝜗 + 2)𝑑 + 𝑖𝑃max. To see this, first
observe that 𝑃min = 𝑇 = (2𝜗2 + 3𝜗𝑑) implies that each iteration of the for loop
in simulate completes before the next pulse, which occurs after at most 𝑃max
time. Because the skew is 2𝑑, no correct node sends a message for round/pulse
𝑟 before all correct nodes have started the 𝑟-th loop iteration. Similarly, a
message sent by node 𝑣 ∈ 𝑉𝑔 in the 𝑟-th loop iteration to 𝑤 ∈ 𝑉𝑔 is received
no later than (2𝜗 + 1)𝑑 time after 𝑣 generated the pulse, and hence more than
(2𝜗+3)𝑑 time after 𝑤 started its 𝑟-th loop iteration; thus, it is received no more
than (2𝜗2 + 3𝜗)𝑑 local time after the start of the loop iteration and taken into
account by 𝑤 when performing its state update in the next loop iteration.

The induction is anchored by each node initializing A locally according to
its run event and generating its first pulse by time 𝑡0 + 𝐻0 + (𝜗 − 1)𝑇 + (3 +
2(𝜗 − 1))𝑑 + 𝑖𝑃max. For the induction step, the above observations imply that
all messages sent in the previous loop iteration by correct nodes have been
received and stored; hence, state update and computed outgoing messages are
consistent with synchronous execution of A and the induction step succeeds.
In particular, 𝑅 rounds of the simulation are complete by time

𝑡0 + 𝐻0 + (𝜗 − 1)𝑇 + (2𝜗 + 2)𝑑 + 𝑅𝑃max < min
𝑣∈𝑉𝑔

{𝑡𝑣} + 2𝜗𝜏 + 11𝜗3 (𝑅 + 1)𝑑.

15.3 Stabilization based on a resynchronization algorithm 223

It follows that each node generates its local output event for the instance
because it determines that A terminated, or due to 2𝜗2𝜏 + 11𝜗4 (𝑅 + 1)𝑑
having passed since simulate has been called (i.e., the second if-block of
Algorithm 20 being executed). Hence, correct nodes generate output events
satisfying agreement and validity due to the respective properties of A. By
assumption, this happens after exactly 𝑅 simulated rounds, i.e., between con-
secutive pulses. Since pulses occur at most 𝑃max = 𝑂 (𝑑) time apart, we already
have the second part of the timeliness condition, the output events also satisfy
timeliness. �

15.3 Stabilization based on a resynchronization algorithm

As discussed in the overview section, our approach to obtaining a self-stabilizing
pulse synchronization is
• generate pulses based on repeatedly running consensus,
• let nodes transition to state recover if certain consistency checks fail or the

output of a consensus instance is 0, and
• “jump-start” the iterative process again using a resynchronization pulse if all

nodes end up in state recover.

More concretely, take a look at the state machine depicted in Figure 15.1. Each
node runs a local copy of this state machine. In normal operation, nodes will
alternate between the states pulse (locally generating a pulse) and wait. The
transition from pulse to wait requires that 𝑛 − 𝑓 nodes (are being observed)
to transition to pulse within 𝑇4 = 𝑂 (𝑑) local time around their own transition
to pulse, i.e., things looking like all correct nodes might have made generated
a pulse with skew 𝑂 (𝑑). The transition from wait to pulse requires that an
output 1 event is generated, locally terminating an instance of a (simulated
silent binary) consensus instance. The node will transition to recover instead
if
• too few nodes transition to pulse in synchrony when a pulse is generated,
• a consensus instance generates an output 0 event while in state wait, or
• 𝑇wait = Ω(𝑅𝑑) local time expired since transitioning to wait, i.e., in normal

operation a pulse should have been generated by now.

The sole way out of recover is also generation of an output 1 event, which
triggers a pulse regardless of the current state of the main state machine. The
difference between wait and recover lies in how the states relate to initiating
consensus instances, which is the sole purpose of the auxilliary state machine
depicted in Figure 15.2.

224 Chapter 15 Self-stabilizing Pulse Synchronization

WAIT

PULSERECOVER

G2’

G2

G2

G2

G1

G1’

Guard Condition
G1 〈𝑇4〉 expires and received ≥ 𝑛 − 𝑓 pulse messages within time

𝑇4 before 𝑇4 expired
G1’ 〈𝑇4〉 expires and ¬G1
G2 auxiliary machine signals output 1
G2’ 〈𝑇𝑤𝑎𝑖𝑡 〉 expires or auxiliary machine signals output 0

Figure 15.1
The main state machine. When a node transitions to state pulse it generates a local pulse
event and send a pulse message to all nodes. When the node transitions to state wait it
broadcasts a wait message to all nodes. Guard G1 employs a sliding window memory
buffer, which stores any pulse messages that have arrived within time 𝑇4 (as measured
by the local clock). When a correct node transitions to pulse it resets a local 𝑇4 timeout.
Once this expires, either Guard G1 or Guard G1’ become satisfied. Similarly, the timer
𝑇wait is reset when node transitions to wait. Once it expires, Guard G2’ is satisfied and
node transitions from wait to recover. The node can transitions to the pulse state
when Guard G2 is satisfied, which requires an output 1 signal from the auxiliary state
machine given in Figure 15.2.

The auxilliary state machine, which run in parallel to the main state machine,
shoulders the lion’s share of the stabilization work. It is carefully engineered to
ensure that, within𝑂 (𝑅𝑑) time, the run events it triggers via transitions to states
run 0 and run 1, respectively, meet the specification given in Definition 15.3.
These run events drive the recurrent simulation of a silent consensus protocol
in accordance with the definition. Hence, once the run events satisfy the
requirements, we are guaranteed that whenever any correct node generates an
output 1 event, all correct nodes do so within 𝑂 (𝑑) time. Such an event will
cause all correct nodes to transition to pulse and subsequently wait in tight
synchronization. In the auxilliary state machine, this lets all correct nodes,
which after the pulse immediately transitioned to state listen, to transition via

15.3 Stabilization based on a resynchronization algorithm 225

LISTEN READ

INPUT 0

INPUT 1

RUN 0

RUN 1

OUTPUT 0

OUTPUT 1

G4

G3

G5’

G5

G4

G7

G4

G6’

G6

G9

G8

G9

G8

Guard Condition
G3 generating resynchronization pulse
G4 ≥ 𝑓 + 1 wait messages within time 𝑇𝑙𝑖𝑠𝑡𝑒𝑛
G5 ≥ 𝑓 − 1 wait messages within time 𝑇𝑙𝑖𝑠𝑡𝑒𝑛
G5’ 〈𝑇𝑙𝑖𝑠𝑡𝑒𝑛〉 expires
G6 〈𝑇5〉 expires while not in recover
G6’ 〈𝑇5〉 expires while in recover
G7 〈𝑇5〉 expires
G8 A outputs ’1’
G9 A outputs ’0’ or G4 is satisfied

Figure 15.2
The auxiliary state machine. The auxiliary state machine is responsible for generating
the input events for the consensus simulation routine. The gray states correspond to
simulation of the consensus routine. If the node transitions to run 0, it generates an input
0 event. If the node transitions to run 1, it generates an run 1 event. When the consensus
simulation produces an output event, the node transitions to either output 0 or output 1
(sending the respective output signal to the main state machine) and immediately to state
listen. The timeouts 𝑇listen and 𝑇5 are reset when a node transitions to the respective
states that use a guard referring to them. Both input 0 and input 1 have a self-loop that
is activated if Guard G4 is satisfied. This means that if Guard G4 is satisfied while in
these states, the timer 𝑇5 is reset.

226 Chapter 15 Self-stabilizing Pulse Synchronization

read and input 1 to run 1 within a time window of length 𝜏 = 𝑂 (𝑅𝑑). Given
suitable constraints on timeouts, we can repeat this argument inductively to
show that any such event implies stabilization.

For simplicitly, we collect all inequalities that are required here and assume
throughout this section that all of them hold without stating this explicitly in
lemmas. For a sufficiently large constant 𝐶 > 0, the following constraints then
are sufficient for our purposes:

𝑇4 ≥ 𝜗(𝜆 + 𝑑) (15.1)
𝑇5 > (𝜗 − 1)𝑇4 + 𝜗(𝑇listen + 2𝑑) (15.2)

𝑇listen ≥ (𝜗 − 1)𝑇4 + 𝜗(𝜆 + 2𝑢) (15.3)
𝑇wait ≥ 𝜗(𝜆 + 𝑇4 + 𝑇5 + 𝑇listen + 2𝑑) (15.4)

𝜏 >

(
1 − 1

𝜗

)
𝑇5 + 2𝑇4 + 3𝑇listen + 𝜆 + 3𝑑 (15.5)

𝑇5 ≥ 𝜗(4𝑇4 + 3𝑇listen + 𝐶𝑅𝑑)
3 − 2𝜗

(15.6)

𝜏 = 𝑂 (𝑅𝑑) (15.7)
𝑇4 + 𝑇listen = 𝑂 (𝑑) (15.8)

𝑇listen ≥ 𝜗(2𝑇4 + 2𝑑) (15.9)
𝑇wait = 𝑂 (𝑇5) (15.10)
𝜏 ≥ 𝜌 (15.11)
Ψ ≥ 𝐶𝑇5 (15.12)

With this prerequisites in place, we can now formalize the above statement.

Lemma 15.10. Assume that during [𝑡0, 𝑡1], Guard G4 is not satisfied by any
𝑣 ∈ 𝑉𝑔 that is in state run 0 or run 1. Moreover, assume that the run events
generated by nodes 𝑣 ∈ 𝑉𝑔 transitioning to run 0 or run 1 satisfy the conditions
of Definition 15.3 during [𝑡0, 𝑡1] and are used as input to a recurrent TMP
simulation of SMP silent binary consensus. If there is 𝑡 ∈ [𝑡0 +𝑂 (𝑅𝑑), 𝑡1 − 𝜆]
when some 𝑣 ∈ 𝑉𝑔 triggers an output 1 event, denote by 𝑡 ′ ∈ [𝑡 − 𝜆, 𝑡] the first
output event of the same consensus instance at a correct node. Then the state
machines given in Figures 15.1 and 15.2 solve pulse synchronization with skew
𝜆, 𝑃min = 3𝜆 + 3𝑑, and 𝑃max = 𝑂 (𝑇4 + 𝑇5 + 𝜏 + 𝑅𝑑) from time 𝑡 ′ on.

Proof. Note that the condition that Guard G4 is not satisfied by any 𝑣 ∈ 𝑉𝑔 in
run 0 or run 1 implies that correct nodes transition to output 0 or output 1
if and only if the simulation algorithm generates a respective event. Given that
the transitions to run 0 and run 1 satisfy the conditions of Definition 15.3,

15.3 Stabilization based on a resynchronization algorithm 227

consensus instances (and which output events are associated with them) are
well-defined. By timeliness, 𝑡 ′ is hence well-defined and each 𝑣 ∈ 𝑉𝑔 generates
a (unique) output 1 event at a time 𝑝𝑣,1 ∈ [𝑡 ′, 𝑡 ′+𝜆]. In the main state machine,
this forces a transition to pulse from any state (including pulse, as indicated
by the loop), i.e., generation of a pulse.

Therefore, it remains to show that the nodes 𝑣 ∈ 𝑉𝑔 will continue to generate
pulses with skew𝜆 satisfying the period bounds 𝑃min and 𝑃max. We show this by
induction, where the induction hypothesis not only states that the first 𝑖 ∈ N>0
pulses have been generated correctly at times 𝑝𝑣,𝑖 , 𝑣 ∈ 𝑉𝑔, but also that the run
events satisfy the conditions of Definition 15.3 during [𝑡0,max𝑣∈𝑉𝑔 {𝑝𝑣,𝑖}].

The above considerations and the prerequisites of the lemma anchor the
induction at 𝑖 = 1. For the step from 𝑖 ∈ N>0 to 𝑖 + 1, observe first that each
𝑣 ∈ 𝑉𝑔 will receive 𝑛 − 𝑓 pulse messages from distinct senders (counting
themselves as well) during

[min
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑑 − 𝑢, max
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑑] ⊂ [𝑝𝑣,𝑖 − 𝜆 + 𝑑 − 𝑢, 𝑝𝑣,𝑖 + 𝜆 + 𝑑] .

Since this time window is of length at most 𝜆 + 𝑢 and 𝑇4 > 𝜗(𝜆 + 𝑑) by (15.1),
it follows that all correct nodes transition to state wait during[

min
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇4
𝜗
+ 𝑑 − 𝑢, max

𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇4 + 𝑑
]
,

with the corresponding messages being received during[
min
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇4
𝜗
+ 2(𝑑 − 𝑢), max

𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇4 + 2𝑑
]
.

By (15.3) and the fact that the 𝑖-th pulse has skew at most 𝜆, this lies within
an interval of 𝑇listen local time at each correct node. Because each 𝑣 ∈ 𝑉𝑔
transitions to state pulse at time 𝑝𝑣,𝑖 , by timeliness it must have been in state
run 0 or run 1 for at least 𝜏 time. Hence, no wait message from this node is
received during [max𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} − 𝜏 + 𝑑,min𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} + 𝑇4

𝜗 + 2(𝑑 − 𝑢)], i.e.,
for more than 𝜏 − 𝜆 − 𝑢 time before the above time interval begins. By (15.5),
we have that

𝜏 − 𝜆 − 𝑢 > 𝑇listen.

Together, this entails that each 𝑣 ∈ 𝑉𝑔 transitions to read and then input 1 at
some time from [min𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} +𝑇4/𝜗+2(𝑑 −𝑢),max𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} +𝑇4 +2𝑑].

Next, note that no correct node can transition to wait again without producing
another pulse first and𝑇4 > 𝜗𝜆 expiring again at correct nodes. Thus, we get that
no wait messages are received from correct nodes during (max𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} +
𝑇4 + 2𝑑,min𝑤∈𝑉𝑔 {𝑝𝑤,𝑖+1} + 𝜆] (where so far min𝑤∈𝑉𝑔 {𝑝𝑤,𝑖+1} = ∞ has not

228 Chapter 15 Self-stabilizing Pulse Synchronization

been ruled). Consequently, no correct node satisfies Guard G4 at any time
during (max𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} +𝑇4 +𝑇listen + 2𝑑,min𝑤∈𝑉𝑔 {𝑝𝑤,𝑖+1} +𝜆]. In particular,
no correct node in state input 1 will reset its timeout 𝑇5 or leave state run 1
without generating an output event.

Denote by 𝑡 the earliest time when a correct node 𝑣 ∈ 𝑉𝑔 leaves state input
1 (after 𝑝𝑣,𝑖 , i.e., during the current iteration). As 𝑣 transitioned to input 1 no
earlier than time min𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} + 𝑇4/𝜗 + 2(𝑑 − 𝑢), we have that

𝑡 ≥ min
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇4 + 𝑇5
𝜗
+ 2(𝑑 − 𝑢) (15.13)

> max
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇4 + 𝑇listen + 2𝑑 . (15.2)

Define 𝑡 as the infimum of all times 𝑡 ′ ≥ 𝑡 when one of the following occurs at
some 𝑣 ∈ 𝑉𝑔:

(i) 𝑣 leaves run 0 or run 1 due to satisfying Guard G4.
(ii) 𝑣 generates its second run event after time 𝑝𝑣,𝑖 .
(iii) 𝑣 transitions to run 0.
(iv) 𝑣 generates its first output event after time 𝑝𝑣,𝑖 .

If (i) applies at time 𝑡, we have that min𝑤∈𝑉𝑔 {𝑝𝑤,𝑖+1} ≥ 𝑡 ≥ 𝑡, contradict-
ing that we established that (i) cannot occur during (max𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} + 𝑇4 +
2𝑑,min𝑤∈𝑉𝑔 {𝑝𝑤,𝑖+1} + 𝜆] ⊃ [𝑡,min𝑤∈𝑉𝑔 {𝑝𝑤,𝑖+1}]. If (ii) applies at time 𝑡,
𝑣 must have transitioned to and left one of the states run 0 or run 1 during
(𝑝𝑣,𝑖 , 𝑡). However, this by defintion of 𝑡 this would imply that (i) or (iii) occured
at 𝑣 during (𝑝𝑣,𝑖 , 𝑡), contradicting the definition of 𝑡. If (iii) applies at time
𝑡, 𝑣 must be in state recover and 𝑇5 expires at 𝑣. Since Guard G4 does not
hold at 𝑣 during (max𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} + 𝑇4 + 𝑇listen + 2𝑑,min𝑤∈𝑉𝑔 {𝑝𝑤,𝑖+1} + 𝜆] ⊃
(max𝑤∈𝑉𝑔 {𝑝𝑤,𝑖} + 𝑇4 + 𝑇listen + 2𝑑, 𝑡], we can bound

𝑡 ≤ max
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇4 + 𝑇5 + 𝑇listen + 2𝑑 𝑇5 expires at 𝑡

≤ 𝑝𝑣,𝑖 + 𝜆 + 𝑇4 + 𝑇5 + 𝑇listen + 2𝑑 skew 𝜆

≤ 𝑝𝑣,𝑖 + 𝑇wait
𝜗
. (15.4)

Because 𝑣 transitioned to wait after time 𝑝𝑣,𝑖 , this entails that 𝑣 generates an
output 0 event at time 𝑡, i.e., (iv) applies as well at time 𝑡.

Therefore, we have that 𝑡 is the first time when some 𝑣 ∈ 𝑉𝑔 generates its first
output event after time 𝑝𝑣,𝑖 . Since (i) and (ii) are excluded during [𝑡, 𝑡], we
can conclude that the requirements of Definition 15.3 on run events hold until
at least time min 𝑡 + 𝜏, 𝑡. This, in turn, entails that the output events satisfy the
constraints imposed by Definition 15.3 as well. In particular, timeliness of the

15.3 Stabilization based on a resynchronization algorithm 229

recurrent consensus simulation ensures that no output event is generated before
time 𝑡 + 𝜏, i.e., 𝑡 ≥ 𝑡 + 𝜏. Given that

𝑡 + 𝜏 ≥ min
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇4 + 𝑇5
𝜗
+ 2(𝑑 − 𝑢) + 𝜏

≥ max
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇4 + 𝑇5
𝜗
+ 2(𝑑 − 𝑢) + 𝜏 − 𝜆skew 𝜆

> max
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} + 𝑇4 + 𝑇5 + 𝑇listen + 2𝑑,(15.5)

this yields that at all 𝑣 ∈ 𝑉𝑔 timeout 𝑇5 expires before time 𝑡. Thus, by (iii) all
correct nodes transition to run 1 during time [𝑡, 𝑡 + 𝜏].

Note that no correct node can generate another run event before time 𝑡+𝑇4/𝜗 >
𝑡+𝜆. Hence, we conclude that the conditions on run events from Definition 15.3
hold at least until time 𝑡 + 𝜆. Using that some correct node generates an output
event at time 𝑡, that all correct nodes generated a input 1 event during [𝑡, 𝑡 + 𝜏],
and the conditions on output events imposed by Definition 15.3, we conclude
that each 𝑣 ∈ 𝑉𝑔 generates a (unique) output 1 event at a time 𝑝𝑣,𝑖+1 ∈ [𝑡, 𝑡+𝜆].

To complete the induction step and the proof, it remains to establish the
period bounds. We have that

min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖+1} − max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖} = 𝑡 − max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖}dfn. of 𝑡

≥ 𝑡 − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖} − 𝜆skew 𝜆

≥ 𝑡 − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖} + 𝜏 − 𝜆lower bound on 𝑡

≥ 𝑇4 + 𝑇5
𝜗
+ 2(𝑑 − 𝑢) + 𝜏 − 𝜆(15.13)

> 2𝑇listen + 𝜆 + 3𝑑(15.1), (15.2),
(15.5)

> 3𝜆 + 3𝑑(15.3)

and

max
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖+1} − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖}

≤ 𝑡 − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖} + 𝜆dfn. of 𝑡 , skew 𝜆

= 𝑡 − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖} + 𝜆 +𝑂 (𝜏 + 𝑅𝑑)termination of
simulation

= max
𝑤∈𝑉𝑔

{𝑝𝑤,𝑖} − min
𝑣∈𝑉𝑔

{𝑝𝑣,𝑖} + 𝑇4 + 𝑇5 + 𝑇listen + 2𝑑 + 𝜆 +𝑂 (𝜏 + 𝑅𝑑)𝑇5 expires

= 𝑇4 + 𝑇5 + 𝑇listen +𝑂 (𝜏 + 𝜆 + 𝑅𝑑)skew 𝜆

= 𝑂 (𝑇4 + 𝑇5 + 𝜏 + 𝑅𝑑)(15.1), (15.2),
(15.5)

�

230 Chapter 15 Self-stabilizing Pulse Synchronization

Hence, our task is to establish the preconditions of Lemma 15.10 for some
sufficiently small time 𝑡 ′. This means to show that the auxilliary state machine
will run as intended for some sufficiently large time window, in the sense
that the generated run events satisfy Definition 15.3 and Guard GG4 is not
interfering with the control flow by kicking correct nodes out of run 0 or run
1. The observation towards this goal is that Guard G1 and Guard G1’ represent
a barrier that enforces spacing between (groups of) pulse-wait transitions.

Lemma 15.11. Suppose that 𝑣 ∈ 𝑉𝑔 transitions to wait at time 𝑡 > 2𝑇4 + 𝑑 and
Guard G3 does not hold at correct nodes during [𝑡−2𝑇4−𝑑, 𝑡+𝑇5/𝜗−2𝑇4−𝑑].
Then no correct nodes transition to wait during (𝑡 +2𝑇4 + 𝑑, 𝑡−2𝑇4− 𝑑 +𝑇5/𝜗).

Proof. Since 𝑡 > 2𝑇4, in order to satisfy Guard G1 at time 𝑡, 𝑣 must have
actually received 𝑛 − 𝑓 pulse messages from distinct at of after time 𝑑. This
must actually been sent at or after time 0. Thus, at least 𝑛 − 2 𝑓 > 𝑓 correct
nodes transitioned to state pulse during [𝑡 − 2𝑇4 − 𝑑, 𝑡).

Denote by 𝐴 ⊆ 𝑉𝑔 the respective set of nodes. Any correct node satisfying
Guard G1 at a time 𝑡 ′ > 𝑡+2𝑇4+𝑑 cannot do so based on messages nodes𝑤 ∈ 𝑉𝑔
sent before time 𝑡, since these are received by time 𝑡 + 𝑑 and hence “forgotten”
before time 𝑡 ′ for the purpose of Guard G1. However, |𝑉 \ 𝐴| < 𝑛 − 𝑓 , so at
least one node 𝑤 ∈ 𝐴 must transition to pulse again for any correct node to
transition to wait at a time 𝑡 ′ > 𝑡 + 2𝑇4 + 𝑑. Since 𝑤 transitioned to pulse at
or after time 𝑡 − 2𝑇4 − 𝑑, it must have generated an output 1 event at this time
and transitioned to listen. Because the prerequisites of the lemma rule out that
Guard G3 holds at 𝑤 during the relevant time interval, 𝑤 generating another
output 1 event entails that 𝑤must satisfy Guard G7 after transitioning to input
0 or either Guard G6 or Guard G6’ after transitioning to input 1. Either way,
this involves a timeout of 𝑇5 being reset and expiring, so this takes at least until
time 𝑡 − 2𝑇4 − 𝑑 + 𝑇5/𝜗. �

Using this lemma, we can derive a very similar statement for correct nodes
satisfying Guard G4.

Lemma 15.12. Suppose that 𝑣 ∈ 𝑉𝑔 satisfies Guard G4 at time 𝑡 > 𝑇listen +
2𝑇4 +2𝑑 and Guard G3 does not hold at correct nodes during [𝑡−𝑇listen−2𝑇4−
2𝑑, 𝑡 + 𝑇5/𝜗 + 𝑇listen − 2𝑇4]. Then no correct nodes satisfy Guard G4 during
[𝑡 + 𝑇listen + 2𝑇4 + 2𝑑, 𝑡 − 2𝑇4 − 2𝑑 + 𝑇5/𝜗).

Proof. Node 𝑣 must have received at least one wait message from a correct
node no earlier than time 𝑡−𝑇listen, which was sent at a time 𝑡𝑠 ∈ [𝑡−𝑇listen−𝑑, 𝑡).
Applying Lemma 15.11 to 𝑡𝑠 , we get that no wait messages are sent by correct
nodes during (𝑡𝑠 + 2𝑇4 + 𝑑, 𝑡𝑠 − 2𝑇4 − 𝑑 + 𝑇5/𝜗). Hence, no such messages are

15.3 Stabilization based on a resynchronization algorithm 231

received from correct nodes during (𝑡𝑠+2𝑇4+2𝑑, 𝑡𝑠−2𝑇4−𝑑+𝑇5/𝜗) ⊂ [𝑡+2𝑇4+
2𝑑, 𝑡 −𝑇listen − 2𝑇4 − 2𝑑 +𝑇5/𝜗). It follows that Guard G4 cannot be satisfied at
any correct node during [𝑡 +𝑇listen + 2𝑇4 + 2𝑑, 𝑡 −𝑇listen − 2𝑇4 − 2𝑑 +𝑇5/𝜗). �

Next, we leverage Lemma 15.12 to show that the requirements imposed by
Definition 15.3 hold. First, we establish that the (global) state of the consensus
simulation will be “cleared.” This is implicitly expressed by having a time
window of length 𝑂 (𝑅𝑑) during which no run events are generated, as this
entails that the simulation stabilizes gets any “residual” output events “out of
its system.”

Lemma 15.13. Suppose that Guard G3 does not hold at correct nodes during
[𝑡, 𝑡], where 𝑡 ≥ 𝑇listen +2𝑇4 +2𝑑. Moreover, transitions to states run 0 and run
1 are used as run events to a self-stabilizing recurrent TMP simulation of SMP
binary consensus with stabilization time 𝑂 (𝑅𝑑). If 𝑣 ∈ 𝑉𝑔 transitions to run 1
or run 0 at a time 𝑡 ∈ (𝑡 +𝑇5 +3𝑇listen +3𝑇4 +2𝑑, 𝑡 − (𝑇listen −2𝑇4) −𝑇5/𝜗], then
correct nodes generate neither input nor output events during [𝑡0−𝐶𝑅𝑑/2, 𝑡0),
where

𝑡0 := 𝑡 +
(
1 − 1

𝜗

)
𝑇5 + 2𝑇listen + 2𝑇4 + 𝐶𝑅𝑑.

Proof. We claim that Guard G4 held at 𝑣 at some time from [𝑡, 𝑡]. Assume
towards a contradiction that this is not the case. Otherwise, 𝑣 would have left
state read (if it was in that state at time 𝑡) by time 𝑡+𝑇listen and then transitioned
to either run 0 or run 1 by time 𝑡+𝑇listen+𝑇5. This would imply that 𝑣 transitions
to and leave again state listen before time 𝑡, as otherwise it couldn’t generate
a run event at time 𝑡. However, since Guard G3 does not hold during [𝑡, 𝑡] 3 𝑡,
this requires Guard G4 to hold at 𝑣 at some time from [𝑡, 𝑡], contradicting our
assumption that this is not the case. Hence, indeed Guard G4 held at 𝑣 at some
time from [𝑡, 𝑡].

We set 𝑡𝑣 := sup𝑡′≤𝑡 {Guard G4 holds at v at time 𝑡 ′}. Since 𝑇5 keeps being
reset (i.e., does not start running) at 𝑣 whenever Guard G4 holds, Guard G6,
Guard G6’, and Guard G7 imply that 𝑣 cannot transition from input 0 or input
1 to run 0 or run 1 (possibly again) before time 𝑡𝑣 +𝑇5/𝜗. Because Guard G3
cannot be satisfied at time 𝑡, this entails that

𝑡 ≥ 𝑡𝑣 + 𝑇5
𝜗
. (15.14)

On the other hand, 𝑣 must be in one of the states read, input 0, or run 1 at
time 𝑡𝑣 , implying as above that

𝑡 ≤ 𝑡𝑣 + 𝑇listen + 𝑇5 (15.15)

232 Chapter 15 Self-stabilizing Pulse Synchronization

due to timeouts expiring.
Now consider any 𝑤 ∈ 𝑉𝑔. As

[𝑡𝑣 − 𝑇listen − 2𝑇4 − 2𝑑, 𝑡𝑣 + 𝑇5/𝜗 + 𝑇listen − 2𝑇4]
⊂ [𝑡 − 𝑇5 − 3𝑇listen − 3𝑇4 − 2𝑑, 𝑡 + 𝑇listen − 2𝑇4] (15.14), (15.15)

⊂ [𝑡, 𝑡], prereq. on 𝑡

by Lemma 15.12 Guard G4 does not hold at 𝑤 during [𝑡𝑣 +𝑇listen+2𝑇4+2𝑑, 𝑡𝑣 −
2𝑇4 − 2𝑑 + 𝑇5/𝜗). Because
• states read, input 0, and run 1 are vacated within𝑇listen+𝑇5 time if Guard G4

does not hold,
• transitioning from listen via these states to run 0 or run 1 takes at least
𝑇5/𝜗 time, and

• Guard G3 is not satisfied at correct nodes during[
𝑡𝑣 + 𝑇5 + 2𝑇listen + 2𝑇4 + 2𝑑, 𝑡𝑣 − 2𝑇4 − 2𝑑 + 2𝑇5

𝜗

]

⊂
[
𝑡, 𝑡 + 𝑇5

𝜗

]
(15.14), (15.15)

⊂ [𝑡, 𝑡] prereq. on 𝑡,

it follows that no run events are generated by correct nodes during [𝑡𝑣 + 𝑇5 +
2𝑇listen + 2𝑇4 + 2𝑑, 𝑡𝑣 − 2𝑇4 − 2𝑑 + 2𝑇5/𝜗). Because the simulation of binary
consensus stabilizes in time 𝑂 (𝑅𝑑), it follows that during[

𝑡𝑣 + 𝑇5 + 2𝑇listen + 2𝑇4 +𝑂 (𝑅𝑑), 𝑡𝑣 − 2𝑇4 − 2𝑑 + 2𝑇5
𝜗

)

⊃
[
𝑡 + (𝜗 − 1)𝑇5

𝜗
+ 2𝑇listen + 2𝑇4 +𝑂 (𝑅𝑑), 𝑡 − 𝑇listen − 2𝑇4 − 2𝑑 + (2 − 𝜗)𝑇5

𝜗

)
(15.14), (15.15)

⊃
[
𝑡 + (𝜗 − 1)𝑇5

𝜗
+ 2(𝑇listen + 𝑇4 + 𝐶𝑅𝑑2

, 𝑡 + (𝜗 − 1)𝑇5
𝜗

+ 2𝑇listen + 2𝑇4 + 𝐶𝑅𝑑
)

(15.6), 𝐶 large

no output events occur at correct nodes. �

Lemma 15.14. Suppose the preconditions of Lemma 15.13 are satisfied and
let 𝑡0 be as in the statement of the lemma. Let 𝑡 ∈ [𝑡0, 𝑡] be infimal with the
property that a correct node generates a run event at time 𝑡 (i.e., if no such event
occurs, 𝑡 = 𝑡) and let 𝑝 ≥ 𝑡0 be infimal with the property that a correct node
generates an output 1 event (i.e., if no such event occurs, 𝑝 = ∞). Then 𝑡 ≤ 𝑝,
the input events that occur during [𝑡0,max{𝑝 +𝑇5/𝜗, 𝑡}) satisfy the conditions
imposed by Definition 15.3, and no correct node transitions to state output 0
while satisfying Guard G4.

15.3 Stabilization based on a resynchronization algorithm 233

Proof. Define 𝑡1 as the supremum of times larger or equal to 𝑡0 − 𝐶𝑅𝑑/2
such that the run events that are generated during [𝑡0, 𝑡1] satisfy the conditions
imposed by Definition 15.3 and no node transitions to output 0 while satisfying
Guard G4. As 𝐶 is a sufficiently large constant, 𝐶𝑅𝑑/2 exceeds both the
stabilization time of the consensus simulation routine and, by Equation (15.7),
the time limit of 𝑂 (𝜏 + 𝑅𝑑) = 𝑂 (𝑅𝑑) imposed by Definition 15.3 on the time
difference between input and output events. Note that any output event at a time
from [𝑡0, 𝑡1) can be matched to a corresponding run event: there are no “stray”
output events, since after stabilization each output event can be matched to a
run event that occured at most 𝑂 (𝑅𝑑) time in the past, while Lemma 15.13
excludes such events during [𝑡0 − 𝐶𝑅𝑑/2, 𝑡1). In particular, any output event
must be preceded by a run event that occurs at or after time 𝑡0, establishing that
𝑡 ≤ 𝑝.

Our goal now is to show that 𝑡1 > max{𝑝 + 𝑇5/𝜗, 𝑡}, as this will prove
the remaining claims of the lemma. Recall that a node generating a run
event needs to first transition to listen (i.e., generate an output event), then
satisfy Guard G4, and finally have a timeout of 𝑇5 expire in order to generate
another input event. Given that 𝑇4 + 𝑇listen < 𝐶𝑅𝑑/2 by (15.8) and the fact
that 𝐶 is sufficiently large, any correct node transitioning to wait at a time
𝑡 ′ ≥ 𝑡0−𝑑−𝑇listen must do so after generating an output 1 event later than time
𝑡0 −𝐶𝑅𝑑/2; otherwise, 𝑇4 would have been expired earlier than time 𝑡 ′−𝑇listen,
i.e., Guard G1 could not hold at time 𝑡 ′. Together with the fact that no output
events are generated during [𝑡0 −𝐶𝑅𝑑/2, 𝑡0), this entails that no wait message
from a correct node can be received during [𝑡0 − 𝑇listen, 𝑝 + 𝑇4/𝜗)—no “fresh”
output 1 event is generated before time 𝑝 and a timeout of𝑇4 must expire before
an wait message is sent by a correct node. Given that Lemma 15.13 ensures
that Guard G4 does not hold at correct nodes during [𝑡0−𝐶𝑅𝑑/2, 𝑡0), it follows
that Guard G4 does not hold at such nodes during [𝑡0 − 𝐶𝑅𝑑/2, 𝑝 + 𝑇4/𝜗).

Recall that correct nodes that generate a run event need to generate an output
event (in order to return to state listen), which they need to leave before
generating another input event. The above implies that this cannot take place
before time min{𝑝 + 𝑇4/𝜗, 𝑡} ≥ min{𝑝, 𝑡}. If such a node leaves before time
𝑡, this cannot be due to Guard G3 holding, so it must be due to a transition
to state read. However, this entails that a timeout of 𝑇5 must expire before
another input event occurs at the respective node. This establishes that during
[𝑡0,max{𝑝 + 𝑇5/𝜗, 𝑡}) indeed (i) Guard G4 is not satisfied at a node in state
run 0 or run 1 and (ii) no correct node generates two run events.

We distinguish two cases. Assume first that there is a run 1 event during
[𝑡0,max{𝑝 + 𝑇5/𝜗, 𝑡}). As 𝑡 − 𝑇5 − 𝑇listen ≥ 𝑡, any correct node generating

234 Chapter 15 Self-stabilizing Pulse Synchronization

such an event must have transitioned from listen via read and input 1 to
run 1. In this case, denote by 𝑡 ′ ≥ 𝑡 − 𝑇5 − 𝑇listen the time of the earliest
corresponding transition from listen to read. At time 𝑡 ′, the respective node
satisfied Guard G5. At least 𝑛−2 𝑓 ≥ 𝑓 +1 of the corresponding received wait
messages were sent by correct nodes. Noting that 𝑇listen < 𝑇5/𝜗 − 4𝑇4 − 2𝑑
by (15.6) and 𝑡 ′ > 𝑡 ≥ 2𝑇4 + 𝑑, Lemma 15.11 implies that the corresponding
transitions to wait happened within a time window of length at most 2𝑇4 + 𝑑.
Hence, each 𝑤 ∈ 𝑉𝑔 received 𝑓 + 1 wait messages from distinct senders within
at most 𝜗(2𝑇4 + 2𝑑) local time at a time from [𝑡 ′ − 𝑇listen − 𝑑, 𝑡 ′ + 𝑑]. By
Equation (15.9), each 𝑤 ∈ 𝑉𝑔 thus satisfied Guard G4 at such a time. A node
satisfying Guard G4 either transitions to or is in one of the states read, input
0, or input 1. By Lemma 15.12, each such node stops satisfying Guard G4 no
later than time 𝑡 ′ + 𝑇listen + 2𝑇4 + 2𝑑. By expiring timeouts, each correct node
hence transitions to either run 0 or run 1 during[

max
{
𝑡 ′ − 𝑇listen − 𝑑 + 𝑇5

𝜗
, 𝑡

}
, 𝑡 ′ + 2𝑇listen + 2𝑇4 + 2𝑑 + 𝑇5

]
dfn. of 𝑡

⊆ [𝑡, 𝑡 + 𝜏] (15.5)

As we already established that each node generates at most one run event during
[𝑡0,max{𝑝 +𝑇5/𝜗, 𝑡}), this shows that the requirements of Definition 15.3 hold
during the relevant period.

Finally, consider the the case that there is no run 1 event during [𝑡0,max{𝑝 +
𝑇5/𝜗, 𝑡}). In this case, it remains to prove only that all run 0 events during
[𝑡0,max{𝑝 + 𝑇5/𝜗, 𝑡}) indeed occur during [𝑡, 𝑡 + 𝜏]. If no node generates a
run event at time 𝑡, the claim trivially holds, so assume some correct node
does. Since at time 𝑡 − 𝑇listen − 𝑇5 ≥ 𝑡, any correct node generating a run event
during the relevant time interval must have satisfied Guard G4 no earlier than
time 𝑡 − 𝑇listen − 𝑇5. Denote by 𝑡 ′ ≥ 𝑡 − 𝑇listen − 𝑇5 the earliest such time. By
Lemma 15.11, no correct node satisfies Guard G4 during (𝑡 ′ + 𝑇listen + 2𝑇4 +
2𝑑, 𝑡 ′ − 2𝑇4 − 2𝑑 + 𝑇5/𝜗]. However, since the at least 𝑛 − 2 𝑓 > 𝑓 correct
nodes generating the respective messages cannot transition to wait again until
time 𝑝 +𝑇4/𝜗, in fact no correct node can satisfy Guard G4 (𝑡 ′ +𝑇listen + 2𝑇4 +
2𝑑,min{𝑝 + 𝑇4/𝜗, 𝑡}]. Therefore, all correct nodes that generate a run event
during [𝑡,min{𝑝 + 𝑇4/𝜗, 𝑡}) do so during[

max
{
𝑡 ′ − 𝑇listen − 𝑑 + 𝑇5

𝜗
, 𝑡

}
, 𝑡 ′ + 2𝑇listen + 2𝑇4 + 2𝑑 + 𝑇5

]
dfn. of 𝑡

⊆ [𝑡, 𝑡 + 𝜏] . (15.5)

15.3 Stabilization based on a resynchronization algorithm 235

Finally, observe that now we have established that the conditions on run events in
Definition 15.3 have been established for times [𝑡0−𝐶𝑅𝑑/2,min{𝑝+𝑇4/𝜗, 𝑡}].
Thus, since the simulation of consensus stabilized, we can leverage the guaran-
tees on output events for this time period. As we are in the case that no input
1 event is generated, no output 1 event is generated. It follows that 𝑝 ≥ 𝑡, so
we an infer that 𝑡1 > max{𝑝 + 𝑇5/𝜗, 𝑡} as desired. �

Corollary 15.15. Suppose the preconditions of Lemma 15.13 are satisfied and
let 𝑡0 be as in the statement of the lemma. Then all input events that occur
during [𝑡0, 𝑡}) satisfy the conditions imposed by Definition 15.3, and no correct
node transitions to state output 0 while satisfying Guard G4.

Proof. Follows from inductive use of Lemma 15.14. �

Theorem 15.16. If (15.1)–(15.12) hold and the network is fully connected, the
pulse synchronization algorithm given by the state machines in Figures 15.1
and 15.2 stabilizes on a good resynchronization pulse. It has skew 2𝑑, 𝑃min =
3𝜆 + 3𝑑, and 𝑃max = 𝑂 (𝑇4 + 𝑇5 + 𝜏 + 𝑅𝑑).

Proof. Checking the inequalities, we can see that all involved parameters (ex-
cept possibly for Ψ) are bounded by 𝑂 (𝑇5). Thus, as 𝐶 is sufficiently large,
we can apply all the above lemmas (constantly often) assuming that 𝑡 − 𝑡 is
large enough. We distinguish two cases. First, suppose that Lemma 15.13 is
applicable (i.e., there is a sufficiently late run event). We apply Corollary 15.15,
implying that if any output 1 event is generated after time 𝑡0, then Lemma 15.10
implies stabilization. AsΨ is large enough, in this case stabilization is complete
before the good synchronization pulse occurs.

The other two cases, i.e., no sufficiently late run event or no subsequent
output 1 event occur, entail that all correct nodes transition to recover at most
𝑇1+𝑇wait time after the latest output 1 event. Since𝑇1+𝑇wait = 𝑂 (𝑇5), this means
that by the time the good resynchronization pulse occurs, all correct nodes
have transitioned to state recover, which they cannot leave before another
output 1 event occurs or Guard G3 holds. By Definition 15.4 and (15.11),
the latter happens within a time interval of length 𝜌 ≤ 𝜏. Hence, the (by then
stabilized) simulation of consensus guarantees that all correct nodes generated
synchronized output 1 events. Thus, also in this case Lemma 15.10 implies
stabilization.

In all cases, the skew and period bounds follow from Lemma 15.10. �

236 Chapter 15 Self-stabilizing Pulse Synchronization

Lemma 15.17. Suppose that 𝜗 < 3/2 and 𝜌 = 𝑂 (𝑅𝑑). Then we can assign
timeouts satisfying (15.1)–(15.12) such that 𝑇4 + 𝑇5 + 𝜏 + 𝑅𝑑 = 𝑂 (𝑅𝑑) and
Ψ = 𝑂 (𝑅𝑑).

E15.7 Prove the lemma. Hint: Proceed by fixing timeouts for which the right hand
side of their inequalities have already been determined. (15.7), (15.8), and
(15.4) then happen to be satisfied (unless you have used too generous slack in
your assigments).

15.4 Providing the feedback mechanism for Algorithm 16

E15.8 How big needs 𝐵1 to be for the approach from Chapter 13 to work? Observe
that after stabilization, the state machines in Figure 15.2 can easily guarantee
that no consensus instance runs earlier than 𝐵1 time after a pulse was (locally)
generated.

E15.9 Suppose that we modify the state machine in Figure 15.2 by delaying output
events by at most 𝑇delay = Θ(𝑅𝑑) local time. When a NEXT signal is locally
generated, the output event is triggered and the transition to listen occurs.
Does the algorithm still work correctly?

E15.10 To ensure that output 1 events of the same instance still occur within 2𝑑 time
of each other, modify the algorithm further by incorporating a vote-pull step
in the vein of Figure 9.5 when delaying output events. Argue that for the
resulting algorithm Theorem 15.16 holds again.

E15.11 By choosing 𝑀 large enough, (13.8) can be easily satisfied. Argue that the
mechanism proposed above ensures that also 𝐵3 can be made large enough
(provided that 𝜗 is not too big).

15.5 Deterministic resynchronization using exponential clocks

Our first resynchronization algorithm is very simple and resource-efficient, but
costly in terms of stabilization time. The idea is to have nodes consider 𝑓 + 1
potential leaders in a round-robin fashion. By scaling the frequency at which
this cycling through leaders happens exponentially with the node label, we can
ensure that every combination occurs eventually. In particular, all nodes will
agree on a correct leader eventually for at least 𝜗(2Ψ + 3𝑑) time. By having
the 𝑓 + 1 potential leaders broadcast a “resync” message every 𝜗(Ψ + 𝑑) local
time and correct nodes locally trigger a resynchronization pulse when receiving
such a message from a node it currently considers to be the leader, we obtain a
resynchronization algorithm with separation window Ψ and skew 𝑢.

15.5 Deterministic resynchronization using exponential clocks 237

Algorithm 21 Deterministic resynchronization algorithm based on local clocks
at node 𝑣 ∈ 𝑉𝑔. The algorithm assumes that 𝑉 = {1, . . . , 𝑛}.

1: if if 𝑣 ∈ {1, . . . , 𝑓 + 1} and getH() mod 𝜗(Ψ + 𝑑) = 0 then
2: broadcast 〈resync〉
3: end if
4: if received 〈resync〉 from 𝑤 ∈ {1, . . . , 𝑓 + 1} and getH()/(2𝜗2 (Ψ+ 𝑑) (𝑓 +

1)𝑣) mod (𝑓 + 1) ∈ [𝑤, 𝑤 + 1) then
5: generate resynchronization pulse
6: end if

Theorem 15.18. For any Ψ and 𝑓 < 𝑛, there is an 𝑓 -resilient determinis-
tic resynchronization algorithm with skew 𝑢 and separation window Ψ that
stabilizes in 𝑂 ((Ψ + 𝑑) (𝜗(𝑓 + 2))𝑛) time.

Proof. We claim that Algorithm 21 meets the requirements. As there are
at most 𝑓 faults, there is a correct node 𝑤 ∈ {1, . . . , 𝑓 + 1}. To show the
claim, we first prove by induction on 𝑖 that within any time interval [𝑡, 𝑡 +
𝜗𝑖+1 (2Ψ + 3𝑑) (𝑓 + 2)𝑖], there is subinterval of length at least 𝜗(2Ψ + 3𝑑)
during which all 𝑣 ∈ 𝑉𝑔 ∩ {1, . . . , 𝑖} agree on 𝑤 being the leader, i.e., they
would generate a pulse when receiving a 〈resync〉 message from 𝑤. This is
trivially the case for 𝑖 = 0, since then 𝑉𝑔 ∩ {1, . . . , 𝑖} = 𝑉𝑔 ∩ ∅ = ∅. Hence,
assume that we have shown this for 𝑉𝑔 ∩ {1, . . . , 𝑖 − 1} for 𝑖 ∈ N>0 and
consider node 𝑖. If 𝑖 is faulty, nothing is to show, so assume that 𝑖 ∈ 𝑉𝑔 and
consider the time interval [𝑡, 𝑡 + 𝜗𝑖+1 (2Ψ + 3𝑑) (𝑓 + 2)𝑖] for an arbitrary 𝑡 ≥ 0.
Since 𝑑𝐻𝑣

𝑑𝑡 ≥ 1, at least 𝜗𝑖+1 (2Ψ + 3𝑑) (𝑓 + 2)𝑖 local time passes at 𝑖. In
particular, there is a subinterval of 𝜗𝑖+1 (2Ψ + 3𝑑) (𝑓 + 2)𝑖−1 local time during
which getH()/(𝜗𝑖+1 (2Ψ + 3𝑑) (𝑓 + 1)𝑖) ∈ [𝑤, 𝑤 + 1). Since 𝑑𝐻𝑣

𝑑𝑡 ≤ 𝜗, this
entails the same for a subinterval of 𝜗𝑖 (2Ψ + 3𝑑) (𝑓 + 2)𝑖−1 time lying within
[𝑡, 𝑡 + 𝜗𝑖+1 (2Ψ + 3𝑑) (𝑓 + 2)𝑖]. By applying the induction hypothesis to this
subinterval, the induction step succeeds.

To complete the proof, we apply the statement of the induction for 𝑖 = 𝑛 for 𝑡 =
0, showing that there is some time 𝑡 ′ satisfying that during [𝑡 ′, 𝑡 ′+𝜗(2Ψ+3𝑑)] ⊂
[0, 𝜗𝑛+1 (2Ψ + 3𝑑) (𝑓 + 2)𝑛], all nodes agree on 𝑤 being the leader. Because
more than Ψ+ 𝑑 local time passes at 𝑤 during [𝑡 ′ + 𝜗(Ψ+ 𝑑), 𝑡 ′ + 𝜗(2Ψ+ 2𝑑)],
there is a time 𝑡 ′′ ∈ [𝑡 ′ + 𝜗(Ψ + 𝑑), 𝑡 ′ + 𝜗(2Ψ + 2𝑑)] when 𝑤 broadcasts a
〈resync〉 message. This message is received by all nodes during time

[𝑡 ′′ + 𝑑 − 𝑢, 𝑡 ′′ + 𝑑]
⊂ [𝑡 ′ + 𝜗(Ψ + 𝑑), 𝑡 ′ + 𝜗(2Ψ + 3𝑑)] .delay bounds

238 Chapter 15 Self-stabilizing Pulse Synchronization

Thus, each 𝑣 ∈ 𝑉𝑔 will generate a resync pulse within [𝑡 ′′ + 𝑑 − 𝑢, 𝑡 ′′ + 𝑑].
Moreover, no 𝑣 ∈ 𝑉𝑔 generates a resync pulse during [𝑡 ′+ 𝑑, 𝑡 ′+𝜗(2Ψ+3𝑑)] ⊃
[𝑡 ′′ − Ψ, 𝑡 ′′ + 𝑑] due messages received from nodes other than 𝑤. Finally, as
𝑑𝐻𝑤

(𝑑𝑡) ≤ 𝜗, 𝑤 sent no 〈resync〉 during [𝑡 ′′−(Ψ+𝑑), 𝑡 ′′), so none was received
during [𝑡 ′′ −Ψ, 𝑡 ′′]. We conclude that a good resynchronization pulse of skew
𝑢 and separation window Ψ occurs by time

𝑡 ′′ + 𝑑 ≤ 𝑡 ′ + 𝜗(2Ψ + 3𝑑)
≤ 𝜗𝑛+1 (2Ψ + 3𝑑) (𝑓 + 2)𝑛
= 𝑂 ((Ψ + 𝑑) (𝜗(𝑓 + 2))𝑛). �

E15.12 The above theorem holds for any 𝑛 > 𝑓 , despite the fact that we face Byzan-
tine faults. Should we be worried that this contradicts any of the previous
impossibility results?

15.6 Resynchronization using randomized timeouts for resynchronization
messages

The exponential overhead of the deterministic solution comes from the need to
get everyone to listen to the same leader. We can circumvent this by accepting
resynchronization messages from all nodes, but only at a certain frequency,
while randomizing sending times to prevent faulty nodes from interfering too
much with a large probability.

Definition 15.19 (Uniformly random timeouts). A randomized timeout at 𝑣 ∈
𝑉𝑔 operates like a standard timeout that is reset to a uniformly random value
from [𝑇min, 𝑇max] for some parameters 𝑇min ≤ 𝑇max. That is, if the timout is
associated with state 𝑠, it behaves as if upon each transition to 𝑠 it was set to a
fresh value 𝑇 drawn independently and uniformly from [𝑇min, 𝑇max]. However,
we assume that faulty nodes cannot estimate when the timeout expires at 𝑣 any
better than by the (local) time passed: If the timeout was reset at time 𝑡𝑠 and
has not yet expired at time 𝑡 ≥ 𝑡𝑠 with 𝐻𝑣 (𝑡) ∈ [𝐻𝑣 (𝑡𝑠) + 𝑇min, 𝐻𝑣 (𝑡𝑠) + 𝑇max],
then the probability density of the timeout expiring at time 𝑡 ′ with 𝐻𝑣 (𝑡 ′) ∈
[𝐻𝑣 (𝑡) + 𝑇min, 𝐻𝑣 (𝑡𝑠) + 𝑇max] equals 𝑑𝐻𝑣

𝑑𝑡 (𝑡 ′) · 1
𝐻𝑣 (𝑡𝑠)+𝑇max−𝐻𝑣 (𝑡) . The behavior

of faulty nodes at times 𝑡 when the timeout is not expired depends only on this
probability (although it can be affected by the speed of the hardware clock of
𝑣, which is known to faulty nodes in advance).

This definition limits the power of faulty nodes in that they cannot “predict
the future,” at least when it comes to the random decisions of correct nodes.
It is a common assumption for randomized algorithms, as many of these al-

15.6 Resynchronization using randomized timeouts for resynchronization messages239

Algorithm 22 Resynchronization algorithm based on randomized timeouts at
𝑣 ∈ 𝑉𝑔. Nodes also “send messages to themselves.”

1: while true do
2: reset uniformly random timeout with duration from [𝑇min, 𝑇max]
3: send 〈propose〉 to all nodes once timeout expires
4: end while
5: if received 〈propose〉 from 𝑤 ∈ 𝑉 and timeout 𝑇𝑤 is expired then
6: send 〈resync〉 to all nodes
7: reset 𝑇𝑤
8: end if
9: if received 〈resync〉 from 𝑛 − 𝑓 senders within 2𝜗𝑑 local time then

10: generate resynchronization pulse
11: end if

gorithms exploit that one can simply defer a decision for long enough such
that the respective information becomes insufficient for a (hypothetical or real)
adversary controlling the faulty nodes to prevent success of the algorithm when
it is revealed. Since we are not focusing on attacks that are orchestrated by
an evil mastermind, this might seem overly cautious at first. However, it is
a good idea cleanly specify the assumption made and avoid a setup in which
the random (or possibly pseudo-random) decisions taken by correct nodes can
easily influence the behavior of the faulty nodes; even if this appears unlikely,
it might cause correlated behavior breaking the algorithm.

We will show that a very simple algorithm given in Algorithm 22 meets the
requirements of Theorem 15.21, where

∀𝑤 ∈ 𝑉 : 𝑇𝑤 = 𝜗𝐶 (𝑛 − 𝑓) (Ψ + 3𝜗𝑑) (15.16)
𝑇min = 𝜗(𝑇𝑤 + 𝑑) (15.17)
𝑇max = 3𝑇min + 2𝜗𝐶 (𝑛 − 𝑓) (Ψ + 3𝜗𝑑)) (15.18)

for a sufficiently large constant 𝐶.
We first show that the randomizated timeouts help to spread out the times

when correct nodes attempt to initiate a good resynchronization pulse, in a way
faulty nodes cannot predict.

Lemma 15.20. Fix any interval [𝑡, 𝑡 +𝐶 (𝑛− 𝑓) (Ψ+3𝜗𝑑)] with 𝑡 ≥ 𝑇max +𝑇min
and divide it uniformly into𝐶 (𝑛− 𝑓) subintervals of lengthΨ+3𝜗𝑑. Then, with
probability 1− 2Ω(𝑛) the following holds. There is a set of at least 𝐶 (𝑛− 𝑓)/10
non-adjacent subintervals satisfying that during the preceding subinterval, no
correct node had its random timeout expire. Consider such a subinterval

240 Chapter 15 Self-stabilizing Pulse Synchronization

starting at time 𝑡𝑖 . Conditioning on the execution up to time 𝑡𝑖 , the probability
that a randomized timeout at a correct node expires during [𝑡𝑖 , 𝑡𝑖 + Ψ + 3𝜗𝑑]
is at least 1/(20d𝜗2e𝐶) = Ω(1/𝐶).

Proof. As 𝑡 ≥ 𝑇max + 𝑇min, each 𝑣 ∈ 𝑉𝑔 generated at least one 〈propose〉
message, reset its randomized timeout, and had 𝑇min afterwards expire. Denote
by 𝑡𝑖 the time when the 𝑖-th subinterval begins. By Definition 15.19, the
probability that the randomized timeout of 𝑣 ∈ 𝑉𝑔 expires during the 𝑖-th
subinterval is bounded from above by

𝐻𝑣 (𝑡𝑖 +Ψ + 3𝜗𝑑) − 𝐻𝑣 (𝑡𝑖)
𝑇max − 𝑇min

≤ 𝜗(Ψ + 3𝜗𝑑)
𝑇max − 𝑇min

𝑑𝐻𝑣
𝑑𝑡 ≤ 𝜗

≤ 1
2𝐶 (𝑛 − 𝑓) .

(15.18)

For subinterval 𝐼, denote by 𝐼 (0) the event that no randomized counter of a
correct node expires. By the above bound, we get that

𝑃[𝐼 (0)] ≥
(
1 − 1

2𝐶 (𝑛 − 𝑓)

)𝑛− 𝑓
≥

(
1 − 1

2𝐶

)
, induction, each

probability ≤ 1

where we assume w.l.o.g. that there are exactly 𝑓 faults (faulty nodes could
behave as if correct). Thus, dividing the𝐶 (𝑛− 𝑓) subintervals into consecutive
groups of 3 intervals and applying the above probability bound, we get that in
expectation at least

𝐶 (𝑛 − 𝑓)
3

· 2𝐶
2𝐶 − 1

≥ 𝐶 (𝑛 − 𝑓)
4

𝐶 sufficiently
large

groups satisfy that the first subinterval has no randomized timeout at a correct
node expire. By applying a concentration bound,9 it follows that with probabil-
ity 1− 2−Ω(𝑛) , this applies to at least 𝐶 (𝑛 − 𝑓)/5 groups. We conclude that the
middle subintervals of these groups satisfy the first requirement of the lemma.

It remains to establish the second requirement for at least half of these subin-
tervals. Denote by 𝑡𝑣 the latest time when 𝑣 reset its randomized timeout prior
to reaching local time 𝐻𝑣 (𝑡) − 𝑇min. By Definition 15.19, with probability at
least 1/2 it holds that

𝐻𝑣 (𝑡𝑣) ≥ 𝐻𝑣 (𝑡) − 𝑇min −
(
𝑇min + 𝑇max − 𝑇min

2

)
= 𝐻𝑣 (𝑡) − 𝑇max + 3𝑇min

2

9 This is outside the scope of the course; we will add respective technical statements to an appendix
of the book later.

15.6 Resynchronization using randomized timeouts for resynchronization messages241

Because

𝐻𝑣 (𝑡 + 𝐶 (𝑛 − 𝑓) (Ψ + 3𝜗𝑑)) − 𝐻𝑣 (𝑡) ≤ 𝜗𝐶 (𝑛 − 𝑓) (Ψ + 3𝜗𝑑)
≤ 𝑇max − 3𝑇min

2
,(15.18)

this implies for each 𝑡 ′ ∈ [𝑡𝑖 , 𝑡𝑖 +Ψ + 3𝜗𝑑] that

𝐻𝑣 (𝑡 ′) ∈ [𝐻𝑣 (𝑡𝑣) + 𝑇min, 𝐻𝑣 (𝑡) + 𝑇max] .

Thus, by Definition 15.19, overall the probability that the randomized timeout
of 𝑣 expires during the 𝑖-th time interval is at least

1
2
· 𝐻𝑣 (𝑡𝑖 +Ψ + 3𝜗𝑑) − 𝐻𝑣 (𝑡𝑖)

𝑇max − 𝑇min
≥ Ψ + 3𝜗𝑑

2(𝑇max − 𝑇min)
𝑑𝐻𝑣
𝑑𝑡 ≥ 1

=
Ψ + 3𝜗𝑑

4𝑇min + 2𝜗𝐶 (𝑛 − 𝑓) (Ψ + 3𝜗𝑑))
(15.18)

=
Ψ + 3𝜗𝑑

6𝜗2𝐶 (𝑛 − 𝑓) (Ψ + 4𝜗𝑑))
(15.17), (15.16)

>
1

8𝜗2𝐶 (𝑛 − 𝑓) .

Denote by 𝐼≠0 the event that at least one randomized counter of a correct node
expires during subinterval 𝐼. We get

𝑃[𝐼 (≠0)] ≥
(
𝑛 − 𝑓

1

)
· 1

8𝜗2𝐶 (𝑛 − 𝑓) ·
(
1 − 1

8𝜗2𝐶 (𝑛 − 𝑓)

)𝑛− 𝑓 −1

≥ 1
8𝜗2𝐶

(
1 − 1

8𝜗2𝐶

)
induction, each
probability ≤ 1

≥ 1
10𝜗2𝐶

,𝐶 sufficiently
large

where we again used that w.l.o.g. we can assume that there are exactly 𝑓 faults.
Note that the event 𝐼 (≠0) is not independent of which timeouts expired in

previous subintervals. However, conditioning on the event that indeed 𝐶 (𝑛 −
𝑓)/5 non-adjacent subintervals satisfy that no randomized timeout expired in
the preceding subinterval can only increase the probability that a timeout expires
during 𝐼. Therefore, we can infer that individually, when not conditioning on the
execution up to the beginning of the subinterval, each of these subintervals has
a randomized timeout at a correct node expire with probability at least 1

10𝜗2𝐶
.

242 Chapter 15 Self-stabilizing Pulse Synchronization

Again, applying a concentration bound10 we can infer that with probability at
least 1−2−Ω(𝑛) , at least𝐶 (𝑛− 𝑓)/10 of the subintervals satisfying the first part
of the statement of the lemma also satisfy the second part.

Finally, we apply the union bound to see that with probability at least 1 −
2−Ω(𝑛) − 2−Ω(𝑛) = 1 − 2−Ω(𝑛) , all required events occur concurrently. �

Theorem 15.21. If the assumptions in Definition 15.19 hold and 3 𝑓 < 𝑛,
Algorithm 22 with timeouts given by (15.16)–(15.18) is an 𝑓 -resilient resyn-
chronization algorithm with skew 2𝑑 that stabilizes in time 𝑂 ((Ψ + 𝑑)𝑛) with
probability 1 − 2−Ω(𝑛) .

Proof. To analyze the algorithm, we consider only times 𝑡 ≥ 𝑇max, i.e., each
timeout that was not expired at time 0 expired at least once. Suppose 𝑣 ∈ 𝑉𝑔
broadcasts a 〈propose〉message at a time 𝑡 satisfying that during [𝑡−Ψ−3𝜗𝑑, 𝑡],
correct nodes performed in total fewer than 𝑛 − 2 𝑓 brodcasts of 〈resync〉
messages. In particular, no correct node received 𝑛 − 𝑓 〈resync〉 messages
during [𝑡 − Ψ − 2𝜗𝑑, 𝑡]. Hence, as at least 2𝜗𝑑 local time passes in the same
amount of real time, no correct node generates a resynchronization pulse during
[𝑡 −Ψ, 𝑡].

On the other hand, because each timeout expired at least once by time 𝑡, no
node received a 〈propose〉 message from 𝑣 during[

𝑡 − 𝑇min
𝜗
+ 𝑑, 𝑡

)
⊂ [𝑡 − 𝑇𝑤 , 𝑡) (15.17)

Thus, 𝑇𝑤 is expired at each 𝑣 ∈ 𝑉𝑔, implying that 𝑣 broadcasts a 〈resync〉
message in response, no later than time 𝑡 + 𝑑. It follows that all correct
nodes receive 〈resync〉 messages from at least 𝑛 − 𝑓 distinct nodes during
[𝑡 + 2(𝑑 − 𝑢), 𝑡 + 2𝑑]. We conclude that all correct nodes generate a good
resynchronization pulse during [𝑡, 𝑡 + 2𝑑].

It remains to show that such an event occurs within 𝑂 ((Ψ + 𝑑)𝑛) time with
probability at least 1 − 2Ω(𝑛) . By Lemma 15.20 and (15.16), with probability
1−2Ω(𝑛) , during [𝑇max+𝑇min, 𝑇max+𝑇min+𝑇𝑤/𝜗] there are at least𝐶 (𝑛− 𝑓)/10
non-adjacent subintervals of lengthΨ+3𝜗𝑑 during which a correct node having
its randomized timeout expire results in a good resynchronization pulse, unless
faulty nodes intervene. By the lemma, this occurs with probability at least
Ω(1/𝐶) for each such subinterval, even when conditioning on the events up to

10 Here a stronger statement is needed, since we require that even after knowing which timeouts
expired during the first 𝑖 − 1 subintervals, there is still a large probability that one expires in the
next subinterval in question. Again, this is out of the scope of the course.

15.6 Resynchronization using randomized timeouts for resynchronization messages243

the start of the subinterval. In order to intervene, faulty nodes need to send
at least 𝑛 − 2 𝑓 〈propose〉 messages over different, previously unused links to
correct nodes: each such message causes 〈propose〉 messages to be ignored for
𝑇𝑤 local time, which means that no other such message is accepted for 𝑇𝑤/𝜗
time. Condition on the event that these sub-intervals exist, with the guarantees
provided by the lemma.

Recall that by Definition 15.19, faulty nodes cannot predict when a random-
ized timeout expires at 𝑣 ∈ 𝑉𝑔 beyond what they can determine from (perfect)
knowledge of 𝐻𝑣 and the values of 𝑇min and 𝑇max. Thus, faulty nodes need
to decide for each of the subintervals whether they send 〈propose〉 messages
before they know whether a correct node broadcasts such a message or a good
resynchronization pulse occurs with probability Ω(1/𝐶). However, since the
subintervals are non-adjacent and their length is larger than Ψ + 3𝜗𝑑, the mes-
sages used to interfere with one interval cannot do so for another. Moreover,
there are no more than max0≤ 𝑓 ′≤ 𝑓 { 𝑓 ′(𝑛 − 𝑓 ′)} ≤ 𝑓 (𝑛 − 𝑓) links from faulty
to correct nodes. Thus, since 𝑓 < 𝑛/3, faulty nodes can pre-emptively avoid
stabilization for at most b 𝑓 (𝑛 − 𝑓)/(𝑛 − 2 𝑓)c < 𝑛 − 𝑓 of them. Therefore, a
good resynchronization pulse occurs with probability at least

1 − (1 −Ω(1/𝐶)) (𝐶/10−1) (𝑛− 𝑓) = 1 − (1 −Ω(1/𝐶))Ω(𝐶 (𝑛− 𝑓))𝐶 large

= 1 − 𝑒−Ω(𝑛− 𝑓)(1 − 1
𝐶)𝐶 ≤ 1

𝑒

= 1 − 2−Ω(𝑛) .𝑓 < 𝑛/3

We conclude that a good resynchronization pulse occurs with probability (1 −
2−Ω(𝑛))2 = 1 − 2−Ω(𝑛) by time

𝑇max + 𝑇min + 𝑇𝑤
𝜗

= 𝑂 ((Ψ + 𝑑)𝑛). �(15.16)–(15.18)

Bibliography

[1] Hopkins, A. L., T. B. Smith, and J. H. Lala. 1978. Ftmp – a highly reliable fault-
tolerant multiprocess for aircraft. Proceedings of the IEEE 66 (10): 1221–1239.
doi:10.1109/PROC.1978.11113.

[2] Kopetz, H. 2003. Fault containment and error detection in the time-triggered archi-
tecture. In The sixth international symposium on autonomous decentralized systems,
2003. isads 2003., 139–146. doi:10.1109/ISADS.2003.1193942.

[3] Pease, M., R. Shostak, and L. Lamport. 1980. Reaching agreement in the
presence of faults. J. ACM 27 (2): 228–234. doi:10.1145/322186.322188.
http://doi.acm.org/10.1145/322186.322188.

[4] Srikanth, T. K., and Sam Toueg. 1987. Optimal clock synchronization. J. ACM 34
(3): 626–645. doi:10.1145/28869.28876. https://doi.org/10.1145/28869.28876.

