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Learning Goals
• Why studying synchronous counting is useful, and why focusing on fully

connected networks is of interest.
• The relation between synchronous counting and consensus.
• A simple consensus-based algorithm with stabilization time Θ( 𝑓 ) for syn-

chronous counting.
• How to efficiently generate larger counters from smaller ones.
• The relation between synchronous counting and self-stabilizing synchronous

restart with permanent faults.
• A simple counting-based algorithm with stabilization and response timeΘ( 𝑓 )

for restart with permanent faults.
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• The current state-of-the-art in synchronous counting and self-stabilizing fault-
tolerant synchronous restart.
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stabilisation

Clock

Node 1 1 1 2 1 0 1 2 0 1 2

Node 2 0 1 2 1 0 1 2 0 1 2

Node 3 (faulty) ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
Node 4 2 0 1 0 0 1 2 0 1 2

counting

Figure 16.1
Example for the desired output of a 3-counting algorithm. After the stabilization period,
the correct nodes count in synchrony; “*” indicates that the faulty node might produce
arbitrary output and (inconsistently) communicate arbitrary states.

16.1 Overview

In Chaper 6, we used the synchronous abstraction to generate a shared program
counter in a trivial way. In this chapter, we consider the same task in the
presence of faults in the SMP model. We know from Chapter 13 that SMP can
be simulated in fully connected 𝑛-node networks in a self-stabilizing manner,
despite 𝑓 < 𝑛

3 Byzantine faults. Matching this setting, also in this chapter we
assume a fully connected network with 𝑓 < 𝑛

3 Byzantine faults.
Recall that the solution in Chapter 6 was to simply maintain and increment

the counter locally. Thus, the solution remains trivial even with Byzantine
faults – provided that all correct nodes agree on the counter values due to
correct initialization. Similarly, a self-stabilizing solution without permanent
faults is easy: all we need to do is to have everyone copy the counter value of a
pre-determined leader.

This situation changes drastically when asking for both self-stabilization and
resilience to 𝑓 < 𝑛

3 Byzantine faults at the same time. This gives rise to the
synchronous counting problem, cf. Figure 16.1, which we study in this chapter.

Definition 16.1. Denote by 𝑉𝑔 ⊆ 𝑉 the set of correct nodes and fix an integer
𝐶 ≥ 2. In synchronous 𝐶-counting, in each synchronous round 𝑟 ∈ N>0, each
node 𝑣 ∈ 𝑉𝑔 outputs a value 𝑐𝑣 (𝑟) ∈ [𝐶]. We consider an execution correct
from round 𝑅 ∈ N>0, if for all rounds 𝑟 ≥ 𝑅 the following two properties hold.
1. Agreement: For all 𝑣, 𝑤 ∈ 𝑉𝑔, we have that 𝑐𝑣 (𝑟) = 𝑐𝑤 (𝑟).
2. Validity: For all 𝑣 ∈ 𝑉𝑔, we have that 𝑐𝑣 (𝑟 + 1) = 𝑐𝑣 (𝑟) + 1 mod 𝐶.
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Thus, a self-stabilizing solution with stabilization time 𝑆 guarantees that there
is a round 𝑅 ≤ 𝑆 such that validity and agreement hold in all rounds 𝑟 ≥ 𝑅,
regardless of the initial state of nodes in𝑉𝑔 and the behavior of nodes in𝑉 \𝑉𝑔.

Before solving the problem, we discuss its motivation in Section 16.2. We
discuss how counters are useful for coordination in some tasks. We then proceed
to showing a fundamental relation to consensus, which has been introduced in
Chapter 14: we can utilize counting to solve consenus and vice versa.

Theorem 16.7. Suppose thatA solves𝐶-counting on𝐺 with up to 𝑓 Byzantine
faults and stabilization time 𝑆. Then, for any set 𝑋 with |𝑋 | ≤ 𝐶, there is a
consensus algorithm with inputs from 𝑋 on 𝐺 that tolerates up to 𝑓 Byzantine
faults and has round complexity 𝑆. The only communication the consensus
algorithm performs is due to simulating an instance of A for 𝑆 rounds.

Note that Theorem 16.7 implies that lower bounds and impossibility results
for consensus extend to counting.

Corollary 16.2. 𝐶-counting with 𝑓 Byzantine faults cannot be solved if the
graph has 3 ≤ 𝑛 ≤ 3 𝑓 nodes or node connectivity smaller than 2 𝑓 + 1.
Moreover, 𝐶-counting has stabilization time at least 𝑓 + 1.

Proof. Assuming for contradiction that a 𝐶-counting algorithm meeting one
of these criteria exist, Theorem 16.7 yields a corresponding consensus algo-
rithm. The guarantees asserted by Theorem 16.7 then contradict Theorem 14.5,
Theorem 14.29, or Theorem 14.35, respectively. �

The general reduction of counting to consensus that we provide is not as
efficient.

Theorem 16.8. Suppose that A solves consensus on 𝐺 with inputs from 𝑋 ,
where |𝑋 | ≥ 𝐶, for up to 𝑓 Byzantine faults and with round complexity 𝑅.
Then, we can solve 𝐶-counting on a fully connected 𝑛-node network with up to
𝑓 faults and stabilization time 9𝑅 + 14. The counting algorithm simulates 𝑅
consensus instances concurrently and sends only the corresponding messages.

It is important to note the mismatch between the two theorems. While
Theorem 16.7 has an extremely low overhead, Theorem 16.8 runs 𝑅 consensus
instances concurrently. As we know from Theorem 14.35 that 𝑅 ≥ 𝑓 + 1,
the overhead is at least linear in 𝑓 . On the other hand, for a fully connected
network Corollary 14.3 shows that the overhead can also be kept within factor
𝑂 ( 𝑓 + log𝐶).
Corollary 16.3. 𝐶-counting with 𝑓 Byzantine faults can be solved in a fully
connected network of 𝑛 > 3 𝑓 nodes with 𝑂 ( 𝑓 + log𝐶)-bit broadcast messages
and stabilization time 𝑂 ( 𝑓 + log𝐶).
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Proof. By applying Theorem 16.8 to the consensus algorithm provided by
Corollary 14.3. �

While this overhead might be tolerable in some cases, it is worth investigating
whether more efficient solutions are possible. We remark that recursive solu-
tions can achieve smaller asymptotic overheads than Theorem 16.8. However,
the resulting algorithms are more involved, also require larger messages, and
do not communicate by broadcast only. In this chapter, we will instead present
a simpler and more efficient algorithm that generates large(r) counters out of
smaller ones.

Concretely, assuming that we have a 𝐶-counting algorithm for 𝐶 ≥ 3( 𝑓 +
1) + 2

⌈
log𝐶′
𝐵

⌉
, we can derive a 𝐶 ′-counting algorithms requiring only 𝐵-bit

broadcasts on top of the communication of the 𝐶-counting algorithm.

Theorem 16.9. Suppose that on 𝐺 and with up to 𝑓 Byzantine faults,A solves
𝐶-counting with stabilization time 𝑆 and B solves [𝐶 ′]-valued consensus with
round complexity 𝑅. If 𝐶 ≥ 𝑅, we can solve 𝐶 ′-counting on the same network
with up to 𝑓 faults and stabilization time 𝑆+2𝑅+ (𝐶 mod 𝑅). The𝐶 ′-counting
algorithm concurrently sends messages for A and B (one instance each), but
performs no additional computation.

Theorem 16.9 is, essentially, a straightforward application of consensus with
inputs 𝑋 = [𝐶 ′]. Plugging in the multi-valued consensus algorithm from
Chapter 14, we get a way of generating large counters from smaller ones with
small overhead.

Corollary 16.4. Suppose that A solves 𝐶-counting with stabilization time 𝑆
in a fully connected 𝑛-node network with 𝑓 < 𝑛

3 Byzantine faults. Let 𝐵 ∈ N>0,
assume that 𝐶 ≥ 2

⌈
log𝐶′
𝐵

⌉
+ 3( 𝑓 + 1), and denote by 𝑀 the size of messages

sent by A. Then we can solve 𝐶 ′-counting on the same network with up to 𝑓

faults, stabilization time 𝑆 + 𝑂
(
𝑓 +

⌈
log𝐶′
𝐵

⌉)
, and messages of size 𝐵 + 𝑀 . If

A communicates by broadcast, so does the new algorithm.

Proof. We use Theorem 14.22 for 𝑋 = [𝐶 ′] with Algorithm 18 (whose proper-
ties are stated in Theorem 14.18) and plug the resulting [𝐶 ′]-valued consensus
algorithm into Theorem 16.9. �

This is easy enough, but leaves us with the question of where to get our first
chicken (or egg). As we discuss in Section 16.4, it is reasonable to assume
that the ability to simulate synchronous execution actually enables us to solve
𝐶-counting for reasonably small 𝐶 as a by-product. Note that 𝐵 = 1 requires
even for 𝑓 = 1 that 𝐶 = 6 + 2dlog𝐶 ′e ≥ 14 to achieve that 𝐶 ′ > 𝐶; 𝐶 = 16
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is needed to achieve that 𝐶 ′ ≥ 2𝐶 = 32. However, with 𝐵 = 2, 𝐶 = 16 is
sufficient to obtain a 7-bit clock, i.e., 𝐶 ′ = 128, for 𝑓 = 2.

E16.1 What if longer clocks are needed? Can we avoid to significantly increase 𝐶
or 𝐵 in order to obtain a clock that runs for, say, a decade at GHz speed?

E16.2 Think about whether such clocks are useful in light of the fault model.

Next, we apply counting to solve a fault-tolerant variant of the synchronous
restart problem. In contrast to Chapter 6, we cannot rely on a single node to
initiate the restart, as this could result in handing control of the system to a
faulty node. The definition is slightly cumbersome, which is due to the fact
that we need to reign in the power of faulty nodes to influence when a restart
occurs, yet need to leave enough flexibility to allow for a solution.

Definition 16.5 (Self-stabilizing Simultaneous Restart with Byzantine Faults).
In each round 𝑟 ∈ N>0, each node 𝑣 ∈ 𝑉𝑔 receives a signal go𝑣 (𝑟) ∈ {0, 1}
indicating whether a restart should occur, and outputs rst𝑣 (𝑟) ∈ {0, 1} indicat-
ing whether it locally restarts. From the viewpoint of the simultaneous restart
problem with (up to) 𝑓 Byzantine faults, an execution is correct with response
time 𝑇 from round 𝑅 on, if it satisfies the following three properties for all
rounds 𝑟 ≥ 𝑅.
• Agreement: rst𝑣 (𝑟) = rst𝑤 (𝑟) for all 𝑣, 𝑤 ∈ 𝑉𝑔.
• Safety: If rst𝑣 (𝑟) = 1 for 𝑣 ∈ 𝑉𝑔, (i) there is 𝑟go ∈ {𝑟 − 𝑇, . . . , 𝑟} and 𝑤 ∈ 𝑉𝑔

such that go𝑤 (𝑟go) = 1 and (ii) rst𝑣 (𝑟 ′) = 0 for all 𝑟 ′ ∈ {𝑟go, . . . , 𝑟 − 1}.
• Liveness: If go𝑣 (𝑟) = 1 for at least 𝑓 + 1 nodes 𝑣 ∈ 𝑉𝑔, then rst𝑣 (𝑟 ′) = 1 for

some 𝑟 ′ ∈ {𝑟, . . . , 𝑟 + 𝑇} and all 𝑣 ∈ 𝑉𝑔.
AlgorithmA is a simultaneous restart algorithm resilient to 𝑓 Byzantine faults
with stabilization time 𝑆 and response time 𝑇 , if all of its executions with at
most 𝑓 Byzantine faults are correct with response time 𝑇 from round 𝑆 on,
regardless of the state of (correct) nodes on initialization.

We remark that there is some flexibility regarding how the task is phrased.
There is no strong reason to prefer this particular variant, but the presented
techniques can be easily adjusted to similar formulations. We discuss this in
more detail in Section 16.5.

Again, the synchronous restart problem with faults is intimately connected to
consensus. First, we show that any synchronous restart algorithm can be used
to solve binary consensus, essentially without any overhead.

Theorem 16.10. Suppose that A is a simultaneous restart algorithm resilient
to 𝑓 Byzantine faults with response time 𝑇 . Then there is a binary consensus
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algorithm resilient to 𝑓 Byzantine faults with round complexity 𝑇 . Compared
toA, the consensus algorithm requires no additional communication and only
negligible additional computation.

The fact that the statement of the theorem does not refer to the stabilization
time of A is no coincidence: The statement also applies to non-stabilizing
solutions. This also holds for the proof, as it would work also under the
condition that the initial states of (correct) nodes is under the control of the
algorithm.

Concerning the reverse direction, we provide an efficient reduction to a
counting and a binary consensus algorithm.

Theorem 16.11. Suppose that A is a binary consensus algorithm of round
complexity 𝑇 that is resilient to 𝑓 Byzantine faults, and that B is a 𝐶-counting
algorithm for 𝐶 ≥ 𝑇 with stabilization time 𝑆 that is resilient to 𝑓 Byzantine
faults. Then there is a simultaneous restart algorithm resilient to 𝑓 Byzantine
faults with stabilization time 𝑆 +2𝐶 and response time 2𝐶. Apart from running
an instance of B and (simple) local computations, the algorithm has correct
nodes send messages and perform computations for at most one instance ofA
in each round.

Recall that we know from Theorem 16.8 that counting can be reduced to
consensus, and from Theorem 14.22 that consensus can be reduced to binary
consensus. Thus, from Theorem 16.11 we can conclude that self-stabilizing
synchronous restart can be reduced to binary consensus as well.

Corollary 16.6. Suppose that A is a binary consensus algorithm of round
complexity𝑇 that is resilient to 𝑓 Byzantine faults. Then there is a simultaneous
restart algorithm resilient to 𝑓 Byzantine faults with stabilization and response
times of𝑂 (𝑇). The restart algorithm runs𝑂 (𝑇) concurrent instances ofA, but
otherwise performs no communication and few additional local computations.

In contrast to counting, the reduction to consensus is efficient both in terms of
communication and computation. However, it is worth noting that this depends
on the specific formulation of the simultaneous restart problem. For instance,
one could require that a restart is performed in round 𝑟 if and only if there where
sufficiently many go signals in round 𝑟 − 𝑇 for a fixed 𝑇 . This is equivalent
to solving one binary consensus for each round. The formulation we chose
circumvents this by allowing slack in terms of the number of rounds between
go signals and letting only go signals after the most recent restart trigger the
next restart.
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16.2 Problem Statement and Motivation

Synchronous counting is the task of maintaining a common round counter in
a self-stabilizing and fault-tolerant manner. This means two things: (i) nodes
should agree on the counter value and (ii) the counter value should increase by
one in each synchronous round. This is captured by the agreement and validity
conditions in the specification of the task.

Definition 16.1. Denote by 𝑉𝑔 ⊆ 𝑉 the set of correct nodes and fix an integer
𝐶 ≥ 2. In synchronous 𝐶-counting, in each synchronous round 𝑟 ∈ N>0, each
node 𝑣 ∈ 𝑉𝑔 outputs a value 𝑐𝑣 (𝑟) ∈ [𝐶]. We consider an execution correct
from round 𝑅 ∈ N>0, if for all rounds 𝑟 ≥ 𝑅 the following two properties hold.
1. Agreement: For all 𝑣, 𝑤 ∈ 𝑉𝑔, we have that 𝑐𝑣 (𝑟) = 𝑐𝑤 (𝑟).
2. Validity: For all 𝑣 ∈ 𝑉𝑔, we have that 𝑐𝑣 (𝑟 + 1) = 𝑐𝑣 (𝑟) + 1 mod 𝐶.
As pointed out earlier, what makes synchronous counting difficult is the need

to overccome both transient and permanent faults, i.e., self-stabilization and
Byzantine faults, respectively. The requirement to recover from transient faults
necessitates to adjust node’s own counter when it appears to be out-of-sync with
others, as it cannot always be trusted. The requirement to tolerate (ongoing)
Byzantine faults means that no single other node’s clock can be used as common
reference to ensure agreement.

The main purpose of solving synchronous counting is to schedule execution
of algorithms in a reliable manner. This can take two forms. One are regular
“maintenance” tasks, e.g., making sure that different parts of a chip that per-
form some task redundantly actually agree on the state of the computation, or
regularly taking some measurement. Any subroutine that should be executed
in regular intervals qualifies. If we want to execute a task that requires (up to)
𝑅 rounds of computation every 𝑇 ≥ 𝑅 rounds, we can do so using a𝐶-counting
algorithm for any 𝐶 that is a multiple of 𝑇 : node 𝑣 ∈ 𝑉𝑔 simply checks in
each round 𝑟 whether 𝑐𝑣 (𝑟) mod 𝑇 = 0 and locally initializes the algorithm
executing the task if this is the case. Note that one might choose 𝑇 substantially
larger than 𝑅, in order to save energy or allow for other task competing for
the same computational resources to be executed. For instance, accesses to a
communication channel or routing schemes may rely on a pattern repeating in
time; in such a case, synchronous counting is key for chip-wide communication
to be re-established after transient faults.

The second use case is for scheduling tasks that are triggered by external
or internal events. An archetypical example is the synchronous restart task;
depending on whether nodes locally receive a signal indicating the need for a
restart, they need to globally agree on a time when to execute it synchronously.
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Definition 16.5 (Self-stabilizing Simultaneous Restart with Byzantine Faults).
In each round 𝑟 ∈ N>0, each node 𝑣 ∈ 𝑉𝑔 receives a signal go𝑣 (𝑟) ∈ {0, 1}
indicating whether a restart should occur, and outputs rst𝑣 (𝑟) ∈ {0, 1} indicat-
ing whether it locally restarts. From the viewpoint of the simultaneous restart
problem with (up to) 𝑓 Byzantine faults, an execution is correct with response
time 𝑇 from round 𝑅 on, if it satisfies the following three properties for all
rounds 𝑟 ≥ 𝑅.
• Agreement: rst𝑣 (𝑟) = rst𝑤 (𝑟) for all 𝑣, 𝑤 ∈ 𝑉𝑔.
• Safety: If rst𝑣 (𝑟) = 1 for 𝑣 ∈ 𝑉𝑔, (i) there is 𝑟go ∈ {𝑟 − 𝑇, . . . , 𝑟} and 𝑤 ∈ 𝑉𝑔

such that go𝑤 (𝑟go) = 1 and (ii) rst𝑣 (𝑟 ′) = 0 for all 𝑟 ′ ∈ {𝑟go, . . . , 𝑟 − 1}.
• Liveness: If go𝑣 (𝑟) = 1 for at least 𝑓 + 1 nodes 𝑣 ∈ 𝑉𝑔, then rst𝑣 (𝑟 ′) = 1 for

some 𝑟 ′ ∈ {𝑟, . . . , 𝑟 + 𝑇} and all 𝑣 ∈ 𝑉𝑔.
AlgorithmA is a simultaneous restart algorithm resilient to 𝑓 Byzantine faults
with stabilization time 𝑆 and response time 𝑇 , if all of its executions with at
most 𝑓 Byzantine faults are correct with response time 𝑇 from round 𝑆 on,
regardless of the state of (correct) nodes on initialization.

E16.3 Adjust Definition 16.5 for non-stabilizing algorithms and argue that Theo-
rem 16.10 also applies to this task.

E16.4 Show that the non-stabilizing version of the task can be reduced to binary
consensus, where a round complexity of 𝑇 translates to a response time of
𝑂 (𝑇).

This definition of the restart problem is more involved than the vanilla variety
due to taking into account faults. The safety and liveness properties strike a
balance between reacting to external events and avoiding that faulty nodes can
produce a false response. Here the assumption is that it is safe to execute a task,
if at least one correct node believes this to be required, while one must execute
the task when 𝑓 + 1 correct nodes believe this (which is sufficient to prove to
all correct nodes that it is safe to perform the task).

Essentially, in Section 16.5, we show how to solve this task based on a
“maintenance” task as described above. By regularly executing consensus on
whether there were sufficiently many go signals, the system can respond in
(as we show) a number of rounds which is optimal up to constants. As this
solution is based on a (self-stabilizing) solution to synchronous counting, it
simply inherits the self-stabilization property.

Recall that the synchronous restart task is not limited to restarting the system.
It can be used to trigger any task based on external inputs to the nodes. Hence,
Definition 16.5 can be seen as providing a fault-tolerant and self-stabilizing
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command interface to the system running the synchronous restart routine.
Note also that, if desired, it is straightforward to make the entity providing the
commands redundant and provide the go signals over independent channels,
enabling extension of the strong fault-tolerance properties to the compound
system.

With all of this in mind, we can see that synchronous counting is a core
primitive for designing highly robust general-purpose systems. The intimate
connection to consensus shown in Section 16.4 reaffirms the statement from
Chapter 14 that consensus is one (if not the) most fundamental fault-tolerance
primitive.

We conclude this section with some remarks on 𝐶. For the above purposes,
one should expect that values of 𝐶 between 100 to 10000 should suffice for
most basic tasks, even if they should be executed not too often to reduce energy
consumption. Hence, 7-bit (𝐶 = 128) or 16-bit (𝐶 = 65536) counters should be
sufficient for most cases. However, one might object that in a system running at,
say, 3 GHz, even a 16-bit counter would overflow about every 20 microseconds.
At first glance, this is hardly enough to use the clock for coordination with the
outside world – what if some task should be executed only once per second,
or once per day? While it is tempting to conclude that one should invoke
Theorem 16.9 to generate sufficiently large clocks – adding just one bit would
do the trick – one should keep in mind that the synchronous counting problem
does not ensure any fixed relation between the internal counters and the external
world. Even if such a relation is ensured at initialization, transient faults may
cause a complete loss of this information within the system. Therefore, if a
task requires a notion of time that is shared with some external system, we need
to solve clock synchronization in the compound system in a self-stabilizing
way. The utility of synchronous counting here is limited to supporting this,
e.g. by making it possible to regularly execute consensus or other subroutines
to perform this synchronization.

16.3 Relation to Consensus

Theorem 16.7. Suppose thatA solves𝐶-counting on𝐺 with up to 𝑓 Byzantine
faults and stabilization time 𝑆. Then, for any set 𝑋 with |𝑋 | ≤ 𝐶, there is a
consensus algorithm with inputs from 𝑋 on 𝐺 that tolerates up to 𝑓 Byzantine
faults and has round complexity 𝑆. The only communication the consensus
algorithm performs is due to simulating an instance of A for 𝑆 rounds.

Proof. W.l.o.g., we assume that 𝑋 = [|𝑋 |] ⊆ [𝐶]; otherwise, simply fix a
bijection between 𝑋 and [|𝑋 |] and apply it as appropriate.
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Algorithm 23 Consensus algorithm based on counting algorithm at node 𝑣 ∈
𝑉𝑔. Recall that 𝑥𝑣 ∈ 𝑋 is the input value of 𝑣 ∈ 𝑉𝑔 for the consensus instance.

1: execute 𝑆 rounds of A, where the initial state is given by state𝑣 (𝑥𝑣)
2: 𝑜 := 𝑐(𝑆) − 𝑆 mod 𝐶, where 𝑐 is the output function of A
3: if 𝑜 ∈ [|𝑋 |] then
4: return 𝑜
5: else
6: return 0
7: end if

In order to construct our consensus algorithm, we first fix an arbitrary fault-
free execution E of A. To this end, we pick arbitrary initial states for each
𝑣 ∈ 𝑉 , which determines E, as all nodes follow the algorithm. We simulate the
first 𝑆+𝐶−1 rounds of E. BecauseA has stabilization time 𝑆, the values 𝑐𝑣 (𝑟)
nodes output in rounds 𝑟 ∈ {𝑆, . . . , 𝑆 + 𝐶 − 1} satisfy agreement and validity.
As these are exactly 𝐶 rounds, it follows that for each 𝑐 ∈ [𝐶], there is exactly
one round 𝑟𝑐 ∈ {𝑆, . . . , 𝑆 + 𝐶 − 1} such that 𝑐𝑣 (𝑟𝑐) = 𝑐 for all 𝑣 ∈ 𝑉 .

Denote for 𝑐 ∈ [𝐶] by state𝑣 (𝑐) the state of 𝑣 at the end of round 𝑟𝑐 of E.
Our proof rests on the following key claim. If we initialize each node 𝑣 ∈ 𝑉𝑔
to state𝑣 (𝑐) and |𝑉 \ 𝑉𝑔 | ≤ 𝑓 , the resulting execution E ′ will satisfy validity
right from the start – regardless of the behavior of faulty nodes. To see that
this is true, consider the execution E ′′ that is identical to E until round 𝑟𝑐
(i.e., correct nodes have the same initial state as in E and faulty nodes send
the same messages as in E), and in rounds 𝑟 > 𝑟𝑐 has faulty nodes send the
same messages as in round 𝑟 − 𝑟𝑐 of E ′. By induction, the state of each node
𝑣 ∈ 𝑉𝑔 in round 𝑟 of E ′ is identical to the state it has in round 𝑟𝑐 + 𝑟 of E ′′.
In particular, 𝑣 outputs the same value in rounds 𝑟 of E ′ and round 𝑟𝑐 + 𝑟 or
E ′′. Because 𝑟𝑐 ≥ 𝑆 and |𝑉 \ 𝑉𝑔 | ≤ 𝑓 , E ′′ satisfies validity in rounds 𝑟 ≥ 𝑟𝑐 ,
implying that E ′ satisfies validity in all rounds 𝑟 ∈ N. This proves the claim.

We will exploit that the claim implies that each 𝑣 ∈ 𝑉𝑔 outputs 𝑐 + 𝑆 mod 𝐶
in round 𝑆 of E ′, i.e., initializing each 𝑣 ∈ 𝑉𝑔 to state𝑣 (𝑐) guarantees that
each 𝑣 ∈ 𝑉𝑔 satisfies 𝑐𝑣 (𝑆) = 𝑐 + 𝑆 mod 𝐶. This gives rise to the consensus
algorithm shown in Algorithm 23.

By construction, this algorithm has round complexity 𝑆 and outputs values
from 𝑋 = [|𝑋 |]. As A has stabilization time 𝑆, by agreement of A we have
that 𝑜𝑣 (𝑆) = 𝑜𝑣 (𝑆) for all 𝑣, 𝑤 ∈ 𝑉𝑔, implying agreement of the consensus
algorithm. Regarding validity, suppose that there is 𝑥 ∈ 𝑋 so that 𝑥𝑣 = 𝑥 for all
𝑣 ∈ 𝑉𝑔. Then by the above claim, 𝑜𝑣 (𝑆) = 𝑥 + 𝑆 mod 𝐶 for all 𝑣 ∈ 𝑉𝑔, resulting
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in 𝑜𝑣 (𝑆) − 𝑆 mod 𝐶 = 𝑥. Accordingly, indeed each 𝑣 ∈ 𝑉𝑔 then outputs 𝑥,
proving validity. �

We remark that the computational overhead of this transformation is small. In
addition to the computations ofA, nodes need to (i) translate the input into an
initial state forA, (ii) count until 𝑆, and (iii) compute the output from 𝑐(𝑆). If
𝐶 is large, (i) might require a large lookup table, namely if there is no compact
representation of suitable initial states forA. However, for the important case of
𝑋 = {0, 1}, all steps become very efficient: (i) requires only two different initial
states, (ii) needs an 𝑆-counter, with A likely making use of similar counters,
and (iii) can be performed by testing whether 𝑐(𝑆) = 𝑆 + 1 mod 𝐶, returning 1
if this is true and 0 otherwise. This makes it very likely that overhead in terms
of computations and memory compared to just running A is small.

Theorem 16.8. Suppose that A solves consensus on 𝐺 with inputs from 𝑋 ,
where |𝑋 | ≥ 𝐶, for up to 𝑓 Byzantine faults and with round complexity 𝑅.
Then, we can solve 𝐶-counting on a fully connected 𝑛-node network with up to
𝑓 faults and stabilization time 9𝑅 + 14. The counting algorithm simulates 𝑅
consensus instances concurrently and sends only the corresponding messages.

Proof. W.l.o.g., we assume that 𝑋 = [𝐶]; otherwise we can enumerate the
elements of 𝑋 and interpret each as its index modulo 𝐶 in this enumeration.
Moreover, we assume that 𝑅 mod 𝐶 ≠ 0 and show the claim of the theorem
with stabilization time 9𝑅+5. The case 𝑅 mod 𝐶 = 0 is then covered by noting
that any consensus algorithm with round complexity 𝑅 is also a consensus
algorithm with round complexity 𝑅 + 1, and 𝑅 + 1 mod 𝐶 ≠ 0 if 𝑅 mod 𝐶 = 0.

We instantiateA once per round, using the generated outputs with a delay of
exactly 𝑅 rounds to produce a stream of one output value 𝑐𝑣 (𝑟) at each 𝑣 ∈ 𝑉𝑔,
where 𝑟 ∈ N>0. Because initial states are arbitrary, we have no guarantee
on the generated output values in rounds 1, . . . , 𝑅 − 1, nor that the respective
instance of A actually does halt and output any value. However, using simple
consistency checks and outputting a default value if needed, we can make sure
that each correct node generates an output from [𝐶] in each round and terminate
execution of an instance of A locally if it runs for too long. By agreement
of A, this ensures that in each round 𝑟 ≥ 𝑅, all correct nodes generate the
same output value from [𝐶], which we refer to as 𝑐(𝑟). By having each 𝑣 ∈ 𝑉𝑔
choose its input 𝑥𝑣 (𝑟) to the instance of A started in round 𝑟 as function of
the preceding 2𝑅 + 2 output values it perceived (or whatever is stored in the
respective memory locations), after at most 3𝑅+2 rounds, all correct nodes use
the same input value in each round. Thus, validitiy ofA ensures that in rounds
𝑟 ≥ 4𝑅 + 2, 𝑐(𝑟) equals the agreed-upon input in round 𝑟 − 𝑅, cf. Figure 16.2.
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CL: Warning: Figure is out of date! Part of an execution of Algorithm 23 at two nodes,
for 𝐶 = 8 and 𝑅 = 3. The execution progresses from left to right, each box representing
a round. On top of the input field the applied rule (1 to 4) to compute the input is
displayed. Displayed are the initial phases of stabilization: (i) after 𝑅 rounds agreement
on the output is guaranteed by consensus, (ii) after 2𝑅 + 2 more rounds agreement on
the applied rule and hence the input is reached, and (iii) another 𝑅 rounds later the
agreed-upon outputs are the agreed-upon inputs shifted by 𝑅 = 3 rounds.

Denote by input : [𝐶]2𝑅+2 → [𝐶] the input function we use, i.e., 𝑥𝑣 (𝑟) :=
input(𝑐𝑣 (𝑟 − 2𝑅 − 2), 𝑐𝑣 (𝑟 − 2𝑅 − 1), . . . , 𝑐𝑣 (𝑟 − 1)). In the following, all our
arguments will refer to rounds 𝑟 ≥ 𝑅 exclusively, so we can simplify notation
by using 𝑐(𝑟) in lieu of 𝑐𝑣 (𝑟).

Our goal is to choose the input function such that 𝑐(𝑟) starts to properly count
modulo 𝐶 within 9𝑅 + 5 rounds, i.e., node 𝑣 ∈ 𝑉𝑔 using 𝑐𝑣 (𝑟) as the local
output of the 𝐶-counting algorithm in round 𝑟 satisfies validity. As we already
observed that 𝑐𝑣 (𝑟) = 𝑐𝑤 (𝑟) = 𝑐(𝑟) for 𝑟 ≥ 𝑅, this will complete the proof.
We specify input as follows, where the function values are taken modulo 𝑅:

input(𝑐(𝑟 − 3𝑅 − 1), . . . , 𝑐(𝑟 − 1)) :=


𝑐 + 𝑅 − 1 if (𝑐(𝑟 − 𝑅 − 2), . . . , 𝑐(𝑟 − 1)) = (𝑐 − 𝑅 − 1, . . . , 𝑐 − 1)rule (𝑎)

𝑥 + 𝑅 − 1 if
(𝑐(𝑟 − 𝑅 − 2 − 𝑥), . . . , 𝑐(𝑟 − 1)) = (0, . . . , 0, 1, . . . , 𝑥)

for 𝑥 ∈ {1, . . . , 𝑅}
rule (𝑏)

𝑥 if
(𝑐(𝑟 − 𝑅 − 2 − 𝑥), . . . , 𝑐(𝑟 − 1)) = (0, . . . , 0)

for maximal 𝑥 ∈ [𝑅 + 1]
rule (𝑐)

0 else.rule (𝑑)
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Figure 16.3
CL: Warning: Figure is out of date! Extension of the execution shown in Figure 16.2.
Nodes have already agreed upon inputs and outputs so that the latter just reproduce
the inputs from 𝑅 rounds ago. The rules now make sure that the nodes start counting
modulo 8 in synchrony, always executing rule 1.

See Figure 16.3 for an example of how these rules play out. Observe first that
the input function is well-defined, i.e., exactly one of the rules (𝑎) to (𝑑) applies
for any string of 2𝑅 + 2 numbers from [𝐶].

E16.5 Verify that rules (𝑎) to (𝑐) are mutually exclusive.

It remains to prove that proper counting commences at the latest by round
8𝑅 + 5. We make a case distinction.

Case 1: (𝑐(𝑟 ′), 𝑐(𝑟 ′ + 1)) ≠ (0, 0) and 𝑐(𝑟 ′ + 1) ≠ 𝑐(𝑟 ′) + 1 mod 𝐶 for some
𝑟 ′ ≥ 𝑅. Then rules (𝑎) to (𝑐) do not apply in rounds 𝑟 ∈ {𝑟 ′+2, . . . , 𝑟 ′+𝑅+2},
as 𝑟−𝑅−2 ≤ 𝑟 ′. Thus, all correct nodes use input 0 in these rounds, implying
by validity ofA that 𝑐(𝑟) = 0 for all 𝑟 ∈ {𝑟 ′+𝑅+1, . . . , 𝑟 ′+2𝑅+1}. Denote
by 𝑟0 the infimum of all rounds larger than 𝑟 ′ + 𝑅 + 2 such that input 0 is used
in rounds 𝑟 ′ + 2, . . . , 𝑟0. Note that 𝑐(𝑟) = 0 for all 𝑟 ∈ {𝑟 ′ + 𝑅 + 1, . . . , 𝑟0},
so eventually rule (𝑐) applies for 𝑥 ≠ 0, showing that 𝑟0 ≤ 𝑟 ′ + 2𝑅 + 3. By
validity of A, we get that 𝑐(𝑟) = 0 for all 𝑟 ∈ {𝑟 ′ + 𝑅 + 1, 𝑟0 + 𝑅 − 1}. As
rule (𝑐) applies for 𝑥 = 0 in round 𝑟0 and 𝑥 is maximal, it follows that for
each 𝑥 ∈ [𝑅], rule (𝑐) applies for 𝑥 in round 𝑟0 + 𝑥. We keep repeating the
same argument, showing that (i) the previous statement holds also for 𝑥 = 𝑅,
(ii) for 𝑥 ∈ {1, . . . , 𝑅}, rule (b) applies in round 𝑟0 + 𝑅 + 𝑥, and (iii) rule (a)
applies in all rounds 𝑟 ≥ 𝑟0 +2𝑅 +1. Thus, we have shown that 𝑐(𝑟) properly
counts at the latest starting from round 𝑟0 + 𝑅 − 1 ≤ 𝑟 ′ + 3𝑅 + 2.

Case 2: 𝑐(𝑟 ′ + 1) = 𝑐(𝑟 ′) + 1 mod 𝐶 for some 𝑟 ′ ≥ 𝑅.

Case 2𝑎: 𝑐(𝑟 + 1) = 𝑐(𝑟) + 1 mod 𝐶 for all 𝑟 ∈ {𝑟 ′, . . . , 𝑟 ′ + 2𝑅 + 1}. By
induction, it holds that in all rounds 𝑟 ≥ 𝑟 ′ + 𝑅 + 2, rule (𝑎) applies and
𝑐(𝑟 + 𝑅− 1) = 𝑐(𝑟) + 𝑅− 1. Thus, 𝑐(𝑟) counts correctly from round 𝑟 ′ on.

Case 2𝑏: 𝑐(𝑟 +1) ≠ 𝑐(𝑟) +1 mod 𝐶 for some 𝑟 ∈ {𝑟 ′+1, . . . , 𝑟 ′+2𝑅+1}.
Choose 𝑟≠ as the minimal such 𝑟 . As also 𝑐(𝑟≠−1) ≠ 𝑐(𝑟≠), rules (𝑎), (𝑏),
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and (except for 𝑥 = 0) (𝑐) do not apply in rounds 𝑟 ∈ {𝑟≠+2, . . . , 𝑟≠+𝑅+2}.
Hence we can proceed analogously to Case 1 with 𝑟≠ playing the role of
𝑟 ′, showing that proper counting starts by round 𝑟≠ + 3𝑅 + 2 ≤ 𝑟 ′ + 5𝑅 + 3.

Case 3: (𝑐(𝑅), 𝑐(𝑅 + 1)) = (0, 0). Let 𝑟≠ be the infimal round larger than
𝑅 such that 𝑐(𝑟≠) ≠ 0. We claim that 𝑟≠ ≤ 4𝑅 + 2. To see this, observe
that (𝑐(𝑅), . . . , 𝑐(4𝑅 + 1)) = (0, . . . , 0) in particular implies that rule (𝑐)
applies in round 3𝑅 + 2 for some 𝑥 ≠ 0. Note that this rule does not depend
on output values before round 𝑅, regardless of the value of 𝑥 that applies.
Accordingly, all nodes used the same input 𝑥 mod 𝐶 in this round, and validity
of A implies that 𝑐(4𝑅 + 1) = 𝑥 mod 𝐶. If 𝑥 mod 𝐶 ≠ 0, this shows the
claim. Otherwise, 𝑥 ≠ 𝑅, as we assumed that 𝑅 mod 𝐶 ≠ 0. Thus, in
round 3𝑅 + 3, rule (𝑐) applies for 𝑥 + 1, again by validity ofA implying that
𝑐(4𝑅 + 2) = 𝑥 + 1 ≠ 0 mod 𝐶. This proves the claim.

Case 3𝑎: 𝑐(𝑟≠) ≠ 1. Thus, Case 1 applies for round 𝑟≠, yielding that 𝑐(𝑟)
counts at the latest starting from round 𝑟≠ + 3𝑅 + 2 ≤ 7𝑅 + 4.

Case 3𝑏: 𝑐(𝑟≠) = 1. Thus, Case 2 applies for round 𝑟≠, yielding that 𝑐(𝑟)
counts at the latest starting from round 𝑟≠ + 5𝑅 + 3 ≤ 9𝑅 + 5.

Finally, observe that one of the Cases 1, 2, and 3 must apply to round 𝑅, each
of which imply proper counting starting at the latest in round 9𝑅 + 5. �

16.4 Communication-efficient Large Counters from Small Counters

Theorem 16.9. Suppose that on 𝐺 and with up to 𝑓 Byzantine faults,A solves
𝐶-counting with stabilization time 𝑆 and B solves [𝐶 ′]-valued consensus with
round complexity 𝑅. If 𝐶 ≥ 𝑅, we can solve 𝐶 ′-counting on the same network
with up to 𝑓 faults and stabilization time 𝑆+2𝑅+ (𝐶 mod 𝑅). The𝐶 ′-counting
algorithm concurrently sends messages for A and B (one instance each), but
performs no additional computation.

Proof. We run an instance of A and use the generated counters to repeatedly
and consistently execute B. Once the𝐶-counters stabilized, B will be executed
correctly, ensuring by agreement of consensus that the variables holding the
local values of the 𝐶 ′-counter agree. To satisfy validity of the counters, we
increase the respective local variable 𝑐′ by 1 mod 𝐶 ′ in each round. Using
𝑐′ + 𝑅 − 1 mod 𝐶 ′ as input to each consensus instance and setting 𝑐′ to the
(local) output of the instance exactly 𝑅 − 1 rounds later, agreement of the
counters when the instance is initiated and the validity of B imply that the
counters are not changed by the output of the consensus instance.

This strategy results in Algorithm 24:
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Algorithm 24𝐶 ′-counting algorithm based on 𝑅-round [𝐶 ′]-valued consensus
algorithm B and 𝐶-counting algorithm A, at 𝑣 ∈ 𝑉𝑔 in round 𝑟 ∈ N>0. Local
variables are persistent. A runs in the background and has output variable 𝑐.

1: 𝑐′← 𝑐′ + 1 mod 𝐶 ′
2: if 𝑐 mod 𝑅 = 0 then
3: initialize B (for 𝑓 and 𝐺) with input 𝑐′ + 𝑅 − 1 mod 𝐶 ′
4: end if
5: execute round 𝑐 + 1 mod 𝑅 of B (if terminated, do nothing)
6: if 𝑐 mod 𝑅 = 𝑅 − 1 then
7: denote by 𝑜 the output variable of the local instance of B
8: 𝑐′← 𝑜

9: end if
10: return 𝑐′

Because A has stabilization time 𝑆, the counters 𝑐𝑣 (𝑟), 𝑣 ∈ 𝑉𝑔 and 𝑟 ∈ N,
satisfy agreement and validity in rounds 𝑟 ≥ 𝑆. Accordingly, in rounds 𝑟 ≥ 𝑆
all correct nodes agree on when they initialize a fresh instance ofB and in which
round of the execution of B they are. Hence, each such instance simulates a
correctly initialized execution of B, implying that agreement and validity apply
to the output variables when they are used in round 𝑟 ≥ 𝑆 + 𝑅 − 1 (with respect
to the inputs determined in round 𝑟 − 𝑅 + 1). In particular, if 𝑟0 is the first
such round, we get that 𝑐′𝑣 (𝑟0) = 𝑐′𝑤 (𝑟0) for all 𝑣, 𝑤 ∈ 𝑉𝑔. Moreover, induction
on the round number shows that future executions of Line 8 do not change
𝑐′𝑣 at any 𝑣 ∈ 𝑉𝑔 and 𝑐′𝑣 (𝑟 + 1) = 𝑐′𝑣 (𝑟) + 1 mod 𝐶 ′ for all 𝑣 ∈ 𝑉𝑔. Hence
𝑐′𝑣 (𝑟 + 1) = 𝑐′𝑣 (𝑟) + 1 mod 𝐶 ′ for all 𝑣 ∈ 𝑉𝑔, i.e., the 𝑐′𝑣 count correctly from
round 𝑟0 on.

Thus, to show that Algorithm 24 has stabilization time 𝑆 + 2𝑅 + (𝐶 mod 𝑅),
it suffices to show that 𝑟0 ≤ 𝑆 + 2𝑅 + (𝐶 mod 𝑅). By validity of the counters
𝑐𝑣 , 𝑣 ∈ 𝑉𝑔, in rounds 𝑟 ≥ 𝑆, the largest number of consecute rounds in which
𝑐𝑣 (𝑟) mod 𝐶 ≠ 𝑅 − 1 is 𝐶 mod 𝑅 + 𝑅 − 1. Thus, 𝑟0 ∈ {𝑆 + 𝑅 − 1, . . . , 𝑆 + 2𝑅 −
1 + (𝐶 mod 𝑅)}, as claimed. �

16.5 Relation to Synchronous Restart

Theorem 16.10. Suppose that A is a simultaneous restart algorithm resilient
to 𝑓 Byzantine faults with response time 𝑇 . Then there is a binary consensus
algorithm resilient to 𝑓 Byzantine faults with round complexity 𝑇 . Compared
toA, the consensus algorithm requires no additional communication and only
negligible additional computation.
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Proof. We first simulate an execution of A without any faults, in which
go𝑣 (𝑟) = 0 for all 𝑣 ∈ 𝑉 and 𝑟 ∈ N>0, while the initial states are arbitrary.
Denote by state𝑣 the state of 𝑣 ∈ 𝑉 in round 𝑆, where 𝑆 is the stabilization time
of A.

Algorithm 25 Binary consensus algorithm from self-stabilizing simultaneous
restart algorithm, code for node 𝑣 ∈ 𝑉𝑔.

1: locally initialize an instance of A with state state𝑣
2: for 𝑇 rounds do
3: simulate a round of A with go𝑣 (𝑟) = 𝑏 for each 𝑟 ∈ N>0
4: if A computed go = 1 then
5: return 1
6: end if
7: end for
8: return 0

Observe first that in the simulated execution, any subset of up to 𝑓 nodes
could be Byzantine nodes that chose to behave like correct nodes. Therefore,
for any feasible set 𝑉𝑔 ⊆ 𝑉 of correct nodes, the initial state of the simulated
instance of A in Algorithm 25 is equal to that after 𝑆 rounds of an execution
ofA. In particular, the simulated execution satisfies the agreement, safety, and
liveness properties stated in Definition 16.5 in all rouns 𝑟 ∈ N>0.

We conclude that Algorithm 25 is indeed a binary consensus algorithm with
round complexity 𝑇 (cf. Definition 14.1):
• Algorithm 25 satisfies agreement due to agreement of A.
• Algorithm 25 satisfies validity, because (i) safety ofA entails that rst𝑣 (𝑟) = 0

for all 𝑣 ∈ 𝑉𝑔 and 𝑟 ∈ N>0 (and hence the output is 0) if all 𝑣 ∈ 𝑉𝑔 have input
0 (and hence go𝑣 = 0) and (ii) liveness ofA entails that for each 𝑣 ∈ 𝑉𝑔 there
is some 𝑟 ≤ 𝑇 such that rst𝑣 (𝑟) = 1 (and hence the output is 1) if all 𝑣 ∈ 𝑉𝑔
have input 1 (and hence go𝑣 = 1).

• Algorithm 25 unconditionally terminates within 𝑇 rounds. �

Theorem 16.11. Suppose that A is a binary consensus algorithm of round
complexity 𝑇 that is resilient to 𝑓 Byzantine faults, and that B is a 𝐶-counting
algorithm for 𝐶 ≥ 𝑇 with stabilization time 𝑆 that is resilient to 𝑓 Byzantine
faults. Then there is a simultaneous restart algorithm resilient to 𝑓 Byzantine
faults with stabilization time 𝑆 +2𝐶 and response time 2𝐶. Apart from running
an instance of B and (simple) local computations, the algorithm has correct
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Algorithm 26 Restart algorithm from 𝑇-round binary consensus algorithm A
and𝐶-counting algorithm B with output 𝑐(𝑟) in round 𝑟 ∈ N>0, code for round
𝑟 at node 𝑣 ∈ 𝑉𝑔. In each round 𝑟 , 𝑣 receives input go𝑣 (𝑟) and outputs rst𝑣 (𝑟). It
maintains variable 𝑔𝑣 to store whether it believes a restart should be performed
on the next consensus instance. The algorithm assumes that 𝐶 ≥ 𝑇 .

1: if go(𝑟) = 1 then
2: broadcast 〈 propose 〉
3: end if
4: if received 〈 propose 〉 from 𝑓 + 1 distinct senders (including self) then
5: 𝑔 ← 1
6: end if
7: if 𝑐(𝑟) = 0 then
8: initialize A with input 𝑔 (clear all prior local state of A)
9: 𝑔 ← 0

10: end if
11: if 𝑐(𝑟) ∈ [𝑇] then
12: locally simulate round 𝑐(𝑟) + 1 of A
13: end if
14: if 𝑐(𝑟) = 𝑇 − 1 and output variable of A holds 1 then
15: rst(𝑟) ← 1
16: 𝑔 ← 0
17: else
18: rst(𝑟) ← 0
19: end if

nodes send messages and perform computations for at most one instance ofA
in each round.

Proof. The idea is to repeatedly run consensus to agree on whether a reset needs
to be performed. Running consensus can be done using the counters provided
by B, which eventually stabilize. Algorithm 26 provides the respective code.

We need to show that agreement, safety, and liveness hold for rounds 𝑟 ≥
𝑆 +𝑂 (𝐶). Consider rounds 𝑟 ≥ 𝑆 +𝐶. For such rounds, the counters stabilized
by round 𝑟 −𝐶, and hence the local output variables of the consensus instance
hold the outputs of a consistent execution ofA. By agreement ofA, we clearly
have rst𝑣 (𝑟) = rst𝑤 (𝑟) for each 𝑣, 𝑤 ∈ 𝑉𝑔, i.e., agreement is satsisfied.

For safety, consider round 𝑟 ≥ 𝑆 + 2𝐶. If the counters have value different
from𝑇 −1, no correct 𝑣 ∈ 𝑉𝑔 will set rst𝑣 (𝑟) to 1, so assume that this is the case.
Observe that an instance of A has been initialized in round 𝑟 − 𝐶 − (𝑇 − 1) ≥
𝑟 − 2𝐶 ≥ 𝑆 and terminated before round 𝑟 . On initiliazing the instance, each
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correct node 𝑣 ∈ 𝑉𝑔 set 𝑔𝑣 := 0. Since at least 𝑓 + 1 〈 propose 〉 message need
to be received by 𝑣 in a single round to set 𝑔𝑣 back to 1, this can only happen
if some correct nodes broadcasts such a message in round 𝑟 − 2𝐶 + 1 or later.
We distinguish four cases:

1. No 𝑣 ∈ 𝑉𝑔 has go𝑣 (𝑟go) = 1 for some 𝑟go ∈ {𝑟 − 2𝐶 + 1, . . . , 𝑟}. Then
all correct nodes used input 0 for the instance terminating in round 𝑟 . By
validity, the output variables are hence 0 and rst𝑣 (𝑟) = 0 for each 𝑣 ∈ 𝑉𝑔.

2. Some 𝑣 ∈ 𝑉𝑔 has go𝑣 (𝑟go) = 1 for some 𝑟go ∈ {𝑟 − 2𝐶 + 1, . . . , 𝑟} and
the previous instance had output 0. Then no 𝑣 ∈ 𝑉𝑔 set rst𝑣 (𝑟 ′) = 1 for
any 𝑟 ′ ∈ {𝑟go, . . . , 𝑟 − 1}.

3. No 𝑣 ∈ 𝑉𝑔 has go𝑣 (𝑟go) = 1 for some 𝑟go ∈ {𝑟 − 𝐶 + 1, . . . , 𝑟} and the
previous instance had output 1. Then each correct 𝑣 ∈ 𝑉𝑔 set 𝑔𝑣 := 0
in the round when the instance terminated. Note that this happens after
potentially setting 𝑔𝑣 := 1 in the same round. As 𝑣 ∈ 𝑉𝑔 receives no 〈
propose 〉 messages from correct nodes in rounds 𝑟 − 𝐶 + 1, . . . , 𝑟 , it will
not set 𝑔𝑣 back to 1. Hence, the instance terminating in round 𝑟 had all
correct nodes use input 0 and by validity outputs 0. Therefore, rst𝑣 (𝑟) = 0
for each 𝑣 ∈ 𝑉𝑔.

4. Some 𝑣 ∈ 𝑉𝑔 has go𝑣 (𝑟go) = 1 for some 𝑟go ∈ {𝑟 − 𝐶 + 1, . . . , 𝑟}. Since
the previous instance terminated in round 𝑟 − 𝐶, we have that no 𝑣 ∈ 𝑉𝑔
set rst𝑣 (𝑟 ′) = 1 for any 𝑟 ′ ∈ {𝑟go, . . . , 𝑟 − 1}.

In all cases, safety is satisfied in round 𝑟 for response time 2𝐶.
Now consider liveness for a round 𝑟 ≥ 𝑆 +𝐶, i.e., at least 𝑓 + 1 nodes 𝑣 ∈ 𝑉𝑔

satisfy go𝑣 (𝑟) = 1. Thus, they broadcast 〈 propose 〉 in round 𝑟, and each
𝑣 ∈ 𝑉𝑔 sets 𝑔𝑣 (𝑟) := 1. We distinguish 2 cases:

1. Some 𝑣 ∈ 𝑉𝑔 sets 𝑔𝑣 (𝑟 ′) := 0 in round 𝑟 ′ ∈ {𝑟, . . . , 𝑟+𝐶−1}when setting
rst𝑣 (𝑟 ′) := 1. As we already established agreement, then all correct nodes
𝑤 ∈ 𝑉𝑔 satisfy rst𝑤 (𝑟 ′) = 1.

2. No 𝑣 ∈ 𝑉𝑔 sets 𝑔𝑣 (𝑟 ′) := 0 in round 𝑟 ′ ∈ {𝑟, . . . , 𝑟 +𝐶 − 1} when setting
rst𝑣 (𝑟 ′) := 1. Thus, each correct 𝑣 ∈ 𝑉𝑔 still satisfies 𝑔𝑣 (𝑟 ′′) = 1 when
initializing A in the round 𝑟 ′′ ∈ {𝑟, . . . , 𝑟 + 𝐶 − 1} when 𝑐𝑣 (𝑟 ′′) = 0.
Thus, each 𝑣 ∈ 𝑉𝑔 uses input 1 for the instance initialized in this round. By
validity ofA, its output variable is hence 1 in round 𝑟 ′ := 𝑟 ′′+𝑇−1 ≤ 𝑟+2𝐶.
We conclude that rst𝑣 (𝑟 ′) = 1.

In both cases, liveness is satisfied in round 𝑟 for response time 2𝐶. We
conclude that the algorithm has stabilization time 𝑆 + 2𝐶 and response time
2𝐶, as claimed. �





Bibliography

[1] Hopkins, A. L., T. B. Smith, and J. H. Lala. 1978. Ftmp – a highly reliable fault-
tolerant multiprocess for aircraft. Proceedings of the IEEE 66 (10): 1221–1239.
doi:10.1109/PROC.1978.11113.

[2] Kopetz, H. 2003. Fault containment and error detection in the time-triggered archi-
tecture. In The sixth international symposium on autonomous decentralized systems,
2003. isads 2003., 139–146. doi:10.1109/ISADS.2003.1193942.

[3] Pease, M., R. Shostak, and L. Lamport. 1980. Reaching agreement in the
presence of faults. J. ACM 27 (2): 228–234. doi:10.1145/322186.322188.
http://doi.acm.org/10.1145/322186.322188.

[4] Srikanth, T. K., and Sam Toueg. 1987. Optimal clock synchronization. J. ACM 34
(3): 626–645. doi:10.1145/28869.28876. https://doi.org/10.1145/28869.28876.


