
17 Fault-tolerant Clock Distribution

Chapter Contents
17.1 Overview 266
17.2 Local Faults and Probabilistic Resilience

Guarantees 269
17.3 Gradient TRIX 275

Learning Goals
CL: todo

266 Chapter 17 Fault-tolerant Clock Distribution

17.1 Overview

For most of the second part of this book, we have focused on fully connected
topologies. This has some justification, as Theorems 9.2 and 14.5 and Corol-
lary 9.3 show that high resilience to (permanent) faults requires high connec-
tivity. However, in many cases it may simply not be practical to have a fully
connected system – e.g., having 𝑛(𝑛−1)

2 links on a chip means that we quickly
run out of (physical) space for all these wires! This is only aggravated by the
need to avoid correlated faults. In particular, implementing all-to-all commu-
nication via some low-degree interconnection network entails that a few faults
in all the wrong places may affect communication between all or almost all
nodes.

But what if faults are distributed “nicely?” If there is no mastermind orches-
trating an attack on the system, it seems rather far-fetched to expect the worst
possible distribution of faults. Since we know that we need to avoid correlated
faults, our designs should result in an (almost) independent probability of fail-
ure for each node in the system. We explored this approach in Chapter 11,
where we augmented tree topologies to handle 𝑓 “local” faults.

Unfortunately, this still does not rid us of one important limitation of tree-like
topologies: they perform poorly with respect to the local skew. As we know
from Chapter 8, it is possible to achieve skews between adjacent nodes that
are logarithmic in the network diameter 𝐷. However, in tree-like topologies,
this skew is proportional to the depth of the tree structure. In this chapter,
we revisit the low-degree setting, focusing on a very simple grid-like topology
in which we can simultaneously achieve tolerance to 1 neighbor of each node
being faulty, self-stabilization, and a strong bound on the local skew.

Like in Chapter 11, we distribute the clock signal in a directed fashion.
This greatly simplifies achieving self-stabilization; we can then run a self-
stabilizating clock synchronization algorithm to generate the clock signal in a
fault-tolerant way by a few fully connected nodes.

In Section 17.2, we revisit the question what good considering local faults
does in the context of the grid topology we consider in this chapter. We show
that if the occurrence of faults is largely independent between nodes, i.e., they
can be considered fault-containment regions (cf. Section 9.2.1), a failure of
the system as a whole can be avoided despite way more faulty nodes than the
worst-case analysis from Chapter 9 suggests.

Corollary 17.4. For 𝑓 ∈ N, suppose that for each node the probability to
be faulty is independently bounded from above by 𝑝 = 𝑜

(
1

𝑛−(𝑓 +1)

)
and (in-

)degrees are 𝑂 (𝑓). Then with probability 1 − 𝑜(1), each node has at most 𝑓
faulty (in-)neighbors.

17.1 Overview 267

Figure 17.1
Structure of the directed grid used for clock propagation.

E17.1 The requirement of independence is critical. Find a probabilistic distribu-
tion of faults in which each node fails with probability 𝑜

(
1

𝑛−(𝑓 +1)

)
, yet the

probability that there are at most 𝑓 local faults is 𝑜(1)!
E17.2 Expecting complete independence is unrealistic. However, the statement of

the corollary merely asks for probabilities to be “independently bounded.”
Find a distribution where probabilities are not independent, yet indeed for
each node the probability to fail is at most 𝑝 regardless of which other nodes
fail.

Note that Corollary 17.4 is quite resilient to possible dependencies: Even if
for each node the probability to fail can vary by a constant factor depending
on whether other nodes fail or not, it is sufficient to show for each node that
under some assigned failure pattern for the other nodes it fails with probability
𝑜
(

1
𝑛−(𝑓 +1)

)
. This is an application of the technique of stochastic dominance,

which intuitively means to make use of the fact that additional faults can only
“make things worse” and pretend that faults are independent, albeit more likely.

In this chapter, we study a specific, very simple directed grid designed for
handling 1 fault in each in-neighborhood, see Figure 17.1. It has several

268 Chapter 17 Fault-tolerant Clock Distribution

desirable properties: all propagation paths to a node have the same length, all
links are local (i.e., short in a physical layout) and there are few edge-crossings
(for reasonable layout), and local skew appears to not build up easily. With
the most straightforward propagation rule of forwarding a pulse once the pulse
signal is received from the second predecessor, most of these properties can be
readily shown. If we let nodes “forget” about messages the received too long
ago, also self-stabilization is easy to show.

Theorem 17.5. Suppose that 𝑃min ≥ 2𝜗(S + 3𝐿𝑢) + 𝑑. If nodes on non-input
layers follow Algorithm 27, layer ℓ ∈ [𝐿 + 1] solves pulse synchronization with
skew S(ℓ) = S + ℓ𝑢, and period bounds 𝑃min (ℓ) = 𝑃min − ℓ𝑢 and 𝑃max (ℓ) =
𝑃max + ℓ𝑢 with stabilization time ℓ(2𝑃min + S(𝐿)).

Given that the diameter of the grid is larger than ℓ, a global skew of S + ℓ𝑢
is the best we can hope for.

Remark 17.1.
We used “local skew” here in a slighty informal sense. Of course, the “ad-
jacent” nodes on the same layer would be physically close in a reasonable
physical layout of the system, but they are not neighbors in the clock distribu-
tion network. The distinction is mostly academic, though: (i) they are only two
hops apart in the underlying undirected graph and (ii) the network moving the
data used for computation is likely to have links between the regions clocked
based on (physically) adjacent nodes.
The time difference between pulses of adjacent nodes in different layers (i.e., a
node in layer ℓ and its successors in layer ℓ +1) is proportional to S(ℓ +1) + 𝑑.
However, assuming that the lower bound on 𝑃min from Theorem 17.5 is smaller
than 𝑑, we can choose 𝑃min ≈ 𝑑, such that adjacent nodes still produce pulses
with skew 𝑂 (𝑢𝐿) (granted that S = 𝑂 (𝑢𝐿)).

With respect to the local skew, “appears” was a deliberate choice of wording,
because even for a single pulse without faulty nodes, the above skew bound is
tight not only for the global, but also the local skew!

Theorem 17.2. If the forwarding rule is “wait until received a pulse message
from two predecessors,” there is a (single pulse) execution for which the skew
on layer 0 is S and on layer ℓ, the skew between adjacent nodes is S + 𝑢ℓ.

E17.3 Prove the theorem. Hint: Use delays of 𝑑 − 𝑢 for one “half” of the network
and delays of 𝑑 for the other.

In Section 17.3, we seek to remedy this situation by modifying the rules ac-
cording to which the nodes in this topology forward clock pulses. Making use

17.2 Local Faults and Probabilistic Resilience Guarantees 269

of the ideas from Chapter 8, we ensure a gradient property of the propagation
algorithm. We make use of a simulation argument in which each communi-
cation step (i.e., increase in distance from the source) in the pulse forwarding
algorithm takes the role of advancing time by one unit. The uncertainty in link
delays thus in part takes the role of the clock drift.

E17.4 Suppose a clock pulse is propagated along a path of 𝑛 nodes, where as usual
the end-to-end delay varies between 𝑑 − 𝑢 and 𝑑 on each hop. If you interpret
the sending times of the pulse message at node 𝑖 ∈ [𝑛] as a hardware clock
reaching value 𝑖(𝑑 − 𝑢), what is its drift?

E17.5 Now suppose the nodes do not immediately forward the pulse, but let 𝑇 time
pass on their hardware clock, which is interpreted as the “path hardware clock”
advancing by 𝑇 as well. What is the drift of the compound clock?

E17.6 If 𝜗 − 1 � 𝑢/(𝑑 − 𝑢), can you modify how the “path hardware clock” is
defined such that it has a better drift bound?

While the gradient clock synchronization algorithm cannot handle faults in
general, the effect of a node being faulty for one time step can be kept fairly
limited. As in the simulation each faulty node represents only a single time
step of a simulated node, this means that the impact of a faulty node can be
controlled. The self-stabilization properties of the gradient clock synchroniza-
tion algorithm then take care of reducing the (possibly) introduced additional
skew while propagating the pulse farther.

17.2 Local Faults and Probabilistic Resilience Guarantees

Theorem 17.3. Suppose that for each node the probability to be faulty is
independently bounded from above by 𝑝 and nodes have (in-)degree at most Δ.
Moreover, assume that
• 𝑝 = 𝑜

(
𝑓

Δ𝑛−(𝑓 +1)

)
or

• 𝑝 ≤ 𝑓 +1
3𝑒Δ and 𝑓 ≥ log 𝑛.

Then there are at most 𝑓 local faults with probability 1 − 𝑜(1).

Proof. W.l.o.g., we assume that all nodes have in-degree Δ, as for any as-
signment of faulty nodes adding edges can only increase the number of faulty
neighbors a node has. Thus, for a single node, the probability that more than 𝑓

of its neighbors are faulty equals

𝑆 :=
Δ∑︁

𝑓 ′= 𝑓 +1

(
Δ
𝑓 ′

)
𝑝 𝑓 ′ (1 − 𝑝)Δ− 𝑓 ′ .

270 Chapter 17 Fault-tolerant Clock Distribution

As 𝑝 ≤ 𝑓
Δ , for each 𝑓 ′ ∈ { 𝑓 + 1, . . . ,Δ − 1} we can bound the ratio of the

(𝑓 ′ + 1)-th and 𝑓 ′-th summand by

𝑝

1 − 𝑝 ·
(Δ
𝑓 ′+1

)
(Δ
𝑓 ′
) =

𝑝

1 − 𝑝 ·
Δ − 𝑓 ′
𝑓 ′ + 1

≤ 𝑓

Δ − 𝑓 ·
Δ − 𝑓 ′
𝑓 ′ + 1

<
𝑓

𝑓 + 1
.

Setting 𝑞 := 𝑓
𝑓 +1 , it follows that

𝑆 ≤
(

Δ
𝑓 + 1

)
𝑝 𝑓 +1 (1 − 𝑝)Δ− 𝑓 −1

Δ− 𝑓 −1∑︁
𝑖=0

𝑞𝑖 < (𝑓 + 1)
(

Δ
𝑓 + 1

)
𝑝 𝑓 +1 (1 − 𝑝)Δ− 𝑓 −1 geometric sum

< (𝑓 + 1)
(

Δ
𝑓 + 1

)
𝑝 𝑓 +1 1 − 𝑝 < 1

≤ (𝑓 + 1)
(
𝑒Δ𝑝
𝑓 + 1

) 𝑓 +1
.

(𝑎
𝑏

) ≤ (𝑒𝑎
𝑏

)𝑏

If 𝑝 = 𝑜
(

𝑓

Δ𝑛1/(𝑓 +1)

)
, we can further bound

𝑆 < (𝑓 + 1)
(
𝑒Δ𝑝
𝑓 + 1

) 𝑓 +1
= 𝑜

((𝑓 + 1)1/(𝑓 +1)
𝑛1/(𝑓 +1)

) 𝑓 +1
𝑝 =

𝑜
(

𝑓 /Δ
𝑛1/(𝑓 +1)

)
= 𝑜

(
1
𝑛

)
𝑎1/𝑎 = 𝑒

ln 𝑎
𝑎

< 𝑒 for 𝑎 > 0
.

On the other hand, if 𝑝 ≤ 𝑓 +1
3𝑒Δ and 𝑓 ≥ log 𝑛, we can bound

𝑆 < (𝑓 + 1)
(
𝑒Δ𝑝
𝑓 + 1

) 𝑓 +1
≤ (𝑓 + 1)

(
1
3

) 𝑓 +1
𝑝 ≤ 𝑓 +1

3𝑒Δ

< (𝑓 + 1) ·
(
2
3

) 𝑓 +1
· 1
𝑛

𝑓 ≥ log 𝑛

= 𝑜

(
1
𝑛

)
. 𝑓 ≥ log 𝑛 =

𝜔 (1)

Hence, either way, 𝑆 = 𝑜
(

1
𝑛

)
. Applying the union bound over all nodes,

the overall probability of having more than 𝑓 local faults is thus bounded by∑𝑛
𝑖=1 𝑜

(
1
𝑛

)
= 𝑜(1). �

Corollary 17.4. For 𝑓 ∈ N, suppose that for each node the probability to
be faulty is independently bounded from above by 𝑝 = 𝑜

(
1

𝑛−(𝑓 +1)

)
and (in-

)degrees are 𝑂 (𝑓). Then with probability 1 − 𝑜(1), each node has at most 𝑓
faulty (in-)neighbors.

17.2 Local Faults and Probabilistic Resilience Guarantees 271

Proof. Because Δ = 𝑂 (𝑓), we have that 𝑝 = 𝑜
(

1
𝑛−(𝑓 +1)

)
= 𝑜

(
𝑓

Δ𝑛−(𝑓 +1)

)
. Thus

the claim is immediate from Theorem 17.3. �

17.2.1 Using the Grid Naively
In the following, assume that we have solved pulse synchronization for layer 0,
i.e., layer 0 is synchronized and can serve as an “input layer” providing the grid
with pulses of skew S and desirable period bounds 𝑃min and 𝑃max. The total
number of layers is 𝐿 + 1 ∈ N>0, i.e., there are 𝐿 non-input layers.

A simple approach then is to have each node in the grid wait until it received
pulse messages from two of its predecessors and then propagate the pulse.
Nodes can safely clear the local memory indicating that a pulse was received
from a predecessor after some time, as well as that the pulse has been generated.
Assuming that pulses are far enough apart, this readies them in time for the
next pulse.

Algorithm 27 Naive forwarding algorithm
1: while true do
2: wait until received 〈pulse〉 from two distinct predecessors within 𝜗(S+
𝐿𝑢) local time

3: locally generate pulse and send 〈pulse〉 to successors
4: wait for 𝜗(S + 𝐿𝑢) local time
5: end while

Since at most one predecessor is faulty, this means that the node forwards the
pulse within the time interval spanned by the arrival times of pulse messages
from its predecessors. And since each node locally clears its memory after each
pulse, all but possibly the first (correct) pulse from the input layer are propagated
correctly. The approach is thus trivially self-stabilizing. Unfortunately, the
skew bound is also trivial: the worst-case skew is 𝑢ℓ + S after ℓ layers, where
S is the skew guarantee provided by the input layer 0—both for the global and
local skew.

Theorem 17.5. Suppose that 𝑃min ≥ 2𝜗(S + 3𝐿𝑢) + 𝑑. If nodes on non-input
layers follow Algorithm 27, layer ℓ ∈ [𝐿 + 1] solves pulse synchronization with
skew S(ℓ) = S + ℓ𝑢, and period bounds 𝑃min (ℓ) = 𝑃min − ℓ𝑢 and 𝑃max (ℓ) =
𝑃max + ℓ𝑢 with stabilization time ℓ(2𝑃min + S(𝐿)).

Proof. We prove the claim by induction on the layer index. It trivially holds
for layer 0 by assumption.

272 Chapter 17 Fault-tolerant Clock Distribution

For the induction step, assume that at time 𝑡ℓ , layer ℓ ∈ [𝐿] has stabilized
and consider layer ℓ +1. We distinguish two cases. If no correct node in layer ℓ
sends a pulse message during [𝑡ℓ , 𝑡ℓ +𝑃min], no node on layer ℓ+1 receives such
a message during (𝑡ℓ+𝑑, 𝑡ℓ+𝑃min]. Hence, during (𝑡ℓ+𝑑+𝜗(S+𝐿𝑢), 𝑡ℓ+𝑃min),
no correct node on layer ℓ + 1 generates a pulse. It follows that by time

𝑡ℓ + 𝑑 + 2𝜗(S + 𝐿𝑢) < 𝑡ℓ + 𝑃min,

each correct node on layer ℓ+1 is executing the first wait instruction of the loop
with no pulse message from a correct predecessor stored and no such message
sent within the last S(ℓ) < 𝑃min (ℓ) time. Let us call a time satisfying these
conditions quiet at layer ℓ + 1.

The second case is that there is a correct node in layer ℓ sending a pulse
message during [𝑡ℓ , 𝑡ℓ + 𝑃min]. By the induction hypothesis, the corresponding
pulse has skew S(ℓ) ≤ S(𝐿). Hence, if 𝑡 ≤ 𝑡ℓ + 𝑃min +S(𝐿) is the latest pulse
message of this pulse send by a correct node from layer ℓ, then no correct node
in layer ℓ sends a pulse message during (𝑡, 𝑡 + 𝑃min (ℓ)). Reasoning as for the
first case, we get that there is a time that is quiet at layer ℓ + 1 no later than

𝑡ℓ + 𝑑 + 2𝜗(S + 𝐿𝑢) ≤ 𝑡ℓ + 𝑃min − 𝐿𝑢 ≤ 𝑡ℓ − 𝑃min (ℓ).

Thus, using that 𝑃min (ℓ) ≤ 𝑃min and 𝑡ℓ ≤ ℓ(2𝑃min + S(𝐿)) by the induction
hypothesis, in both cases there is a time 𝑡ℓ+1 ∈ [𝑡ℓ +S(ℓ), (ℓ+1) (2𝑃min+S(𝐿))
that is quiet at layer ℓ + 1. We claim that layer ℓ + 1 has stabilized by time
𝑡ℓ+1, which we show by induction on the pulses generated by nodes on layer
ℓ + 1 from time 𝑡ℓ+1 on. Denote by 𝑝𝑣,𝑖 the 𝑖-th pulse generated by node
𝑣 ∈ 𝑉𝑔 on layer ℓ at or after time 𝑡ℓ+1. Since no pulse messages were sent by
correct nodes on layer ℓ during [𝑡ℓ+1 − S(ℓ), 𝑡ℓ+1], we have that 𝑝𝑣,1 ≥ 𝑡ℓ+1.
Hence, each correct node will receive the pulse messages sent by its correct
predecessors within a time window of length S(ℓ) + 𝑢 = S(ℓ + 1) starting after
𝑡ℓ+1. As they execute the first waiting statement at this time (no pulse can be
triggered by a single faulty predecessor at a quiet time), they will generate a
pulse during this time window, showing the skew bound for this pulse. Note
that 𝜗(S(ℓ + 1)) < 𝑃min (ℓ) − 𝑑 time after this first pulse on layer ℓ + 1 (after
time 𝑡ℓ+1), i.e., before pulse messages for the next pulse from correct nodes in
layer ℓ arrive, layer ℓ + 1 is quiet again.

Now we proceed by induction on the pulse index 𝑖, where the induction
hypothesis includes that layer ℓ+1 is quiet before pulse messages for pulse 𝑖 +1
arrive. We just handled the base case of 𝑖 = 1. The same arguments show the
skew bound for pulse 𝑖 + 1 and that layer ℓ + 1 is quiet again before the next
pulse arrives, assuming that the claim holds for pulse 𝑖. To show the period

17.2 Local Faults and Probabilistic Resilience Guarantees 273

bounds, we apply the period bounds for layer ℓ and note that they deteriorate
by 𝑢 due to message delays varying between 𝑑 − 𝑢 and 𝑑. �

Interestingly, while the naive approach performs poorly in the worst-case,
local skew appears to be extremely small under independently random link
delays. Here are some results from computer experiments, where for simplicity
link delays are either 0 or 1 with (independent) probability of 1/2 each, and
there is no skew in the first layer.

Figure 17.2
Distributions of skews between neighbors in layers 7, 100, and 2000 for 0-1-delays
chosen by fair independent coin flips. This suggests a distribution with extremly small
standard deviation, where the number of layers has very limited influence.

Remark 17.6.
We do not understand why the grid appears to work so extraordinarily well
with randomized link delays and naive forwarding.
Do the skews just grow very slowly, or converge to a limit distribution?
Is the grid even reducing larger skews effectively?
For a practical realization, one has to further adapt the topology. Concretely,
the clock source should not be a (wide) intial layer, but rather a few nodes. This
suggests a layout with layers being nested circles, adding a constant number of
nodes per layer. These and other concerns will affect a final design, requiring
further studies.

274 Chapter 17 Fault-tolerant Clock Distribution

Figure 17.3
Plot of the variance of the above distribution as function of the number of layers. Does
it grow very slowly, but is unbounded, or does it converge to a fixed value corresponding
to a limit distribution?

Figure 17.4
The same plot, but with a doubly logarithmic 𝑥-scale. One may suspect that the growth
is bounded by log log 𝐿, where 𝐿 is the number of layers. However, the considered range
of values is rather small for this (especially given the very small change of the actual
𝑦-values), and the number of experiments may be insufficient for a reliable assessment.

17.3 Gradient TRIX 275

17.3 Gradient TRIX

Remark 17.7. This section is in need of being written. We hope to give a
preview of its contents in form of the corresponding paper draft.

Bibliography

[1] Hopkins, A. L., T. B. Smith, and J. H. Lala. 1978. Ftmp – a highly reliable fault-
tolerant multiprocess for aircraft. Proceedings of the IEEE 66 (10): 1221–1239.
doi:10.1109/PROC.1978.11113.

[2] Kopetz, H. 2003. Fault containment and error detection in the time-triggered archi-
tecture. In The sixth international symposium on autonomous decentralized systems,
2003. isads 2003., 139–146. doi:10.1109/ISADS.2003.1193942.

[3] Pease, M., R. Shostak, and L. Lamport. 1980. Reaching agreement in the
presence of faults. J. ACM 27 (2): 228–234. doi:10.1145/322186.322188.
http://doi.acm.org/10.1145/322186.322188.

[4] Srikanth, T. K., and Sam Toueg. 1987. Optimal clock synchronization. J. ACM 34
(3): 626–645. doi:10.1145/28869.28876. https://doi.org/10.1145/28869.28876.

