
i

Before You Start Reading. . .

. . . here is some context for the material that follows. This course follows
part of a book, which is currently a work in progress. Please expect and
forgive minor flaws in the presentation. There will be a lot of references to
previous chapters of the book. We do not require or expect you to study
these earlier chapters. Their contents are not needed to follow the material of
this course. However, they describe building blocks whose existence we take
for granted for the purpose of this lecture, providing the tools to implement
the presented algorithms directly in hardware. They also sketch the state of
the art in terms of clocking synchronous hardware systems, ultimately mo-
tivating to consider distributed and fault-tolerant clocking methods for mod-
ern and future systems. Studying such clocking methods is the goal of the
present course. Feel free to browse through the respective material for context,
which you can find at https://www.mpi-inf.mpg.de/departments/algorithms-
complexity/teaching/winter20/how-to-clock-your-computer, but rest assured
that this is purely optional.

Given that the book-in-progress, which will provide you with the reading
material covering the contents of the course, does assume some knowledge of
previous chapters, you will require some additional context to start reading.
We provide this context here in compact form. Before doing so, we quickly
summarize why the introduced notions are of interest.

Motivation
In this course, we will focus on distributed fault-tolerant clock generation and
distribution methods. This is motivated by a need for scalable, reliable, and
high-precision synchronization across clocked hardware systems, like the CPU
of laptop or smartphone. In such synchronous systems, computations are
executed in a lock-step fashion, where computational steps and communication
of (intermediate) results alternate. Ultimately, this allows us to implement
(synchronous) state machines in an efficient way, which in turn let us build
the elaborate abstractions—general purpose computers, OSes, programming
languages and compilers, etc.—fuelling the incredibly powerful computing
platforms we nowadays can field in our pockets.

This mode of operation relies on a precisely timed high-frequency clock
signal available across the entire device. We abstract the task of making this
signal available by a generic model with only a handful of parameters. We then
strive to solve it using few resources, achieving high precision, and with great
robustness to both transient and permanent faults.

ii

Model
The system is described as a (directed or undirected) network 𝐺 = (𝑉, 𝐸),
where nodes are computational entities and edges communication links. Nodes
correspond to parts of the hardware device (e.g., an area on a chip), which they
are providing with a local clock signal driving the computations in this part.1
Since adjacent parts will communicate with each other, the communicating
components need to receive their clock signals as precisely synchronized as
possible, i.e., with minimal relative offset. The better the synchronization, the
faster, i.e., at higher frequency, computations on the device can be performed
while safely maintaining synchronous operation.

As our goal is synchronization, time is integral to our model. In our algo-
rithms, nodes need some way of measuring time. For simplicity, we abstract
away from the specific implementation by assuming that each node 𝑣 ∈ 𝑉 has
an (imperfect) hardware clock. The hardware clock of 𝑣 is described as a
function 𝐻𝑣 : R≥0 → R≥0 mapping the “true” time 𝑡, which is unknown to 𝑣,
to the local time 𝐻𝑣 (𝑡) at time 𝑡. At any time, node 𝑣 can access 𝐻𝑣 (𝑡) by
calling getH(). Node 𝑣 can take decisions based on the values returned by calls
to getH(), but also wait until a certain local time is reached. For example, the
instruction “wait until local time 𝐻” implies that the node sleeps until the time
𝑡 satisfying that a call to getH() would return 𝐻. The quality of the hardware
clocks is measured by the parameter 𝜗 > 1. Each hardware clock satisfies that

∀𝑡 ′ ≥ 𝑡 : 𝐻𝑣 (𝑡 ′) − 𝐻𝑣 (𝑡) ≤ 𝑡 ′ − 𝑡 ≤ 𝜗(𝐻𝑣 (𝑡 ′) − 𝐻𝑣 (𝑡)),

i.e., hardware clocks progress at rates between 1 and 𝜗 relative to real time.
For simplicitly, we assume that the clocks are differentiable, meaning that this
assumption is equivalent to 𝑑𝐻𝑣

𝑑𝑡 (𝑡) ∈ [1, 𝜗] at all times 𝑡 ∈ R≥0.
Communication is by passing messages along the network links. If a node

𝑣 sends a message along edge (𝑣, 𝑤) ∈ 𝐸 at time 𝑡𝑠 , there is a time 𝑡𝑟 ∈
[𝑡𝑠 + 𝑑 − 𝑢, 𝑡𝑠 + 𝑑] when it has been received and fully processed by 𝑤, i.e., all
immediately triggered computations are complete and 𝑤 has sent any resulting
messages. In other words, the end-to-end delay (or delay, for short) 𝑑 upper
bounds the sum of communication and computational delay. Note that this sum
is at least 𝑑 − 𝑢, where we refer to 𝑢 as the uncertainty (in end-to-end delay).
The parameters 𝑑 and 𝑢 are known, i.e., node 𝑤 knows that a message it finishes
to process at time 𝑡𝑟 must have been sent at some time 𝑡𝑠 ∈ [𝑡𝑟 − 𝑑, 𝑡𝑟 − 𝑑 + 𝑢].

1 This signal is typically locally distributed by a so-called clock tree. For the purpose of this course,
we will neglect this aspect and focus on synchronizing the clock signals the nodes produce.

iii

Task
Our goal is to produce synchronized clock signals at the nodes of the system.
While there will be variants, let us specify the clock synchronization task to
provide intuition on the kind of problems we seek to solve in this course.
In this task, the goal is for each node to compute a logical clock, described
by a function 𝐿𝑣 : R≥0 → R≥0, to which it provides access in the form of a
subroutine getL() that can be called at any time 𝑡 and returns 𝐿𝑣 (𝑡) (where,
again, 𝑡 is not known to the node). A desirable property of such clocks is that
they run at bounded rates, i.e.,

∀𝑡 ′ ≥ 𝑡 : 𝐿𝑣 (𝑡 ′) − 𝐿𝑣 (𝑡) ≤ 𝑡 ′ − 𝑡 ≤ 𝛽(𝐿𝑣 (𝑡 ′) − 𝐿𝑣 (𝑡)),

for some 𝛽 > 1, where similar to the hardware clocks we took the liberty to
normalize the minimum rate to be 1. Again, we will for simplicity assume that
the logical clocks are differentiable, i.e., this is equivalent to 𝐿𝑣 (𝑡) ∈ [1, 𝛽] for
all times 𝑡. We remark that, to avoid needless complication, algorithms might
sometimes produce non-differentiable clocks. If such violations are limited to
changing clock rates instantaneously at discrete points in time, we will pretend
that 𝑑𝐿𝑣

𝑑𝑡 is defined everywhere.2
Naturally, 𝐿𝑣 (𝑡) depends on the (adversarially chosen) rates of the hardware

clocks and delays of messages. For a given execution, specified by picking a
graph 𝐺, fixing an algorithm, choosing 𝐻𝑣 for each 𝑣 ∈ 𝑉 with rates between
1 and 𝜗, and assigning a delay from [𝑑 − 𝑢, 𝑑] to each message the algorithm
sends, we can now express what “synchronizing clocks” means formally. The
quality measure of the output clocks is the global skew at time 𝑡

G(𝑡) := max
𝑣,𝑤∈𝑉

{|𝐿𝑣 (𝑡) − 𝐿𝑤 (𝑡) |}.

The algorithm should bound G(𝑡) at all times, i.e., minimize

G := sup
𝑡 ∈R≥0

{G(𝑡)}.

While in most cases we assume a specific execution to be fixed for the purpose
of our analysis, it is understood that a good algorithm does bound the skew
in all executions. However, this (worst-case) bound will naturally depend on
𝑑, 𝑢, and 𝜗, and sometimes other parameters, such as 𝛽 or the diameter 𝐷

(i.e., maximum distance between any pair of nodes in 𝐺) of the underlying
communication network.

2 Since 𝑑𝐿𝑣
𝑑𝑡 only appears in integrals, this is mathematically sound. Alternatively, one could

approximate 𝐿𝑣 arbitrarily well by a differentiable function with the same bounds on its derivative.

