Clock Sync. and Adversarial Fault Tolerance

Christoph Lenzen – MPI for Informatics Danny Dolev - Hebrew U. of Jerusalem

Today's Menu

- 1. Why does this course exist?
- 2. What is this course about?
- 3. Who are you and what do you want?
 - discussion in small groups
 - sharing your findings with everyone
- 4. How will we run this course?
 - your questions and input on this
- 5. Heads-up: What comes next?

Today's Menu

1. Why does this course exist?

- 2. What is this course about?
- 3. Who are you and what do you want?
 - discussion in small groups
 - sharing your findings with everyone
- 4. How will we run this course?
 - your questions and input on this
- 5. Heads-up: What comes next?

Chips are Distributed Systems

- very large (>10¹⁰ transistors)
- -> fault-tolerance mandatory
- highly concurrent/para
- -> synchro
- We should treat them as distributed systems!

Chips are Distributed Systems

- very large (>10¹⁰ transistors)
- -> fault-tolerance mandatory
- very fast (>10⁹ cycles/s)
- -> communication "slow"
- highly concurrent/parallel
- -> synchronous operation

Clocking VLSI Circuits

Clock Trees

Distribute clock signal from single source!

- + very simple
- + self-stabilizing: recovers from any transient faults
- + ca. $20 \text{ ps} = 2*10^{-11} \text{s}$ precision (single chip)

Clock Trees: Scalability Issues

- clock tree is single point of failure
- -> components must be extremely reliable
- tree dist./physical dist. = $\Omega(L)$ (L side length of chip)
- -> max. difference of arrival times between adjacent gates grows linearly with L
- -> clock frequency goes down with chip size

Clock Trees: Scalability Issues

- clock tree is single point of failure
- -> components must be extremely reliable
- tree dist./physical dist. = $\Omega(L)$ (L side length of chip)
- -> max. difference of arrival times between adjacent gates grows linearly with L
- -> clock frequency goes down with chip size
- countermeasure: use higher voltage and wider wires
- -> electro-magnetic interference causes trouble and strong currents induce large power consumption

GALS: Globally Sync., Locally Async.

GALS: multiple separately clocked subsystems communicate asynchronously

- + removes some clock tree scalability issues
- asynchronous communication risks metastability
- -> use of synchronizers, several clock cycles latency

What happens if we do

Computer Science

to it?

Scalable Clocking: Gradient Clock Sync

Synchronize along data flow!

=> bound skew between **communicating** components

Fault-Tolerance

direction of propagation

- redundancy enables tolerating (worst-case!) faults
- low-degree distribution networks needed

Innocent "Theory" Assumption

time difference can be turned into a discrete number

Metastability

Metastability is Rare...

...unless your system runs at GHz speeds!

A "CS" Approach to Metastability

			1	AND_{M}	0	1	M
AND	0	1		<u> </u>	<u> </u>	0	<u> </u>
0	0	0	→	U	0		U
1	<u> </u>	1		1	0	1	M
	U			M	0	M	M

- What can be computed "with" metastable inputs?
- What is the complexity of such circuits?
- Can we avoid synchronizers (and their latency)?

This, and more...

...is to become a book!

Treats

We intend to treat you to the second ≈33.33% of its contents!

Today's Menu

- 1. Why does this course exist?
- 2. What is this course about?
- 3. Who are you and what do you want?
 - discussion in small groups
 - sharing your findings with everyone
- 4. How will we run this course?
 - your questions and input on this
- 5. Heads-up: What comes next?

Outlook

winter 2020/21: clocking in the past & future from 40's to 40's

this course: fault-tolerant clocking Byzantine faults & self-stabilization

winter 2021/22: handling metastability going beyond synchronizers

Outlook

winter 2020/21: clocking in the past & future from 40's to 40's

this course: fault-tolerant clocking Byzantine faults & self-stabilization

winter 2021/22: handling metastability going beyond synchronizers

Warning: Contents May Advance Quickly

lectures	content		
2	model & getting our feet wet		
3-5	limits on Byzantine fault-tolerance		
6-8	optimal skew under Byzantine faults		
9-11	low-degree clock distribution networks		
12-13	self-stabilization and recovery		
14-16	opt. skew with Byzantines & self-stabilization		
17-19	consensus		
20-22	pulse synchronization from consensus		
23-24	synchronous counting		
25-27	low-degree gradient clock distribution		
28	summary & feeling good about ourselves		

Today's Menu

- 1. Why does this course exist?
- 2. What is this course about?
- 3. Who are you and what do you want?
 - introduce yourself
 - what you are attending this course for
- 4. How will we run this course?
 - your questions and input on this
- 5. Heads-up: What comes next?

Now

- ~15 min. in breakout room (no recording):
 - + implicit soundcheck for everyone
 - + introductions
 - + what would you like to take away from this course
 - + questions

Today's Menu

- 1. Why does this course exist?
- 2. What is this course about?
- 3. Who are you and what do you want?
 - discussion in small groups
 - sharing your findings with everyone
- 4. How will we run this course?
 - your questions and input on this
- 5. Heads-up: What comes next?

Our Expectations

matt.might.net/articles/phd-school-in-pictures/

Our Expectations of You

- 1. For each topic (i.e., 2-3 lectures), study the reading assignment.
- 2. Write a **short summary of the topic**, including your thoughts and questions. **25% grade contribution**
- 3. Attend* the sessions:
 - + brief intro/overview by the lecturer
 - + discuss and/or exercise in breakout room
 - + 25% grade contribution from participation
- After the lecture period is over, write a report on handcrafted questions one of the topics.
 50% grade contribution

Questions?

Today's Menu

- 1. Why does this course exist?
- 2. What is this course about?
- 3. Who are you and what do you want?
 - discussion in small groups
 - sharing your findings with everyone
- 4. How will we run this course?
 - your questions and input on this
- 5. Heads-up: What comes next?

Schedule for the next 7 Days

- 1. Read the 3-page summary of motivation and model **by tomorrow.**
- 2. Write an email to the mailing list. Any questions on the summary are highly encouraged!
- 3. I'll present the model and setting in depth on Monday (second opportunity for questions).
- 4. Study and summarize the reading assigment, handing it in **before the lecture** on Wednesday!
- 5. On Wednesday, **Danny takes over** for the first chapter.

See You on Monday!

Bring a Question!