Clock Sync. and Adversarial Fault Tolerance

Christoph Lenzen – MPI for Informatics
Danny Dolev – Hebrew U. of Jerusalem

also starring: Ben Wiederhake, Matthias Függer
Today’s Menu

1. Why does this course exist?
2. What is this course about?
3. Who are you and what do you want?
 - discussion in small groups
 - sharing your findings with everyone
4. How will we run this course?
 - your questions and input on this
5. Heads-up: What comes next?
Today’s Menu

1. Why does this course exist?
2. What is this course about?
3. Who are you and what do you want?
 - discussion in small groups
 - sharing your findings with everyone
4. How will we run this course?
 - your questions and input on this
5. Heads-up: What comes next?
Chips are Distributed Systems

- very large (>10^{10} transistors)
 -> fault-tolerance mandatory
- highly concurrent/parallel
 -> synchronous
- very fast (>10^{9} cycles/s)
 -> communication "slow"

We should treat them as distributed systems!
Chips are Distributed Systems

- very large (\(>10^{10}\) transistors)
- \(\rightarrow\) fault-tolerance mandatory
- very fast (\(>10^9\) cycles/s)
- \(\rightarrow\) communication “slow”
- highly concurrent/parallel
- \(\rightarrow\) synchronous operation

Fault-tolerant High-Precision Clock Synchronziation!
Clocking VLSI Circuits

cycle $r-1$ cycle r cycle $r+1$ cycle $r+2$

store compute
Clock Trees

Distribute clock signal from single source!

+ very simple
+ self-stabilizing: recovers from any transient faults
+ ca. 20 ps = 2*10^{-11}s precision (single chip)

disclaimer: real product may not actually be a tree
Clock Trees: Scalability Issues

- clock tree is single point of failure
- components must be extremely reliable
- tree dist./physical dist. = \Omega(L) (L side length of chip)
- max. difference of arrival times between adjacent gates grows linearly with L
- clock frequency goes down with chip size
Clock Trees: Scalability Issues

- clock tree is single point of failure
 -> components **must be extremely reliable**

- tree dist./physical dist. = $\Omega(L)$ (L side length of chip)
 -> max. difference of arrival times between adjacent gates grows linearly with L

-> clock **frequency goes down with chip size**

- countermeasure: use higher voltage and wider wires

-> **electro-magnetic interference** causes trouble and strong currents induce large **power consumption**
GALS: Globally Sync., Locally Async.

GALS: multiple separately clocked subsystems communicate asynchronously

+ removes *some* clock tree scalability issues
- asynchronous communication risks **metastability**

-> use of synchronizers, several clock cycles latency
What happens if we do

Computer Science

to it?
Scalable Clocking: Gradient Clock Sync

Synchronize along data flow!

=> bound skew between communicating components
Fault-Tolerance

- redundancy enables tolerating (worst-case!) faults
- low-degree distribution networks needed
Innocent “Theory” Assumption

time difference can be turned into a discrete number
Metastability
Metastability is Rare...

...unless your system runs at GHz speeds!
A “CS” Approach to Metastability

- What can be computed “with” metastable inputs?
- What is the complexity of such circuits?
- Can we avoid synchronizers (and their latency)?
This, and more...

...is to become a book!
We intend to treat you to the second $\approx 33.33\%$ of its contents!
Today’s Menu

1. Why does this course exist?

2. What is this course about?

3. Who are you and what do you want?
 - discussion in small groups
 - sharing your findings with everyone

4. How will we run this course?
 - your questions and input on this

5. Heads-up: What comes next?
Outlook

winter 2020/21: clocking in the past & future from 40’s to 40’s

this course: fault-tolerant clocking Byzantine faults & self-stabilization

winter 2021/22: handling metastability going beyond synchronizers
Outlook

winter 2020/21: clocking in the past & future from 40’s to 40’s

this course: fault-tolerant clocking
Byzantine faults & self-stabilization

winter 2021/22: handling metastability going beyond synchronizers
Warning: Contents May Advance Quickly

<table>
<thead>
<tr>
<th>lectures</th>
<th>content</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>model & getting our feet wet</td>
</tr>
<tr>
<td>3-5</td>
<td>limits on Byzantine fault-tolerance</td>
</tr>
<tr>
<td>6-8</td>
<td>optimal skew under Byzantine faults</td>
</tr>
<tr>
<td>9-11</td>
<td>low-degree clock distribution networks</td>
</tr>
<tr>
<td>12-13</td>
<td>self-stabilization and recovery</td>
</tr>
<tr>
<td>14-16</td>
<td>opt. skew with Byzantines & self-stabilization</td>
</tr>
<tr>
<td>17-19</td>
<td>consensus</td>
</tr>
<tr>
<td>20-22</td>
<td>pulse synchronization from consensus</td>
</tr>
<tr>
<td>23-24</td>
<td>synchronous counting</td>
</tr>
<tr>
<td>25-27</td>
<td>low-degree gradient clock distribution</td>
</tr>
<tr>
<td>28</td>
<td>summary & feeling good about ourselves</td>
</tr>
</tbody>
</table>
Today’s Menu

1. Why does this course exist?
2. What is this course about?
3. Who are you and what do you want?
 - introduce yourself
 - what you are attending this course for
4. How will we run this course?
 - your questions and input on this
5. Heads-up: What comes next?
Now

~15 min. in breakout room (no recording):
 + implicit soundcheck for everyone
 + introductions
 + what would you like to take away from this course
 + questions
Today’s Menu

1. Why does this course exist?
2. What is this course about?
3. Who are you and what do you want?
 - discussion in small groups
 - sharing your findings with everyone
4. How will we run this course?
 - your questions and input on this
5. Heads-up: What comes next?
Our Expectations

matt.might.net/articles/phd-school-in-pictures/
Our Expectations of You

1. For each topic (i.e., 2-3 lectures), study the reading assignment.

2. Write a short summary of the topic, including your thoughts and questions. **25% grade contribution**

3. Attend* the sessions:
 + brief intro/overview by the lecturer
 + discuss and/or exercise in breakout room
 + **25% grade contribution from participation**

4. After the lecture period is over, write a report on handcrafted questions one of the topics. **50% grade contribution**

*Recordings! Contact us in case of privacy concerns!
Questions?
Today’s Menu

1. Why does this course exist?
2. What is this course about?
3. Who are you and what do you want?
 - discussion in small groups
 - sharing your findings with everyone
4. How will we run this course?
 - your questions and input on this
5. Heads-up: What comes next?
Schedule for the next 7 Days

1. Read the 3-page summary of motivation and model by tomorrow.

2. Write an email to the mailing list. Any questions on the summary are highly encouraged!

3. I’ll present the model and setting in depth on Monday (second opportunity for questions).

4. Study and summarize the reading assignment, handing it in before the lecture on Wednesday!

5. On Wednesday, Danny takes over for the first chapter.
See You on Monday!

Bring a Question!