Model & Synchronizing w/o Faults
network $G = (V,E)$
node = state machine with hardware clock
edge = communication link (message passing)
Model: What Nodes Can Do

- arbitrary deterministic computations
- computation times satisfy (known) bounds
- hardware clock runs at rates between 1 and ϑ:
 \[t - t' \leq H_v(t) - H_v(t') \leq \vartheta(t - t') \]
goal: compute logical clocks such that
\[H_v(t) - H_v(t') \leq L_v(t) - L_v(t') \leq (1 + \mu)(H_v(t) - H_v(t')) \]
- communication by message passing
- messages sent as result of computations
- transmission times satisfy (known) bounds
- (end-to-end) delay, i.e., message transmission + computation time, is between $d-u$ and d
- delay d, uncertainty u, and drift ϑ are known and can be used in computations
- fix network \(G = (V,E) \) and algorithm
- fix \(H_v \) (and a wake-up time) for each node
- (inductively) fix delay of each sent message
- this specifies an execution

Model: Executions
Model: Executions

- fix network $G = (V,E)$ and algorithm
- fix H_v (and a wake-up time) for each node
- (inductively) fix delay of each sent message
- this specifies an execution*

*event-driven; events are:
- waking up (initialization)
- receiving a message
- reaching specified value of H_v
IMPORTANT NOTICE:

Delays include computations, so the time a message is “received” equals the time when any immediately triggered messages are sent!
Example: Max Algorithm

Algorithm 4 Basic Max Algorithm. Parameter $T \in \mathbb{R}^+$ controls how frequently messages are sent. The code lists the actions of node v at time t and provides $\text{getL}()$.

1: if $t = 0$ (i.e., v just woke up) then
2: \hspace{1em} $h \leftarrow \text{getH}()$
3: \hspace{1em} $\ell \leftarrow h$ \hspace{1em} \triangleright initialize $L_v(0)$ to $H_v(0)$
4: end if
5: if received $\langle \ell' \rangle$ at time t and $\ell' > \text{getL}()$ then
6: \hspace{1em} $h \leftarrow \text{getH}()$
7: \hspace{1em} $\ell \leftarrow \ell'$ \hspace{1em} \triangleright increase logical clock to received value
8: end if
9: if $\text{getL}() = kT$ for some $k \in \mathbb{N}$ then
10: \hspace{1em} send $\langle kT \rangle$ to all neighbors
11: end if
12: \textbf{procedure} $\text{getL}()$ \hspace{1em} \triangleright returns $L_v(t)$
13: \hspace{1em} \textbf{return} $\ell + \text{getH}() - h$ \hspace{1em} \triangleright logical clock increases at rate $\frac{dH_v}{dt}$
14: \textbf{end procedure}

- $\text{getH}()$ returns $H_v(t)$
- all nodes are assumed to wake up at time 0
Example: Max Algorithm

Theorem
The Max Algorithm guarantees
\[\max_{v,w \in V} \{L_v(t) - L_w(t)\} \leq \varnothing dD + (\varnothing - 1)T \]
at time \(t \geq dD + T \),
where \(D \) is the network diameter of \(G \).

\[D = 3 \]
Example: Max Algorithm

Theorem
The Max Algorithm guarantees
\[
\max_{v,w \in V} \{L_v(t) - L_w(t)\} \leq \vartheta dD + (\vartheta - 1)T
\]
at time \(t \geq dD + T \),
where \(D \) is the network diameter of \(G \).

Proof sketch:
- every \(T \) (logical) time \(v \) broadcast \(L_v \)
- receiving nodes adjust their clock (if needed) and broadcast, too (if they still need to)
- in the \(dD \) time for a value to spread, \(v \)'s clock advances by at most \(\vartheta dD \)
- \((\vartheta - 1)T \) is added to account for the broadcast interval \(T \)