Ch 9 Goals

Introduce Byzantine Faults
Define pulse synchronization

Show equivalence between solving clock
synchronization and pulse synchronization

Present a fault tolerant pulse synchronization
algorithm

Show basic lower bounds on the fraction of
Byzantine faults that can be tolarated.

Byzantine Faults

A Byzantine faulty node is a node that may behave
arbitrarily.

That 1s, such a node does not need to follow any algorithm
prescribed by the system designer.

An algorithm is resilient to f Byzantine faults if its
performance guarantees hold for any execution in which
there are at most f Byzantine faulty nodes.

In the following, for a network G=(V,E) and a set F of faulty
nodes, we denote by V, the set of correct nodes.

Why Byzantine Faults

Coverage
- no need to worry about a specific fault model

Testing
- saves the need to test whether the assumed fault model holds in

practice

Scalability

- increasing system size and clock speed violates previously assumed
fault models

Reusability

- moving from one system version to another does not require
adapting it to fault variants that may pop up.

Fault Containment Regions

Faults may crash systems

A domino effect caused major power failures
accross USA

Running a distributed system on a multi core
computer does not increase reliability

Need to identify independent elements, units, or
regions, such that a single fault doesn’t
propogate beyond that

Need to continuesly obey the asssumed ratio of
correct to faulty and handle dynamic changes to
the system

Clock Synchronization — correct nodes

- arbitrary deterministic computations
- computations and message delivery satisfy (known) bounds
- hardware clock runs at rates between 1 and 9:

t—t' <H,/(t) - H,(t') <9t -t)

Clock Synchronization: compute logical clocks
s.t. for every v,w €'V,

HU(t) = Hy(t') < L(t) = L(t') € (1 + g)(Hy(t) = H,(t")
(skew bound) max,, cvelly(t)-Ly(t)} < G

We define H,(t) —H,(t') < L,(t) - L/(t") < B(t—-t")

Pulse synchronization goals:

For eachi € IV, v €V, generate pulse i exactly once,
(p,;is the time when v generates pulse i),
such that there exists S, P,,..,, P4y Satisfying:

1) SUup i EN, v,weVg{l pv,i'pw,il} =S (SkEW)
2) inf i € N{minv,eVg{pv,i+1}'maXv,eVg{ pv,i} } 2 I:)min
3) SUP N{maxv,eVg{pv,Hl}_minv,eVg{ pv,i} } S I:)max

Thus, pulses are well aligned and well separated

Basic Observation

Any pulse synchronization algorithm must satisfy:

1) I:)max - I:)min 2 S
2) I:)maxz ﬁ I:)min

The first claim can be proved by a simple algebraic
manipulation.

The proof of the second claim requires better
understanding of the model and the
uncertainties within it.

The Timed Message Passing model (TMP)

- Each network node has a local hardware clock

- Nodes actions are deterministic, i.e, actions are a
function of the inputs, messages received and the
local harware clock

- Thereis a bound d on end-to-end message
transmission and processing time

- Unknow elements: actual hardware clock drift,
actual message transmission time,

which nodes are faulty and their behavior

A State Machine in TSM

outputs
Inputs / — >—> [messages
messages state
¥

L]

The sequence of messages and outputs depends solely on
1. the initial state and initial input

2. the sequence of messages and inputs it receives

3. hardware clock readings

[

{1 {3

Due to drift and message transmission time uncertainties,
nodes can’t know when a non-local event takes place.

10

{2 {2 {2

{1 t3

The hardware clock time difference H(ts) — H(t1)
1s bounded by 2d and clock drift, 1.e., 2d O

11

Scenario rate = 1 Scenario rate = 9

£,/9

JANA

N /9

On the left all delays are d and clock rates are 1

On the right all delays are d/9 and clock rates are O
H(t1), H(t3) at v are the same in both scenarios
and H(t2) at w as well

12

Scenario rate = 1 Scenario rate = 9

£,/9

JARA

tl/f) t3/0
H(t1), H(t3) and H(tz) are the same --
Therefore —identical messages are being exchanged.
By induction, assuming no faults, throughout the whole

algorithm all nodes exchange the same messages

1n both scenarios.
13

Scenario rate = 1 Scenario rate = 9

£,/9

JANA

tl/f) t3/0
To prove: P, 2 U Pmin
Observe that the values are external time values.
Any pulse difference time in the left scenario is divided

by O on the other scenario.

Therefore, the value of P, / U needs also be > P,
14

Clock Synchronization to Pulse Synchronization

- Assume we have a fault tolerant clock synch alg
with parameters G and 8

- We show how to construct pulse syncronization
with parameters

- 5S=§ (skew)
- Pm|n (T' g) / B (min period)
- P..=T+§g (max period)

for any choice of T satisfying T > G

Pulse algorithm
Assume — Lv(0) € [0, G] for all v € V,

1. i1:=0 (performed only on wakeup)
2. While true do

3 wait until getL() =iT

4, generate the i-th pulse
5 l:=1+1

6. end while

v generates its i-th pulse at a unique time p,; satisfying
Lv (Pyi) = iT.
Notice that faults do not affect the algorithm

logical time

A
L.(1)

1T -

or T T T T T ® real time
Pvo Pva Pv2 Pv3 Pva Pvs
Figure 9.2
Relation between pulse times and logical clock at node v € V, for Algorithm 10. Note
that the logical clock rate varies between 1 and g, where typically § — 1 <« 1. Hence
the real time between pulses fluctuates slightly.

17

The Skew
Assume — Lv(0) € [0, G] for all v € V,

1. i1:=0 (performed only on wakeup)
2. While true do

3 wait until getL() =iT

4. general i-th pulse

5 l:=1+1

6. end while

i-th pulse:vatLv (p,;)=iTand watLw (p,;)=iT

S =@, because G bounds the logical clocks difference

The Min — Max Periods

We prove just one of them, since both are a simple
derivation

We have that
Lv(pu'.i + g + T) 2> Lv([’u'.i) + g +T 2> Lw(plv.l') +T
=+ DT =Ly(py,i+1),

implying that p, j+1 < pw.i + G +T. Hence, for eachi € N it holds that
maxyevy, {po.i+1} — mingey, {pv.i} £ G+T,as claimed. O

Pulse Synchronization to Clock Synchronization

- We now assume we have a fault tolerant pulse
synch alg with parameters S, P, and P,,..,

- We show how to construct clock synchronization
with parameters

- B = 9? Pmax /Pmin

B gz(ﬁ_l)Pmax-l_BS

Algorithm 8 Clock synchronization algorithm at v € V, based on a pulse
synchronization algorithm.

1: wait until initialization pulse

e e e T e T)
BN 7 2

(S
)

A e A U T

{0 > initialize logical clock
[— 0 > pulse number
T —0 > clock increase to be amortized during current pulse
h «— getH()

while true do
wait until next pulse

{ — i Pmax + getH() — h > logical clock value at pulse
[—i+1
1 — (9P — € > difference to target value
h «— getH()

. end while

. procedure getl.() > returns L, () when called at time t > p, o

min

. getH () -/
return ¢ + getH() — h+1- mm{ 5 z. 1}

: end procedure

[zTr(Pv.i) = 3Pmax — (Hv(pv.i) - Hv([)v,i—l))-

21

logical time

A

L)+ L)

(i + D1 + p)Pmax = ;L)
l(l +[))Pm;“ - o
il +I’)Pnnax - L\-(I’r.i) t "
(i = 1)(1 + p)Prax —
V"
T T T # real time
Pv.i-1 Pv.i Pv.i+1

H'(H(pyi-2) + Prin) H ' (H,(pyi-1) + Pain)

H:'(H\‘(l’u) + Prin)

22

The Drift Bound

- We have a fault tolerant pulse synch alg with
parameters S, P, and P .,

- The rate of the logical clock we produce is
bounded from above by the drift of the hardware
clocks (9) multiplied by the drift caused by the
amortization of the extra P, we add at each
pulse.

- We amortize it over P, time, which implies a
factorof 9 P, ../ Pin

- So the resulting boundis B=0?P, ../ P

The Skew Bound

- We have a fault tolerant pulse synch alg with
parameters S, P, and P .,

- Thedriftrateis =9°P, ., / Puin

- If we compare the logical clocks of two nodes the
difference is a result of the pulse skew and of
having them, for some time, in separate pulse
index. Reading the proof one can see that we
obtain:

B gz(ﬁ_l)Pmax-l_BS

