
- Introduce Byzantine Faults
- Define pulse synchronization
- Show equivalence between solving clock

synchronization and pulse synchronization
- Present a fault tolerant pulse synchronization

algorithm
- Show basic lower bounds on the fraction of

Byzantine faults that can be tolarated.

Ch 9 Goals

A Byzantine faulty node is a node that may behave
arbitrarily.

That is, such a node does not need to follow any algorithm
prescribed by the system designer.

An algorithm is resilient to f Byzantine faults if its
performance guarantees hold for any execution in which
there are at most f Byzantine faulty nodes.

In the following, for a network G=(V,E) and a set F of faulty
nodes, we denote by Vg the set of correct nodes.

Byzantine Faults

Coverage
- no need to worry about a specific fault model

Testing
- saves the need to test whether the assumed fault model holds in
practice

Scalability
- increasing system size and clock speed violates previously assumed
fault models

Reusability
- moving from one system version to another does not require

adapting it to fault variants that may pop up.

Why Byzantine Faults

• Faults may crash systems
• A domino effect caused major power failures

accross USA
• Running a distributed system on a multi core

computer does not increase reliability
• Need to identify independent elements, units , or

regions, such that a single fault doesn’t
propogate beyond that

• Need to continuesly obey the asssumed ratio of
correct to faulty and handle dynamic changes to
the system

Fault Containment Regions

- arbitrary deterministic computations
- computations and message delivery satisfy (known) bounds
- hardware clock runs at rates between 1 and ϑ:

t – t' ≤ Hv(t) – Hv(t') ≤ ϑ(t – t’)

Clock Synchronization: compute logical clocks
s.t. for every v,w ϵ Vg

Hv(t) – Hv(t') ≤ Lv(t) – Lv(t') ≤ (1 + μ)(Hv(t) – Hv(t’))

(skew bound) maxv,w ϵ Vg{Lv(t)-Lw(t)} ≤ 𝓖

We define Hv(t) – Hv(t') ≤ Lv(t) – Lv(t') ≤ 𝛃(t – t’)

Clock Synchronization – correct nodes

For each i ∈𝓝, v ∈ Vg generate pulse i exactly once,
(pv,i is the time when v generates pulse i),
such that there exists S, Pmin, Pmax, satisfying:

1) sup i ∈𝓝, v,w ϵ Vg{|pv,i-pw,i|} = S (skew)
2) inf i ∈𝓝{minv,ϵVg{pv,i+1}-maxv,ϵVg{ pv,i} } ≥ Pmin

3) sup i ∈𝓝{maxv,ϵVg{pv,i+1}-minv,ϵVg{ pv,i} } ≤ Pmax

Thus, pulses are well aligned and well separated

Pulse synchronization goals:

Any pulse synchronization algorithm must satisfy:

1) Pmax - Pmin ≥ S
2) Pmax ≥ ϑ Pmin

The first claim can be proved by a simple algebraic
manipulation.

The proof of the second claim requires better
understanding of the model and the
uncertainties within it.

Basic Observation

The Timed Message Passing model (TMP)

- Each network node has a local hardware clock

- Nodes actions are deterministic, i.e, actions are a
function of the inputs, messages received and the
local harware clock

- There is a bound d on end-to-end message
transmission and processing time

- Unknow elements: actual hardware clock drift,
actual message transmission time,
which nodes are faulty and their behavior

A State Machine in TSM

Inputs /
messages

messages

outputs

state

The sequence of messages and outputs depends solely on
1. the initial state and initial input
2. the sequence of messages and inputs it receives
3. hardware clock readings

H

10

w

v

t1 t3

t2

Due to drift and message transmission time uncertainties,
nodes can’t know when a non-local event takes place.

11

w

v

t1 t3

t2 t2t2

The hardware clock time difference H(t3) – H(t1)
is bounded by 2d and clock drift, i.e., 2d ϑ

12

On the left all delays are d and clock rates are 1
On the right all delays are d/ϑ and clock rates are ϑ
H(t1), H(t3) at v are the same in both scenarios
and H(t2) at w as well

w

v

t1 t3

t2

dd

2d

Scenario rate = 1 Scenario rate = ϑ

w

v
d/ϑd/ϑ

2d/ϑ

t1/ϑ

t2/ϑ

t3/ϑ

13

H(t1), H(t3) and H(t2) are the same --
Therefore –identical messages are being exchanged.
By induction, assuming no faults, throughout the whole
algorithm all nodes exchange the same messages
in both scenarios.

w

v

t1 t3

t2

dd

2d

Scenario rate = 1 Scenario rate = ϑ

w

v
d/ϑd/ϑ

2d/ϑ

t1/ϑ

t2/ϑ

t3/ϑ

14

To prove: Pmax ≥ ϑ Pmin
Observe that the values are external time values.
Any pulse difference time in the left scenario is divided
by ϑ on the other scenario.
Therefore, the value of Pmax / ϑ needs also be ≥ Pmin

w

v

t1 t3

t2

dd

2d

Scenario rate = 1 Scenario rate = ϑ

w

v
d/ϑd/ϑ

2d/ϑ

t1/ϑ

t2/ϑ

t3/ϑ

Clock Synchronization to Pulse Synchronization

- Assume we have a fault tolerant clock synch alg
with parameters 𝓖 and 𝛃

- We show how to construct pulse syncronization
with parameters

- S = 𝓖 (skew)
- Pmin = (T- 𝓖) / 𝛃 (min period)
- Pmax = T + 𝓖 (max period)

for any choice of T satisfying T > 𝓖

Pulse algorithm
Assume – Lv(0) ∈ [0, 𝓖] for all v ∈ Vg

1. i := 0 (performed only on wakeup)

2. While true do
3. wait until getL() = iT
4. generate the i-th pulse
5. i := i +1
6. end while

v generates its i-th pulse at a unique time pv,i satisfying
Lv (pv,i) = iT.
Notice that faults do not affect the algorithm

17

The Skew
Assume – Lv(0) ∈ [0, 𝓖] for all v ∈ Vg

1. i := 0 (performed only on wakeup)

2. While true do
3. wait until getL() = iT
4. general i-th pulse
5. i := i +1
6. end while

i-th pulse: v at Lv (pv,i) = iT and w at Lw (pw,i) = iT

S = 𝓖, because 𝓖 bounds the logical clocks difference

The Min – Max Periods
We prove just one of them, since both are a simple

derivation

Pulse Synchronization to Clock Synchronization

- We now assume we have a fault tolerant pulse
synch alg with parameters S, Pmin and Pmax

- We show how to construct clock synchronization
with parameters

- 𝛃 = ϑ2 Pmax / Pmin

- 𝓖 = (ϑ – 1) Pmax + 𝛃S

21

22

The Drift Bound

- We have a fault tolerant pulse synch alg with
parameters S, Pmin and Pmax

- The rate of the logical clock we produce is
bounded from above by the drift of the hardware
clocks (ϑ) multiplied by the drift caused by the
amortization of the extra Pmax we add at each
pulse.

- We amortize it over Pmin time, which implies a
factor of ϑ Pmax / Pmin.

- So the resulting bound is 𝛃 = ϑ2 Pmax / Pmin

The Skew Bound

- We have a fault tolerant pulse synch alg with
parameters S, Pmin and Pmax

- The drift rate is 𝛃 = ϑ2 Pmax / Pmin

- If we compare the logical clocks of two nodes the
difference is a result of the pulse skew and of
having them, for some time, in separate pulse
index. Reading the proof one can see that we
obtain:

- 𝓖 = (ϑ – 1) Pmax + 𝛃S

