Ch 9 Goals

Introduce Byzantine Faults
Define pulse synchronization

Show equivalence between solving clock
synchronization and pulse synchronization

Present a fault tolerant pulse synchronization
algorithm

Show basic lower bounds on the fraction of
Byzantine faults that can be tolarated.



Byzantine Faults

A Byzantine faulty node is a node that may behave
arbitrarily.

That 1s, such a node does not need to follow any algorithm
prescribed by the system designer.

An algorithm is resilient to f Byzantine faults if its
performance guarantees hold for any execution in which
there are at most f Byzantine faulty nodes.

In the following, for a network G=(V,E) and a set F of faulty
nodes, we denote by V, the set of correct nodes.



Why Byzantine Faults

Coverage
- no need to worry about a specific fault model

Testing
- saves the need to test whether the assumed fault model holds in

practice

Scalability

- increasing system size and clock speed violates previously assumed
fault models

Reusability

- moving from one system version to another does not require
adapting it to fault variants that may pop up.



Fault Containment Regions

Faults may crash systems

A domino effect caused major power failures
accross USA

Running a distributed system on a multi core
computer does not increase reliability

Need to identify independent elements, units, or
regions, such that a single fault doesn’t
propogate beyond that

Need to continuesly obey the asssumed ratio of
correct to faulty and handle dynamic changes to
the system



Clock Synchronization — correct nodes

- arbitrary deterministic computations
- computations and message delivery satisfy (known) bounds
- hardware clock runs at rates between 1 and 9:

t—t' <H,/(t) - H,(t') <9t -t)

Clock Synchronization: compute logical clocks
s.t. for every v,w €'V,

HU(t) = Hy(t') < L(t) = L(t') € (1 + g)(Hy(t) = H,(t")
(skew bound) max,, cvelly(t)-Ly(t)} < G

We define H,(t) —H,(t') < L,(t) - L/(t") < B(t—-t")



Pulse synchronization goals:

For eachi € IV, v €V, generate pulse i exactly once,
(p,;is the time when v generates pulse i),
such that there exists S, P,,..,, P4y Satisfying:

1) SUup i EN, v,weVg{l pv,i'pw,il} =S (SkEW)
2) inf i € N{minv,eVg{pv,i+1}'maXv,eVg{ pv,i} } 2 I:)min
3) SUP N{maxv,eVg{pv,Hl}_minv,eVg{ pv,i} } S I:)max

Thus, pulses are well aligned and well separated



Basic Observation

Any pulse synchronization algorithm must satisfy:

1) I:)max - I:)min 2 S
2) I:)maxz ﬁ I:)min

The first claim can be proved by a simple algebraic
manipulation.

The proof of the second claim requires better
understanding of the model and the
uncertainties within it.



The Timed Message Passing model (TMP)

- Each network node has a local hardware clock

- Nodes actions are deterministic, i.e, actions are a
function of the inputs, messages received and the
local harware clock

-  Thereis a bound d on end-to-end message
transmission and processing time

- Unknow elements: actual hardware clock drift,
actual message transmission time,

which nodes are faulty and their behavior




A State Machine in TSM

outputs
Inputs / — >—> [messages
messages state
¥

L]

The sequence of messages and outputs depends solely on
1. the initial state and initial input

2. the sequence of messages and inputs it receives

3. hardware clock readings




[

{1 {3

Due to drift and message transmission time uncertainties,
nodes can’t know when a non-local event takes place.
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{2 {2 {2

{1 t3

The hardware clock time difference H(ts) — H(t1)
1s bounded by 2d and clock drift, 1.e., 2d O
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Scenario rate = 1 Scenario rate = 9

£,/9

JANA

N /9

On the left all delays are d and clock rates are 1

On the right all delays are d/9 and clock rates are O
H(t1), H(t3) at v are the same in both scenarios
and H(t2) at w as well
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Scenario rate = 1 Scenario rate = 9

£,/9

JARA

tl/f) t3/0
H(t1), H(t3) and H(tz) are the same --
Therefore —identical messages are being exchanged.
By induction, assuming no faults, throughout the whole

algorithm all nodes exchange the same messages

1n both scenarios.
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Scenario rate = 1 Scenario rate = 9

£,/9

JANA

tl/f) t3/0
To prove: P, 2 U Pmin
Observe that the values are external time values.
Any pulse difference time in the left scenario is divided

by O on the other scenario.

Therefore, the value of P, / U needs also be > P,
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Clock Synchronization to Pulse Synchronization

- Assume we have a fault tolerant clock synch alg
with parameters G and 8

- We show how to construct pulse syncronization
with parameters

- 5S=§ (skew)
- Pm|n (T' g) / B (min period)
- P..=T+§g (max period)

for any choice of T satisfying T > G



Pulse algorithm
Assume — Lv(0) € [0, G] for all v € V,

1. i1:=0 (performed only on wakeup)
2. While true do

3 wait until getL() =iT

4, generate the i-th pulse
5 l:=1+1

6. end while

v generates its i-th pulse at a unique time p,; satisfying
Lv (Pyi) = iT.
Notice that faults do not affect the algorithm



logical time

A
L.(1)

1T -

or T T T T T ® real time
Pvo Pva Pv2 Pv3 Pva Pvs
Figure 9.2
Relation between pulse times and logical clock at node v € V, for Algorithm 10. Note
that the logical clock rate varies between 1 and g, where typically § — 1 <« 1. Hence
the real time between pulses fluctuates slightly.
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The Skew
Assume — Lv(0) € [0, G] for all v € V,

1. i1:=0 (performed only on wakeup)
2. While true do

3 wait until getL() =iT

4. general i-th pulse

5 l:=1+1

6. end while

i-th pulse:vatLv (p,;)=iTand watLw (p,;)=iT

S =@, because G bounds the logical clocks difference



The Min — Max Periods

We prove just one of them, since both are a simple
derivation

We have that
Lv(pu'.i + g + T) 2> Lv([’u'.i) + g +T 2> Lw(plv.l') +T
=+ DT =Ly(py,i+1),

implying that p, j+1 < pw.i + G +T. Hence, for eachi € N it holds that
maxyevy, {po.i+1} — mingey, {pv.i} £ G+T,as claimed. O



Pulse Synchronization to Clock Synchronization

- We now assume we have a fault tolerant pulse
synch alg with parameters S, P, and P,,..,

- We show how to construct clock synchronization
with parameters

- B = 9? Pmax /Pmin

B gz(ﬁ_l)Pmax-l_BS



Algorithm 8 Clock synchronization algorithm at v € V, based on a pulse
synchronization algorithm.

1: wait until initialization pulse

e e e T e T )
BN 7 2

(S
)

A e A U T

{0 > initialize logical clock
[ — 0 > pulse number
T —0 > clock increase to be amortized during current pulse
h «— getH()

while true do
wait until next pulse

{ — i Pmax + getH() — h > logical clock value at pulse
[ —i+1
1 — (9P — € > difference to target value
h «— getH()

. end while

. procedure getl.() > returns L, () when called at time t > p, o

min

. getH () -/
return ¢ + getH() — h+1- mm{ 5 z. 1}

: end procedure

[zTr(Pv.i) = 3Pmax — (Hv(pv.i) - Hv([)v,i—l))-
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logical time

A

L)+ L)

(i + D1 + p)Pmax = ;L)
l(l +[))Pm;“ - o
il +I’)Pnnax - L\-(I’r.i) t "
(i = 1)(1 + p)Prax —
V"
T T T # real time
Pv.i-1 Pv.i Pv.i+1

H'(H(pyi-2) + Prin) H ' (H,(pyi-1) + Pain)

H:'(H\‘(l’u) + Prin)
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The Drift Bound

- We have a fault tolerant pulse synch alg with
parameters S, P, and P .,

- The rate of the logical clock we produce is
bounded from above by the drift of the hardware
clocks (9 ) multiplied by the drift caused by the
amortization of the extra P, we add at each
pulse.

- We amortize it over P, time, which implies a
factorof 9 P, ../ Pin

- So the resulting boundis B=0?P, ../ P



The Skew Bound

- We have a fault tolerant pulse synch alg with
parameters S, P, and P .,

- Thedriftrateis =9°P, ., / Puin

- If we compare the logical clocks of two nodes the
difference is a result of the pulse skew and of
having them, for some time, in separate pulse
index. Reading the proof one can see that we
obtain:

B gz(ﬁ_l)Pmax-l_BS



