Ch 9 Goals

- Introduce Byzantine Faults
- Define pulse synchronization
- Show equivalence between solving clock synchronization and pulse synchronization
- Present a fault tolerant pulse synchronization algorithm
- Show basic lower bounds on the fraction of Byzantine faults that can be tolarated.

Byzantine Faults

- A **Byzantine** faulty node is a node that may behave arbitrarily.
- That is, such a node does not need to follow any algorithm prescribed by the system designer.
- An algorithm is **resilient** to f Byzantine faults if its performance guarantees hold for any execution in which there are at most f Byzantine faulty nodes.
- In the following, for a network G=(V,E) and a set F of faulty nodes, we denote by V_g the set of correct nodes.

Clock Synchronization – correct nodes

- arbitrary deterministic computations
- computations and message delivery satisfy (known) bounds
- hardware clock runs at rates between 1 and ϑ :

$$t-t' \leq \mathsf{H}_{\mathsf{v}}(t) - \mathsf{H}_{\mathsf{v}}(t') \leq \vartheta(t-t')$$

- **Clock Synchronization**: compute logical clocks s.t. for every v, $w \in V_{g}$, $t \le t'$
- (skew bound) $\max_{v,w \in Vg} \{L_v(t) L_w(t)\} \le G$

$$t - t' \leq H_v(t) - H_v(t') \leq L_v(t) - L_v(t') \leq \beta(t - t')$$

Pulse synchronization goals:

For each $i \in \mathcal{N}$, $v \in V_g$ generate pulse i exactly once, ($p_{v,i}$ is the time when v generates pulse i), such that there exists S, P_{min} , P_{max} , satisfying:

- 1) $\sup_{i \in \mathcal{N}, v, w \in Vg} \{ |p_{v,i} p_{w,i}| \} = S (skew)$
- 2) inf $i \in \mathcal{N} \{ \min_{v, \in Vg} \{ p_{v,i+1} \} \max_{v, \in Vg} \{ p_{v,i} \} \} \ge P_{\min}$
- 3) sup $_{i \in \mathcal{N}} \{ \max_{v, \in Vg} \{ p_{v,i+1} \} \min_{v, \in Vg} \{ p_{v,i} \} \} \le P_{\max}$

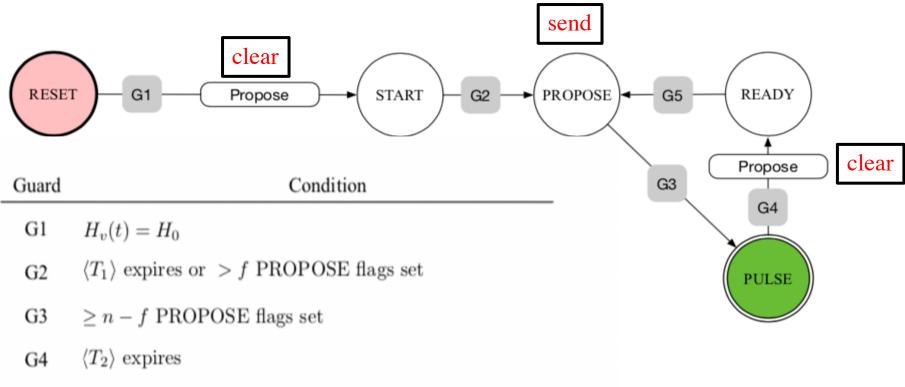
Thus, pulses are well aligned and well separated

Breakout Room

Exchange ideas how to solve clock synch or pulse synch when facing Byzantine faults

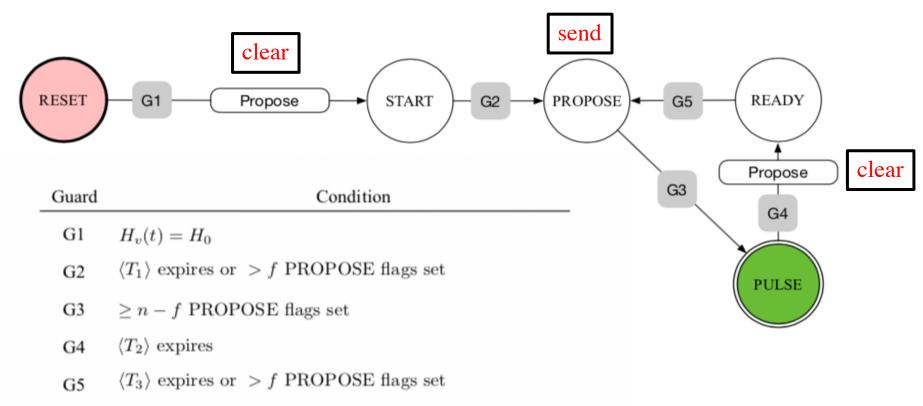
Pulse Synch with 3f < n

- Assume that correct nodes send the same message to all.
- Why 3f+1?
- If I get f+1 I am sure that at least one correct have sent one.
- If I get 2f+1 I am sure that every correct has seen f+1.
- Max number of messages I can wait for is n-f.
- Correct nodes send a simple message "**propose**" to all nodes
- Each node v has a memory flag for every node w, indicating whether v received such a message from w in the current iteration of the loop in the state machine.
- On some state transitions, v will reset all of its flags to 0, indicating that it starts a new iteration locally, in which it has not yet received any propose messages.

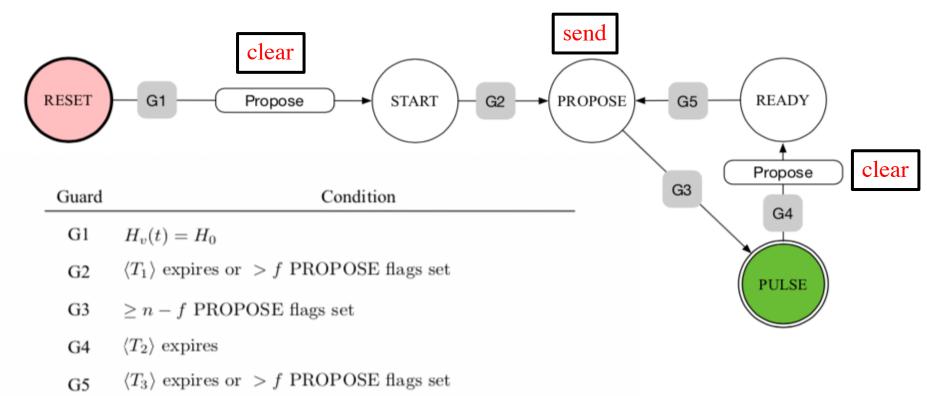


G5 $\langle T_3 \rangle$ expires or > f PROPOSE flags set

Always consider the <u>fastest</u> correct, the <u>slowest</u> one and the <u>byzantine</u>

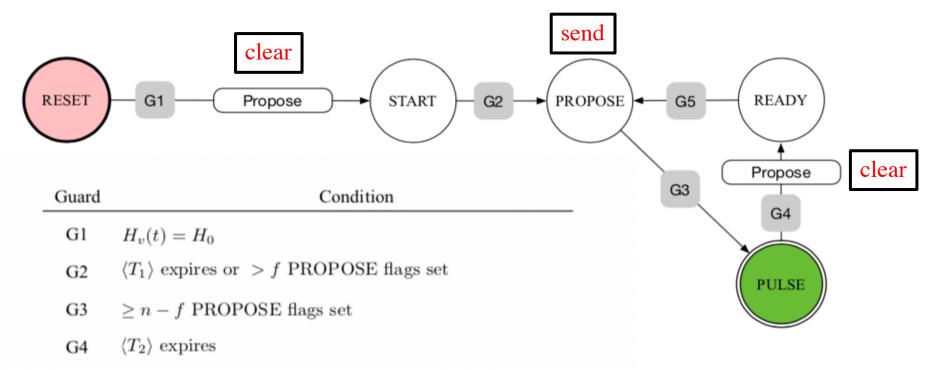


At the beginning of an iteration, all nodes transition to state <u>ready</u> within a bounded time span. This resets the flags.



Nodes wait in state <u>ready</u> until they are sure that all correct nodes reached it.

When a local timeout expires, they transition to propose.

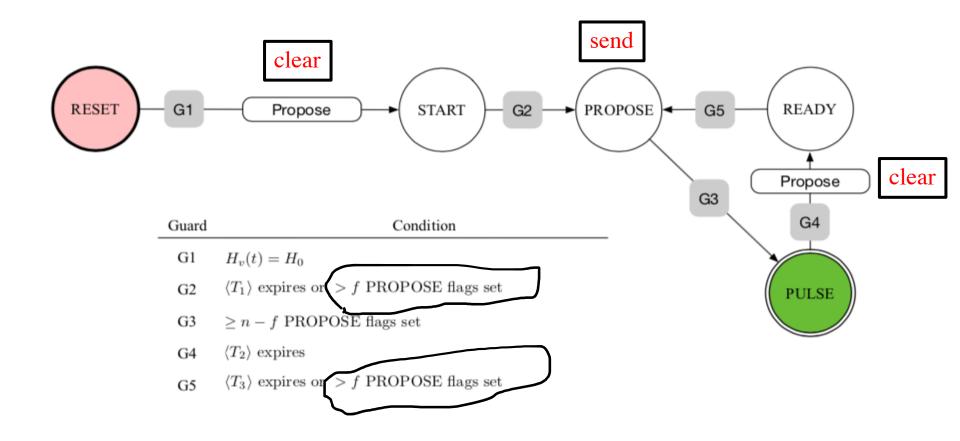


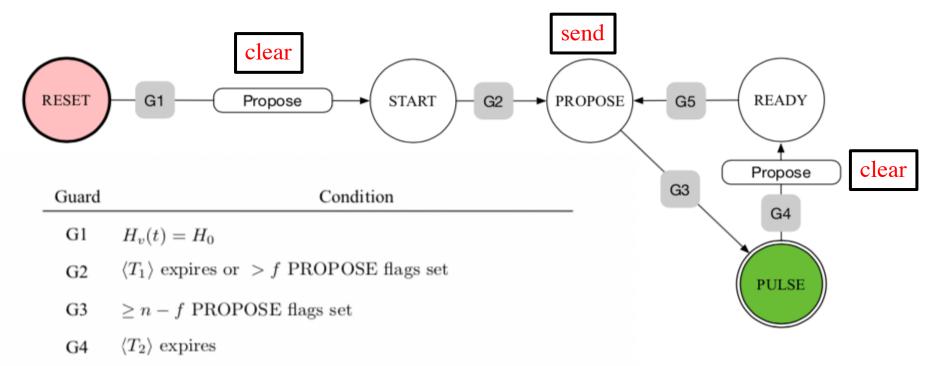
G5 $\langle T_3 \rangle$ expires or > f PROPOSE flags set

When it looks like all correct nodes have arrived to <u>propose</u>, they transition to <u>pulse</u>. As the faulty nodes might refuse to send any messages, this means to wait for n-f nodes having announced to be in <u>propose</u>.

Observe

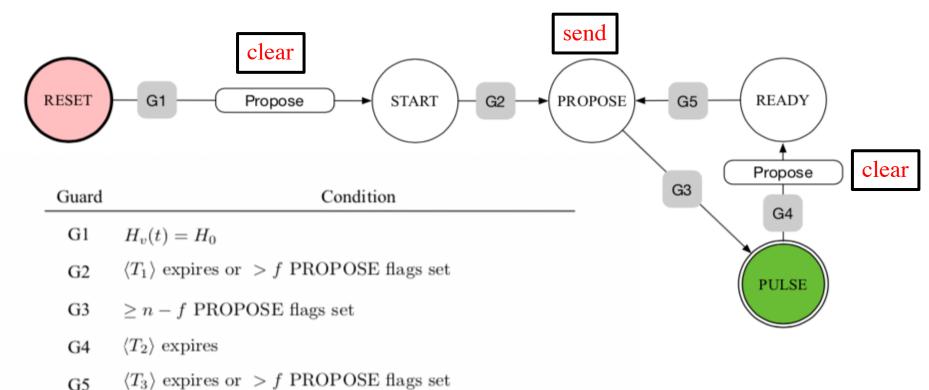
 Faulty nodes may also sent propose messages, meaning that the threshold might be reached despite some nodes still waiting in <u>ready</u> for their timeouts to expire. To ``pull" such stragglers along, nodes will also transition to propose if more than f of their memory flags are set. This is a proof that at least one correct node transitioned to propose due to its timeout expiring, so no ``early" transitions are caused by this rule.



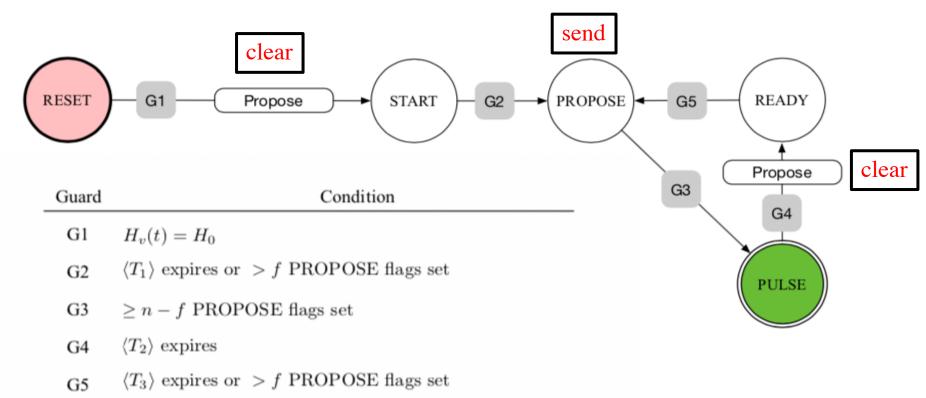


G5 $\langle T_3 \rangle$ expires or > f PROPOSE flags set

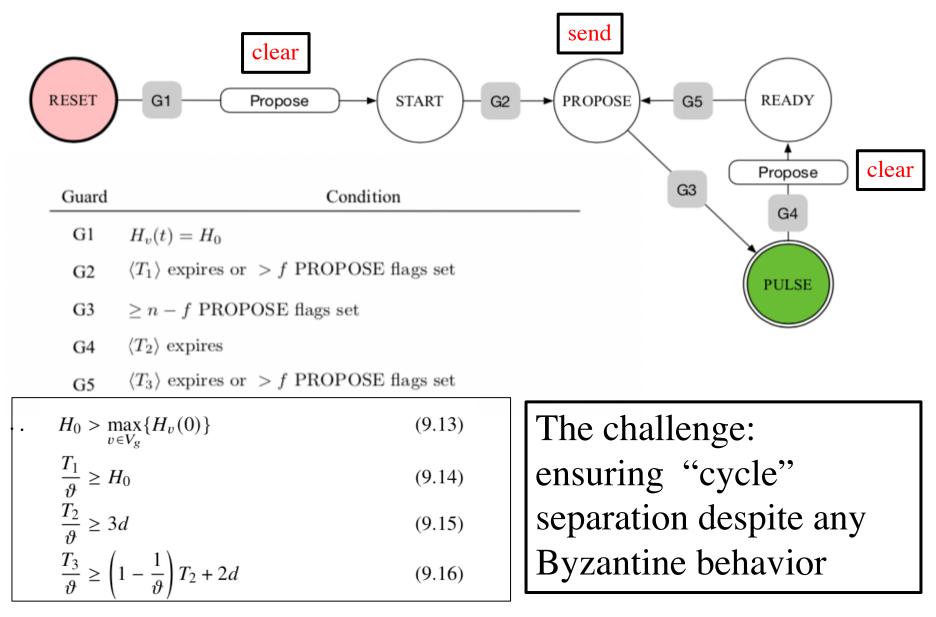
Thus, if any node hits the n-f threshold, no more than d time later each node will hit the f+1 threshold. Another d time later all nodes hit the n-f threshold, i.e., the algorithm has skew 2d.



at time t the first correct moves to <u>pulse</u> (saw n-f) by t+d, all correct will see f+1 **propose** by t+2d all correct see n-f and move to <u>pulse</u>



The correct nodes wait in <u>pulse</u> sufficiently long to ensure that no **propose** messages are in transit any more before transitioning to <u>ready</u> and starting the next iteration.



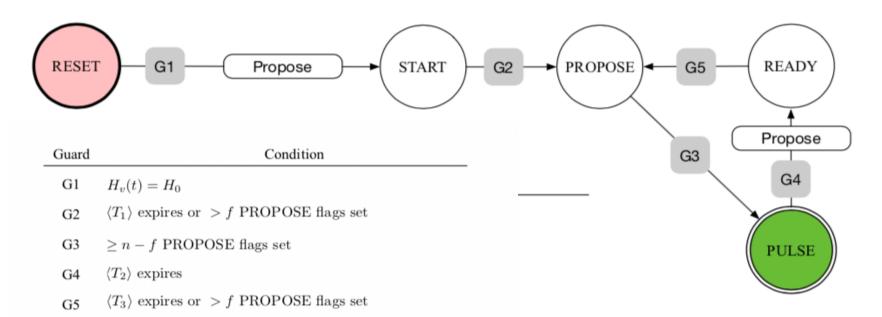
The Main Theorem

Theorem 9.17. Suppose 3f < n, $H_v(0) \in [0, H_0)$ for all $v \in V$ and some known $H_0 \in \mathbb{R}^+$, and choose any $T \ge 3\vartheta d$. Then we can solve the pulse synchronization problem with S = 2d, $P_{\min} = T$, and $P_{\max} = \vartheta T + (5 + 2(\vartheta - 1))d$, where each node generates its first pulse by time $H_0 + (\vartheta - 1)T + (3 + 2(\vartheta - 1))d$.

Proof. Set $T_1 := \vartheta H_0$, $T_2 := T$, and $T_3 := (\vartheta - 1)T + 2\vartheta d$. By the assumption that $H_0 > H_v(0)$ for all $v \in V_g$, these choices satisfy Equations (9.13) to (9.16).

$H_0 > \max_{v \in V_g} \{H_v(0)\}$	(9.13)
$\frac{T_1}{\vartheta} \ge H_0$	(9.14)
$\frac{T_2}{\vartheta} \ge 3d$	(9.15)
$\frac{T_3}{\vartheta} \ge \left(1 - \frac{1}{\vartheta}\right)T_2 + 2d$	(9.16)

Claim: from Quite Stage to Coordinated Move



Assume that when $v \in V_g$ moves to <u>start</u> at time $t_v \in [t-\Delta,t]$ no correct moves to <u>propose</u> during $(t-\Delta-d, t_v)$, and $T_1 \ge \vartheta \Delta$. Then there exists time $t' \in \left(t - \Delta + \frac{T_1}{\vartheta}, t + T_1 - d\right)$ such that every correct node transition to <u>pulse</u> in [t', t' + 2d]

Proof of the First Claim

- Before the first correct moves from <u>start</u> to <u>propose</u>, all correct are in <u>start</u>
 - all correct are awake before H_0 , and $T_1 > \vartheta H_0$
 - the first correct moves due to timeout expiration (T_1)
- d after the first f+1 correct moves to propose, all correct are in propose (or already moved further to pulse)
 - no **propose** message is erased, so all correct get these messages
- Let t' be the time that the first correct moves from propose to pulse.
 - There is such a time.
 - it moves because of n-f propose messages
 - within d every correct receives f+1 and will be in propose, and within another d all correct will see n-f and move to pulse.

- One can verify that
$$t' \in \left(t - \Delta + \frac{T_1}{\vartheta}, t + T_1 - d\right)$$

- Similar claim holds for the move from <u>ready</u> to <u>propose</u>.
- Thus, essentially we can see that the skew S=2d.

The Main Theorem (cont.)

Theorem 9.17. Suppose 3f < n, $H_v(0) \in [0, H_0)$ for all $v \in V$ and some known $H_0 \in \mathbb{R}^+$, and choose any $T \ge 3\vartheta d$. Then we can solve the pulse synchronization problem with S = 2d, $P_{\min} = T$, and $P_{\max} = \vartheta T + (5 + 2(\vartheta - 1))d$, where each node generates its first pulse by time $H_0 + (\vartheta - 1)T + (3 + 2(\vartheta - 1))d$.

Proof. Set $T_1 := \vartheta H_0$, $T_2 := T$, and $T_3 := (\vartheta - 1)T + 2\vartheta d$. By the assumption that $H_0 > H_v(0)$ for all $v \in V_g$, these choices satisfy Equations (9.13) to (9.16).

The choice of parameters implies: $S = 2d; T_{min} = T_2; T_{max} = T_2 + T_3 + 3d$

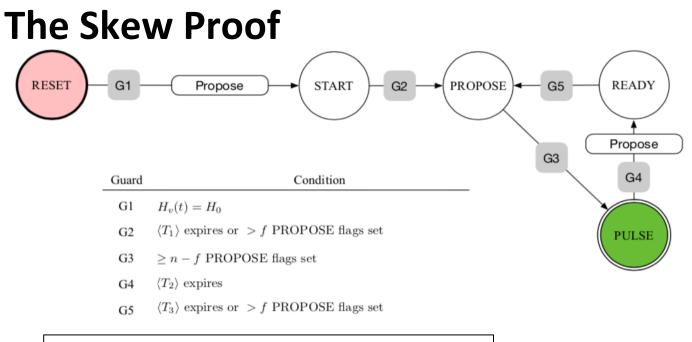
We will now argue that the pulse synchronization requirements hold.

RECALL: Pulse synchronization

For each $i \in \mathcal{N}$, $v \in V_g$ generate pulse i exactly once, ($p_{v,i}$ is the time when v generates pulse i), such that there exists S, P_{min} , P_{max} , satisfying:

- 1) $\sup_{i \in \mathcal{N}, v, w \in Vg} \{ |p_{v,i}-p_{w,i}| \} = S (skew)$
- 2) inf $_{i \in \mathcal{N}} \{ \min_{v, \in Vg} \{ p_{v,i+1} \} \max_{v, \in Vg} \{ p_{v,i} \} \} \ge P_{\min}$
- 3) sup $_{i \in \mathcal{N}} \{ \max_{v, \in Vg} \{ p_{v,i+1} \} \min_{v, \in Vg} \{ p_{v,i} \} \} \le P_{\max}$

Thus, pulses are well aligned and well separated

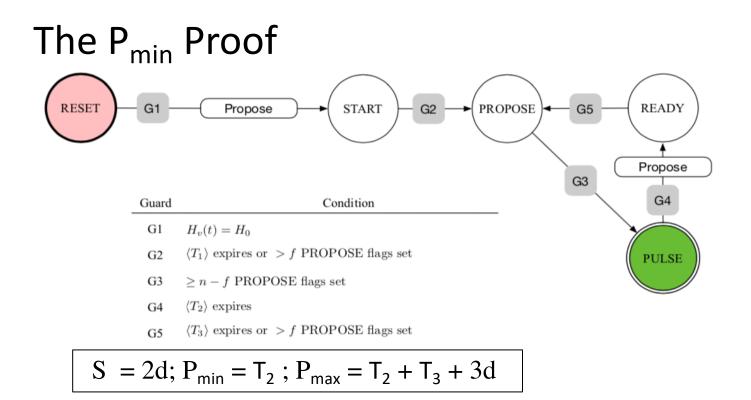


S = 2d;
$$P_{min} = T_2$$
; $P_{max} = T_2 + T_3 + 3d$

We already proved in the first lemma that all correct nodes join <u>pulse</u> within 2d, given a quite stage. (we just need to choose $H_0 = \Delta$).

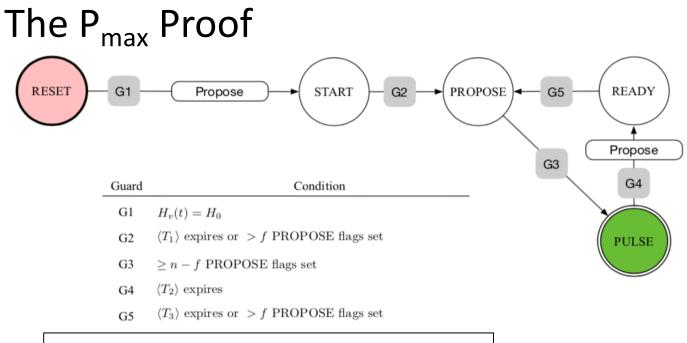
Thus, S holds for the first pulse.

Moreover, we can show that the choice of parameters ensures a quite stage before every pulse, therefore, S holds for every iteration.



Look at any node leaving <u>pulse</u>. It needs to wait T_2 before moving to <u>ready</u>. So it takes it at lease T_2 before it fires the next pulse.

This essentially proves the P_{min} requirement.



S = 2d;
$$P_{min} = T_2$$
; $P_{max} = T_2 + T_3 + 3d$

Let v be first node leaving pulse.

It waits for T_2 to enter <u>ready</u> and not more than T_3 to reach <u>propose</u>.

We know that all nodes entered <u>pulse</u> within 2d. So within 2d more or less after the v reached <u>propose</u> all the correct nodes have send their **propose** message. So within another d, v will see n-f propose and move to <u>pulse</u>.

Thus, it can take it up to $T_2 + T_3 + 3d$ to send the next pulse. This completes the proof of the theorem.