Ch 9 Goals

- Introduce Byzantine Faults
- Define pulse synchronization
- Show equivalence between solving clock synchronization and pulse synchronization
- Present a fault tolerant pulse synchronization algorithm
- Show basic lower bounds on the fraction of Byzantine faults that can be tolerated.
Byzantine Faults

A Byzantine faulty node is a node that may behave arbitrarily.

That is, such a node does not need to follow any algorithm prescribed by the system designer.

An algorithm is resilient to f Byzantine faults if its performance guarantees hold for any execution in which there are at most f Byzantine faulty nodes.

In the following, for a network $G=(V,E)$ and a set F of faulty nodes, we denote by V_g the set of correct nodes.
Clock Synchronization – correct nodes

- arbitrary deterministic computations
- computations and message delivery satisfy (known) bounds
- hardware clock runs at rates between 1 and ϑ:
 \[t - t' \leq H_v(t) - H_v(t') \leq \vartheta(t - t') \]

Clock Synchronization: compute logical clocks
s.t. for every $v, w \in V_g$, $t \leq t'$

(skew bound) \[\max_{v, w \in V_g} \{L_v(t) - L_w(t)\} \leq G \]

\[t - t' \leq H_v(t) - H_v(t') \leq L_v(t) - L_v(t') \leq \beta(t - t') \]
Pulse synchronization goals:

For each $i \in \mathcal{N}, v \in V_g$ generate pulse i exactly once, ($p_{v,i}$ is the time when v generates pulse i), such that there exists $S, P_{\text{min}}, P_{\text{max}}$, satisfying:

1) $\sup_{i \in \mathcal{N}, v,w \in V_g} \{ | p_{v,i} - p_{w,i} | \} = S$ (skew)
2) $\inf_{i \in \mathcal{N}} \{ \min_{v,\epsilon V_g} \{ p_{v,i+1} \} - \max_{v,\epsilon V_g} \{ p_{v,i} \} \} \geq P_{\text{min}}$
3) $\sup_{i \in \mathcal{N}} \{ \max_{v,\epsilon V_g} \{ p_{v,i+1} \} - \min_{v,\epsilon V_g} \{ p_{v,i} \} \} \leq P_{\text{max}}$

Thus, pulses are **well aligned** and **well separated**
Breakout Room

Exchange ideas how to solve clock synch or pulse synch when facing Byzantine faults
Pulse Synch with $3f < n$

- Assume that correct nodes send the same message to all.

- Why $3f+1$?
 - If I get $f+1$ I am sure that at least one correct have sent one.
 - If I get $2f+1$ I am sure that every correct has seen $f+1$.
 - Max number of messages I can wait for is $n-f$.

- Correct nodes send a simple message “propose” to all nodes
- Each node v has a memory flag for every node w, indicating whether v received such a message from w in the current iteration of the loop in the state machine.
- On some state transitions, v will reset all of its flags to 0, indicating that it starts a new iteration locally, in which it has not yet received any propose messages.
The State Machine - Pulse Synch with $3f < n$

Always consider the **fastest** correct, the **slowest** one and the **byzantine**
At the beginning of an iteration, all nodes transition to state `ready` within a bounded time span. This resets the flags.
Nodes wait in state \texttt{ready} until they are sure that all correct nodes reached it.

When a local timeout expires, they transition to \texttt{propose}.

\begin{tabular}{|c|c|}
 \hline
 Guard & Condition \\
 \hline
 G1 & $H_v(t) = H_0$ \\
 G2 & $\langle T_1 \rangle \text{ expires or } > f \text{ PROPOSE flags set}$ \\
 G3 & $\geq n - f \text{ PROPOSE flags set}$ \\
 G4 & $\langle T_2 \rangle \text{ expires}$ \\
 G5 & $\langle T_3 \rangle \text{ expires or } > f \text{ PROPOSE flags set}$ \\
 \hline
\end{tabular}
The State Machine - Pulse Synch with $3f < n$

When it looks like all correct nodes have arrived to propose, they transition to pulse. As the faulty nodes might refuse to send any messages, this means to wait for $n-f$ nodes having announced to be in propose.
Observe

- Faulty nodes may also send `propose` messages, meaning that the threshold might be reached despite some nodes still waiting in `ready` for their timeouts to expire. To ``pull'' such stragglers along, nodes will also transition to `propose` if more than f of their memory flags are set. This is a proof that at least one correct node transitioned to `propose` due to its timeout expiring, so no ``early'' transitions are caused by this rule.
The State Machine - Pulse Synch with 3f < n

- **RESET**
 - **G1**: Propose
 - **G2**: START
 - **G3**: PROPOSE
 - **G4**: READY

<table>
<thead>
<tr>
<th>Guard</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>$H_v(t) = H_0$</td>
</tr>
<tr>
<td>G2</td>
<td>T_1 expires or f PROPOSE flags set</td>
</tr>
<tr>
<td>G3</td>
<td>$\geq n - f$ PROPOSE flags set</td>
</tr>
<tr>
<td>G4</td>
<td>T_2 expires</td>
</tr>
<tr>
<td>G5</td>
<td>T_3 expires or f PROPOSE flags set</td>
</tr>
</tbody>
</table>

- **clear**
- **send**
- **clear**
Thus, if any node hits the $n-f$ threshold, no more than d time later each node will hit the $f+1$ threshold. Another d time later all nodes hit the $n-f$ threshold, i.e., the algorithm has skew $2d$.

<table>
<thead>
<tr>
<th>Guard</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>$H_v(t) = H_0$</td>
</tr>
<tr>
<td>G2</td>
<td>$\langle T_1 \rangle$ expires or $> f$ PROPOSE flags set</td>
</tr>
<tr>
<td>G3</td>
<td>$\geq n-f$ PROPOSE flags set</td>
</tr>
<tr>
<td>G4</td>
<td>$\langle T_2 \rangle$ expires</td>
</tr>
<tr>
<td>G5</td>
<td>$\langle T_3 \rangle$ expires or $> f$ PROPOSE flags set</td>
</tr>
</tbody>
</table>
at time t the first correct moves to pulse (saw $n-f$)
by $t+d$, all correct will see $f+1$ propose
by $t+2d$ all correct see $n-f$ and move to pulse
The State Machine - Pulse Synch with 3f < n

<table>
<thead>
<tr>
<th>Guard</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>$H_v(t) = H_0$</td>
</tr>
<tr>
<td>G2</td>
<td>$<T_1> \text{ expires or } > f \text{ PROPOSE flags set}$</td>
</tr>
<tr>
<td>G3</td>
<td>$\geq n - f \text{ PROPOSE flags set}$</td>
</tr>
<tr>
<td>G4</td>
<td>$<T_2> \text{ expires}$</td>
</tr>
<tr>
<td>G5</td>
<td>$<T_3> \text{ expires or } > f \text{ PROPOSE flags set}$</td>
</tr>
</tbody>
</table>

The correct nodes wait in **pulse** sufficiently long to ensure that no **propose** messages are in transit any more before transitioning to **ready** and starting the next iteration.
The State Machine - Pulse Synch with 3f < n

The challenge: ensuring “cycle” separation despite any Byzantine behavior

Guard	Condition
G1 | $H_v(t) = H_0$
G2 | $\langle T_1 \rangle$ expires or $\geq f$ PROPOSE flags set
G3 | $\geq n - f$ PROPOSE flags set
G4 | $\langle T_2 \rangle$ expires
G5 | $\langle T_3 \rangle$ expires or $\geq f$ PROPOSE flags set

$$H_0 > \max_{v \in V_g} \{H_v(0)\}$$ \hspace{2cm} (9.13)

$$\frac{T_1}{\theta} \geq H_0$$ \hspace{2cm} (9.14)

$$\frac{T_2}{\theta} \geq 3d$$ \hspace{2cm} (9.15)

$$\frac{T_3}{\theta} \geq \left(1 - \frac{1}{\theta}\right)T_2 + 2d$$ \hspace{2cm} (9.16)
The Main Theorem

Theorem 9.17. Suppose $3f < n$, $H_v(0) \in [0, H_0)$ for all $v \in V$ and some known $H_0 \in \mathbb{R}^+$, and choose any $T \geq 3\vartheta d$. Then we can solve the pulse synchronization problem with $S = 2d$, $P_{\text{min}} = T$, and $P_{\text{max}} = \vartheta T + (5 + 2(\vartheta - 1))d$, where each node generates its first pulse by time $H_0 + (\vartheta - 1)T + (3 + 2(\vartheta - 1))d$.

Proof. Set $T_1 := \vartheta H_0$, $T_2 := T$, and $T_3 := (\vartheta - 1)T + 2\vartheta d$. By the assumption that $H_0 > H_v(0)$ for all $v \in V$, these choices satisfy Equations (9.13) to (9.16).

\[
\begin{align*}
H_0 &> \max_{v \in V_g} \{H_v(0)\} & (9.13) \\
\frac{T_1}{\vartheta} &\geq H_0 & (9.14) \\
\frac{T_2}{\vartheta} &\geq 3d & (9.15) \\
\frac{T_3}{\vartheta} &\geq \left(1 - \frac{1}{\vartheta}\right)T_2 + 2d & (9.16)
\end{align*}
\]
Assume that when \(v \in V_g \) moves to \(\text{start} \) at time \(t_v \in [t-\Delta,t] \) no correct moves to \(\text{propose} \) during \((t-\Delta-d, t_v) \), and \(T_1 \geq \vartheta \Delta \). Then there exists time \(t' \in \left(t - \Delta + \frac{T_1}{\vartheta}, t + T_1 - d\right) \) such that every correct node transition to \(\text{pulse} \) in \([t', t' + 2d]\)
Proof of the First Claim

• Before the first correct moves from start to propose, all correct are in start
 – all correct are awake before H₀, and T₁ > ϑH₀
 – the first correct moves due to timeout expiration (T₁)
• d after the first f+1 correct moves to propose, all correct are in propose (or already moved further to pulse)
 – no propose message is erased, so all correct get these messages
• Let t' be the time that the first correct moves from propose to pulse.
 – There is such a time.
 – it moves because of n-f propose messages
 – within d every correct receives f+1 and will be in propose, and within another d all correct will see n-f and move to pulse.
 – One can verify that \[t' \in \left(t - \Delta + \frac{T_1}{\vartheta}, t + T_1 - d \right) \]
• Similar claim holds for the move from ready to propose.
• Thus, essentially we can see that the skew S=2d.
The Main Theorem (cont.)

Theorem 9.17. Suppose $3f < n$, $H_v(0) \in [0, H_0)$ for all $v \in V$ and some known $H_0 \in \mathbb{R}^+$, and choose any $T \geq 3\theta d$. Then we can solve the pulse synchronization problem with $S = 2d$, $P_{\min} = T$, and $P_{\max} = \theta T + (5 + 2(\theta - 1))d$, where each node generates its first pulse by time $H_0 + (\theta - 1)T + (3 + 2(\theta - 1))d$.

Proof. Set $T_1 := \theta H_0$, $T_2 := T$, and $T_3 := (\theta - 1)T + 2\theta d$. By the assumption that $H_0 > H_v(0)$ for all $v \in V_g$, these choices satisfy Equations (9.13) to (9.16).

The choice of parameters implies:

$S = 2d$; $T_{\min} = T_2$; $T_{\max} = T_2 + T_3 + 3d$

We will now argue that the pulse synchronization requirements hold.
For each $i \in \mathcal{N}$, $v \in V_g$ generate pulse i exactly once, ($p_{v,i}$ is the time when v generates pulse i), such that there exists S, P_{min}, P_{max}, satisfying:

1) $\sup_{i \in \mathcal{N}, \ v, w \in V_g} \{ |p_{v,i} - p_{w,i}| \} = S$ (skew)
2) $\inf_{i \in \mathcal{N}} \{ \min_{v, \in V_g} \{ p_{v,i+1} \} - \max_{v, \in V_g} \{ p_{v,i} \} \} \geq P_{\text{min}}$
3) $\sup_{i \in \mathcal{N}} \{ \max_{v, \in V_g} \{ p_{v,i+1} \} - \min_{v, \in V_g} \{ p_{v,i} \} \} \leq P_{\text{max}}$

Thus, pulses are well aligned and well separated
The Skew Proof

We already proved in the first lemma that all correct nodes join \textit{pulse} within 2d, given a quite stage. (we just need to choose $H_0 = \Delta$).

Thus, S holds for the first pulse.

Moreover, we can show that the choice of parameters ensures a quite stage before every pulse, therefore, S holds for every iteration.

\begin{center}
\begin{tabular}{|l|l|}
\hline
Guard & Condition \\
\hline
G1 & $H_v(t) = H_0$ \\
G2 & $\langle T_1 \rangle$ expires or $> f$ PROPOSE flags set \\
G3 & $\geq n - f$ PROPOSE flags set \\
G4 & $\langle T_2 \rangle$ expires \\
G5 & $\langle T_3 \rangle$ expires or $> f$ PROPOSE flags set \\
\hline
\end{tabular}
\end{center}

$S = 2d; P_{\text{min}} = T_2 ; P_{\text{max}} = T_2 + T_3 + 3d$
The P_{min} Proof

Look at any node leaving pulse. It needs to wait T_2 before moving to ready. So it takes it at least T_2 before it fires the next pulse.

This essentially proves the P_{min} requirement.

$S = 2d; P_{\text{min}} = T_2; P_{\text{max}} = T_2 + T_3 + 3d$
Let \(v \) be first node leaving pulse.
It waits for \(T_2 \) to enter ready and not more than \(T_3 \) to reach propose.
We know that all nodes entered pulse within \(2d \). So within \(2d \) more or less after the \(v \) reached propose all the correct nodes have send their propose message. So within another \(d \), \(v \) will see \(n-f \) propose and move to pulse.

Thus, it can take it up to \(T_2 + T_3 + 3d \) to send the next pulse.
This completes the proof of the theorem.