
- Introduce Byzantine Faults
- Define pulse synchronization
- Show equivalence between solving clock

synchronization and pulse synchronization
- Present a fault tolerant pulse synchronization

algorithm
- Show basic lower bounds on the fraction of

Byzantine faults that can be tolarated.

Ch 9 Goals



A Byzantine faulty node is a node that may behave 
arbitrarily. 

That is, such a node does not need to follow any algorithm 
prescribed by the system designer. 

An algorithm is resilient to f Byzantine faults if its 
performance guarantees hold for any execution in which 
there are at most f Byzantine faulty nodes. 

In the following, for a network G=(V,E) and a set F of faulty 
nodes, we denote by Vg the set of correct nodes.

Byzantine Faults



- arbitrary deterministic computations
- computations and message delivery satisfy (known) bounds
- hardware clock runs at rates between 1 and ϑ:

t – t' ≤ Hv(t) – Hv(t') ≤ ϑ(t – t’)

Clock Synchronization: compute logical clocks
s.t. for every v,w ϵ Vg , t  ≤ t'

(skew bound) maxv,w ϵ Vg{Lv(t)-Lw(t)} ≤ 𝓖

t – t' ≤ Hv(t) – Hv(t') ≤ Lv(t) – Lv(t') ≤ 𝛃(t – t’)

Clock Synchronization  – correct nodes



For each i ∈𝓝, v ∈ Vg generate pulse i exactly once, 
(pv,i is the time when v generates pulse i),
such that there exists S, Pmin, Pmax, satisfying:

1) sup i ∈𝓝, v,w ϵ Vg{|pv,i-pw,i|} = S (skew)
2) inf i ∈𝓝{minv,ϵVg{pv,i+1}-maxv,ϵVg{ pv,i} } ≥ Pmin

3) sup i ∈𝓝{maxv,ϵVg{pv,i+1}-minv,ϵVg{ pv,i} } ≤ Pmax

Thus, pulses are well aligned and well separated

Pulse synchronization goals:



Exchange ideas how to solve clock synch or pulse 
synch when facing Byzantine faults

Breakout Room



Pulse Synch with 3f < n

• Assume that correct nodes send the same message to all.

• Why 3f+1?
• If I get f+1 I am sure that at least one correct have sent one.
• If I get 2f+1 I am sure that every correct has seen f+1.
• Max number of messages I can wait for is n-f.

• Correct nodes send a simple message “propose” to all nodes
• Each node v has a memory flag for every node w, indicating 

whether v received such a message from w in the current iteration 
of the loop in the state machine. 

• On some state transitions, v will reset all of its flags to 0, indicating 
that it starts a new iteration locally, in which it has not yet received 
any propose messages.



The State Machine - Pulse Synch with 3f < n

clear

clear

send

Always consider the fastest correct, the slowest one
and the byzantine



The State Machine - Pulse Synch with 3f < n

clear

clear

send

At the beginning of an iteration, all nodes transition
to state ready within a bounded time span. 
This resets the flags.



The State Machine - Pulse Synch with 3f < n

clear

clear

send

Nodes wait in state ready until they are sure that all 
correct nodes reached it. 
When a local timeout expires, they transition to propose.



The State Machine - Pulse Synch with 3f < n

clear

clear

send

When it looks like all correct nodes have arrived to propose, 
they transition to pulse. As the faulty nodes might refuse to 
send any messages, this means to wait for n-f nodes having 
announced to be in propose.



Observe

• Faulty nodes may also sent propose messages, 
meaning that the threshold might be reached despite 
some nodes still waiting in ready for their timeouts to 
expire. To ``pull'' such stragglers along, nodes will also 
transition to propose if more than f of their memory flags 
are set. This is a proof that at least one correct node 
transitioned to propose due to its timeout expiring, so no 
``early'' transitions are caused by this rule.



The State Machine - Pulse Synch with 3f < n

clear

clear

send



The State Machine - Pulse Synch with 3f < n

clear

clear

send

Thus, if any node hits the n-f threshold, no more than 
d time later each node will hit the f+1 threshold. 
Another d time later all nodes hit the n-f threshold, 
i.e., the algorithm has skew 2d.



The State Machine - Pulse Synch with 3f < n

clear

clear

send

at time t the first correct moves to pulse (saw n-f)
by t+d, all correct will see f+1 propose
by t+2d all correct see n-f and move to pulse



The State Machine - Pulse Synch with 3f < n

clear

clear

send

The correct nodes wait in pulse sufficiently long to ensure 
that no propose messages are in transit any more 
before transitioning to ready and starting the next iteration.



The State Machine - Pulse Synch with 3f < n

clear

clear

send

The challenge: 
ensuring  “cycle” 
separation despite any 
Byzantine behavior



The Main Theorem



Claim: from Quite Stage to Coordinated Move

Assume that when v ∈ Vg moves to start at time tv ∈ [t-∆,t]
no correct moves to propose during (t-∆-d, tv ), and T1 ≥ ϑ∆.
Then there exists time
such that every correct node transition to pulse in
[t’, t’ + 2d]



Proof of the First Claim

• Before the first correct moves from start to propose, all correct are in 
start
– all correct are awake before H0, and T1 > ϑH0

– the first correct moves due to timeout expiration (T1)

• d after the first f+1 correct moves to propose, all correct are in 
propose (or already moved further to pulse)
– no propose message is erased, so all correct get these messages

• Let t’ be the time that the first correct moves from propose to pulse. 
– There is such a time.
– it moves because of n-f propose messages
– within d every correct receives f+1 and will be in propose, and within 

another d all correct will see n-f and move to pulse.
– One can verify that 

• Similar claim holds for the move from ready to propose.
• Thus, essentially we can see that the skew S=2d.



The Main Theorem (cont.)

The choice of parameters implies:
S  = 2d; Tmin = T2 ; Tmax = T2 + T3 + 3d

We will now argue that the pulse synchronization requirements hold.



For each i ∈𝓝, v ∈ Vg generate pulse i exactly once, 
(pv,i is the time when v generates pulse i),
such that there exists S, Pmin, Pmax, satisfying:

1) sup i ∈𝓝, v,w ϵ Vg{|pv,i-pw,i|} = S (skew)
2) inf i ∈𝓝{minv,ϵVg{pv,i+1}-maxv,ϵVg{ pv,i} } ≥ Pmin

3) sup i ∈𝓝{maxv,ϵVg{pv,i+1}-minv,ϵVg{ pv,i} } ≤ Pmax

Thus, pulses are well aligned and well separated

RECALL: Pulse synchronization



The Skew Proof

We already proved in the first lemma that all correct nodes join pulse
within 2d, given a quite stage.  (we just need to choose H0= ∆). 

Thus, S holds for the first pulse.

Moreover, we can show that the choice of parameters ensures a quite stage 
before every pulse,  therefore, S holds for every iteration.

S  = 2d; Pmin = T2 ; Pmax = T2 + T3 + 3d



The Pmin Proof

Look at any node leaving pulse. It needs to wait T2 before moving to ready.  
So it takes it at lease T2 before it fires the next pulse.
This essentially proves the Pmin requirement.

S  = 2d; Pmin = T2 ; Pmax = T2 + T3 + 3d



The Pmax Proof

Let v be first node leaving pulse.  
It waits for T2 to enter ready and not more than T3 to reach propose.
We know that all nodes entered pulse within 2d. So within 2d more or less 
after the v reached propose all the correct nodes have send their propose
message.  So within another d, v will see n-f propose and move to pulse.

Thus, it can take it up to T2 + T3 +3d to send the next pulse.
This completes the proof of the theorem.

S  = 2d; Pmin = T2 ; Pmax = T2 + T3 + 3d


