
- Introduce Byzantine Faults
- Define pulse synchronization
- Show equivalence between solving clock

synchronization and pulse synchronization
- Present a fault tolerant pulse synchronization

algorithm
- Show basic lower bounds on the fraction of

Byzantine faults that can be tolarated.

Ch 9 Goals

A Byzantine faulty node is a node that may behave
arbitrarily.

That is, such a node does not need to follow any algorithm
prescribed by the system designer.

An algorithm is resilient to f Byzantine faults if its
performance guarantees hold for any execution in which
there are at most f Byzantine faulty nodes.

In the following, for a network G=(V,E) and a set F of faulty
nodes, we denote by Vg the set of correct nodes.

Byzantine Faults

For each i ∈𝓝, v ∈ Vg generate pulse i exactly once,
(pv,i is the time when v generates pulse i),
such that there exists S, Pmin, Pmax, satisfying:

1) sup i ∈𝓝, v,w ϵ Vg{|pv,i-pw,i|} = S (skew)
2) inf i ∈𝓝{minv,ϵVg{pv,i+1}-maxv,ϵVg{ pv,i} } ≥ Pmin

3) sup i ∈𝓝{maxv,ϵVg{pv,i+1}-minv,ϵVg{ pv,i} } ≤ Pmax

Thus, pulses are well aligned and well separated
in any feasible execution (obeying drifts and

message tranmission bounds)

Pulse synchronization goals:

Impossibility Claim

Theorem:
Pulse synchronization is impossible if 3 ≤ n ≤ 3f

- we will present confusing behaviors to correct nodes

- we will prove that Byzantine behavior presents a
delimma to the protocol
- If correct nodes refuse to increase the rate at

which pulses are generated, skew will be violated.
- If they increase the rate at which pulses are

generated, Pmin will be violated.

Exchange ideas how Byzantine faults can fool us

why the case of n=2 is left out; i.e., is there an alg
for n=2, f =1?

Breakout Room

Observations

Theorem:
Pulse synchronization is impossible if 3 ≤ n ≤ 3f

- Assume to the contrary that there is such an
algorithm 𝓐.

- We have no clue how 𝓐 operates.
- 𝓐 needs to gurantee the properties in any feasible

execution.
- We know that for the same sequence of messages

arriving at the same local hardware clock times the
algorithm produces the same stream of messages
and pulses.

The Art of Impossibility Results

- It is always a dance between finding algorithm and
failing to find one

- Focus on the main difficulty in finding the protocol
– which conflicting tradeoffs need to be addressed

- Simplify the model as much as you can – since you
need to point out one case at which it is impossible

- Build fooling scenarios – keeping parts of the
system that can’t see the difference, for any
possible algorithm.

- CAREFULLY check that you do not fool yourself J

Simulating an Algorithm
- For a given deterministic algorithm 𝓐:
- Assuming we have control of all nodes’

- initial state and initialization times,
- all local hardware clock drifts,
- and the transmission time of each message.

Will we know all the messages that will be exchanged?

- For example: Let all Hv(0) be 0. Do we know what is the
first message each node sends?

- If we know at which local clock time these messages will be
received, will we know which messages will be sent next?

A State Machine

Inputs /
messages

messages

outputs

state

The sequence of messages and outputs depends solely on
1. the initial state and initial input (fixed -known)
2. the sequence of messages and inputs it receives
3. hardware clock readings

H

10

Two scenarios: In both the faulty one behaves as
though the link is disconnected.

Algorithm 𝓐 instructs correct nodes what to send
and when to produce pulses.

𝛎t

𝛎2t

A

BC
t

𝛎t

𝛎2t

A

BC
t

Disconnecting the Link Between B and C
𝛎>1 is relatively small
and causes a faster
hardware clock rate

11

Assume that in both scenarios all messages arrive at
the identical clock times – the messages exchanged
are identical in both executions.

Node A cannot tell the difference between the two.

𝛎t

𝛎2t

A

BC
t

𝛎t

𝛎2t

A

BC
t

Disconnecting the Link Between B and C

12

Given that we know the clock drifts and the
clock time of receiving messages
we can simulate the whole message exchange.

𝛎t

𝛎2t

A

BC
t

𝛎t

𝛎2t

A

BC
t

Disconnecting the Link Between B and C

13

Nodes do not have access to external real-time

No correct node can tell the difference

𝛎t

𝛎2t

A

BC
t

Alternative Real Times

RT:=t

𝛎3t

A

BC
𝛎t

RT:=t/𝛎

𝛎2t

14

𝛎t

𝛎2t

A

BC

B
t/𝛎

t

Assume that in both scenarios all messages arrive at
the identical clock times –
Node A can’t tell the difference. The protocol instructs
the correct nodes what to send and when to “pulse”

Fake News

𝛎t

𝛎2t

A

BC t

Bt/𝛎

15

𝛎t

𝛎2t

A

BC

B
t/𝛎

t

Assume that in both scenarios all messages arrive at
the identical clock times – B can envision receiving …
Node A can’t tell the difference. The protocol instructs
the correct nodes what to send and when to “pulse”

Fake News - Alternatives

RT:=t
𝛎3t

A

BC 𝛎t

Bt

RT:=t/𝛎

𝛎2t

The Rules of the Game
- For a given deterministic algorithm 𝓐:
- 𝓐 needs to provide the pulse synchronization guarantees

in EVERY feasible execution.

- It is enough that it fails on a single feasible execution to
prove the impossibility result.

- We can choose specific clock drifts and message
transmissions in a feasible execution and also choose
which nodes to fail and instruct them how to behave.

- We will construct a general scheme that identifies a
feasible execution at which such an algorithm 𝓐 fails,
provided that the algorithm guarantees a bounded skew.

17

𝛎t

𝛎2t

A

BC

B
t/𝛎

t

Execution ℇ0

RT:=t

The initial execution ℇ0 .
The real time rate is 1. Set 𝛎3= ϑ. (we ignore u)
All messages arrive within d real time: a message
sent to w at t, is received by w at time Hw(t)+d.
Algorithm 𝓐 does not have access to real-time.

18

𝛎t

𝛎2t

A

BC

B
t/𝛎

t

In both executions all messages arrive at
identical clock times –
Node A can’t tell the difference. The protocol instructs
the correct nodes what to send and when to “pulse”

Execution ℇ0 Execution ℇ1

RT:=t
𝛎3t

A

BC 𝛎t

Bt

RT:=t/𝛎

𝛎2t

19

In both executions all messages arrive at
identical clock times –
Node C can’t tell the difference. The protocol instructs
the correct nodes what to send and when to “pulse”

Execution ℇ2 Execution ℇ1

𝛎3t

𝛎t

A

BC 𝛎2t
RT:=t/𝛎2

t

A

𝛎3t

A

BC 𝛎t

Bt

RT:=t/𝛎

𝛎2t

Lemma 9.12

Suppose 3 ≤ n ≤ 3f. For any pulse synchronization
algorithm 𝓐, there exists 𝛎 >1, such that in every two
consecutive executions, there is a correct node that
can’t distinguish between them.

- We choose (ignoring u) 𝛎3= ϑ. Hardware clocks
are by a factor of 𝛎 apart, so are within the
feasible bounds.

- The local times at which message are received is
determined to be: if v send a message to w at time
t, it is received by w at time Hw(t)+d.

- The real time in execution ℇi is by a factor of 𝛎
faster that the real time time in execution ℇi+1.

21

𝛎3t

𝛎t

A

BC 𝛎2t
RT:=t/𝛎2

t

A

𝛎3t

A

BC 𝛎t

Bt

RT:=t/𝛎

𝛎2t
ℇ1

ℇ2

We can see that C can’t tell the difference

22

𝛎3t

𝛎t

A

BC 𝛎2t
RT:=t/𝛎2

t

A

𝛎3t

A

BC 𝛎t

Bt

RT:=t/𝛎

𝛎2t
ℇ1

ℇ2

Messages to be sent by a faulty node are well defined

Theorem 9.13 – pulse synchronization is impossible for 3 ≤ n ≤ 3f

We will show that if algorithm 𝓐 ensures a bounded
skew it needs to produce pulses faster and faster as
we move from one execution to the other.
- there exists v ∈ Vg

ℇi such that

- let v be the one for ℇi and w be the correct in both
ℇi and ℇi+1

- by the skew bound

- by the construction of the executions

Theorem 9.13 – pulse synchronization is impossible for 3 ≤ n ≤ 3f

- thus, we proved the inductive step:

- now let’s choose i large enough such that
𝛎-i Pmax < Pmin

- let v be the one for ℇi in the induction step.
Choose j large enough such that

j-1 > 2iS(Pmin -𝛎-i Pmax)
- it follows that

- violating the Pmin requirement.

Theorem 9.13 – pulse synchronization is impossible for 3 ≤ n ≤ 3f

- we claimed everything for the case n=3 and f=1. So
we proved it only for this case.

- To complete the proof, assume we have an
algorithm for the case n>3. We will reduce the
algorithm to an algorithm for the case n=3.

- We divide the n nodes into 3 groups of size up to f
each.

- Each of the 3 nodes in the case of n=3 simulates
one group.

- This reduction completes the proof.

The Art of Impossibility Results

- It is always a dance between finding algorithm and
failing to find one

- Focus on the main difficulty in finding the protocol
– which conflicting tradeoffs need to be addressed

- Simplify the model as much as you can – since you
need to point out one case at which it is impossible

- Build fooling scenarios – keeping parts of the
system that can’t see the difference, for any
possible algorithm.

- CAREFULLY check that you do not fool yourself J

