
- Introducing the synchronous abstraction
- Simulating the synchrnous abstraction
- Approximate agreement
- Pulse synchronization with better skew

Ch 10 - Goals



• At initialization each node may receive an input.
• Execution proceeds in rounds: 
• nodes perform local computations
• send messages to their neighbors
• receive the messages form their neighbors
• optionally: report output value and terminate

• For a network G=(V,E) and a set F of faulty nodes, we 
denote by Vg the set of correct nodes.

• Synchronous execution of a deterministic algorithm at the 
correct nodes is totally determined by the input values and 
messages sent by the faulty nodes to correct nodes.

• A very clean abstraction.

Synchronous Abstraction



• We have logical clock algorithm that satisfies:
• Upper bound on Logical Clock skew 𝓖.
• maxv,w ϵ Vg{Lv(t)-Lw(t)} ≤ 𝓖

• Bound on logical clock drift 𝛃.
• t – t' ≤ Hv(t) – Hv(t') ≤ Lv(t) – Lv(t') ≤ 𝛃(t – t’)

• The end-to-end message delay is d.
• Assume that initial logical clock skew is also 𝓖.

• In our model messages are being exchanged among the 
correct nodes and the faulty nodes inject their messages.

• The objective is to separate the message exchange into 
clean rounds, so each correct node will associate messages 
from correct nodes to separate rounds in a consistent way.

Our Model 



• How one can obtain a synchronous abstraction using logical 
clocks?

Breakout Room



• Logical clocks satisfy:
• Upper bound on Logical Clock skew 𝓖.
• Bound on logical clock drift 𝛃.
• end-to-end message delay d.
• Assume that initial logical clock skew is also 𝓖.

• Send round r messages at time t satisfying
• Lv(t) = 𝛃 𝓖 + (r-1) 𝛃 (d + 𝓖)

• Observe: all messages from correct nodes of round r 
arrive before any correct node needs to send messages 
for the next round, round r+1. 

Simulating Synchronous Abstraction

𝓖 dp
q



• Logical clocks satisfy:
• Upper bound on Logical Clock skew 𝓖.
• Bound on logical clock drift 𝛃.
• end-to-end message delay d.
• Assume that initial logical clock skew is also 𝓖.

• Send round r messages at time t satisfying
• Lv(t) = 𝛃 𝓖 + (r-1) 𝛃 (d + 𝓖)

• The problem is that q still collects round r messages 
when p sends its round r+1 message. 

Simulating Synchronous Abstraction

𝓖 dp
q



• Begin round r messages at time t satisfying
• Lv(t) = 𝛃 𝓖 + (r-1) 𝛃 (d + 2𝓖)

• send round r messages at time
• Lv(t) = 𝛃 𝓖 + (r-1) 𝛃 (d + 2𝓖) + 𝛃 𝓖

• p sends after q starts listening for the right round r

Simulating Synchronous Abstraction

𝓖 d
p
q separation𝓖



• Each node v ∈ Vg is given and input rv ∈ ℛ. Given ℇ >0. 
Generate output value ov ∈ ℛ, such that
• agreement: max v,w ϵ Vg{|ov-ow|}  ≤ ℇ
• validity: for each v ∈ Vg is min w ϵ Vg{rw}  ≤ ov ≤ max w ϵ Vg{rw} 
• termination: each node v ∈ Vg outputs its value, ov, and 

terminate within finite number of rounds.

• Thus, nodes need to exchange their input values and try 
(iteratively) to compute output values that satisfy the 
above requirement.

• Faulty nodes may send arbitrary values to try to prevent 
the convergence of output values.

Approximate Agreement



The algorithm proceeds in rounds.  
The input to each round is the output of the previous round. 
The initial input is the input of the first round. 

The Basic Iteration: 

1. send rv to all.
2. receive rw,v , the value sent by w in this round.

// replace any "missing" value by rv

3. Sv := {rw,v }; //ordered set
4. ov := (Sv

(f+1) + Sv
(n-f))/2;      // the (f+1)st and (n-f)-th values in S

5. Return ov

Approximate Agreement Algorithm



• We denote by rg the ascending vector of the inputs of all 
correct nodes. For simplicity let's assume that |Vg |=n-f. 
We assume that n=3f+1.

• For any ascending vector, say x, x (i) denotes the i-th
entry in the vector.

• ⟦x⟧, the diameter of x, is the difference between the 
maximal and minimal values in x.

We will show some basic properties of the algorithm and  
that each iteration of the algorithm reduces the diameter 
by half.

Notations
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4 nodes – 1 faulty



For each v ∈ Vg is  rg
(1) ≤ ov ≤ rg

(n-f)

Proof: notice that in every iteration we remove the bottom f 
values and there are at most f faults.  
Therefore, for each v ∈ Vg

Sv
(f+1) ≥ min w ϵ Vg{rwv} ≥ rg

(1)

Sv
(n-f) ≤ max w ϵ Vg{rwv} ≤ rg

(n-f)

The value computed in the iterations satisfies
rg

(1) ≤ Sv
(f+1) ≤ ov := (Sv

(f+1) + Sv
(n-f))/2 ≤ Sv

(n-f) ≤ rg
(n-f)

Lemma 10.4



In each iteration, ⟦o⟧ ≤ ⟦ rg ⟧/2

Proof: since 3f+1=n, n-f=2f+1, for every v ∈ Vg

rg
(1) ≤ Sv

(f+1) ≤ rg
(f+1) ≤ Sv

(2f+1) ≤ Sv
(n-f) ≤ rg

(n-f)

Therefore, by Lemma 10.4, 
ov - ow = (Sv

(2f+1) - Sw
(2f+1) + Sv

(n-f) - Sw
(n-f) )/2

By the above
ov – ow ≤  (rg

(f+1) - rg
(1) +  rg

(n-f) - rg
(f+1) )/2

and we get 
ov - ow ≤ (rg

(n-f) - rg
(1) ) /2  = ⟦ rg ⟧/2

Lemma 10.5



Let R ≥  rg
(n-f) - rg

(1) . After log (R/ ℇ) iterations the algorithm
obtains the approximate agreement properties.

Proof: In each iteration, ⟦o⟧ ≤ ⟦ rg ⟧/2, and for every two
correct nodes, ov - ow ≤ (rg

(n-f) - rg
(1) ) /2 .

The rest is immediate.

Theorem 10.6


