
- Introducing the synchronous abstraction
- Simulating the synchrnous abstraction
- Approximate agreement
- Pulse synchronization with better skew

Ch 10 - Goals



• Each node v ∈ Vg is given and input rv ∈ ℛ. Given ℇ >0. 
Generate output value ov ∈ ℛ, such that
• agreement: max v,w ϵ Vg{|ov-ow|}  ≤ ℇ
• validity: for each v ∈ Vg is min w ϵ Vg{rw}  ≤ ov ≤ max w ϵ Vg{rw} 
• termination: each node v ∈ Vg outputs its value, ov, and 

terminate within finite number of rounds.

• Thus, nodes need to exchange their input values and try 
(iteratively) to compute output values that satisfy the 
above requirement.

• Faulty nodes may send arbitrary values to try to prevent 
the convergence of output values.

Approximate Agreement



The algorithm proceeds in rounds.  
The input to each round is the output of the previous round. 
The initial input is the input of the first round. 

The Basic Iteration: 

1. send rv to all.
2. receive rw,v , the value sent by w in this round.

// replace any "missing" value by rv

3. Sv := {rw,v }; //ordered set
4. ov := (Sv

(f+1) + Sv
(n-f))/2;      // the (f+1)st and (n-f)-th values in S

5. Return ov

The initial range is reduced by half at the end of each iteration

Approximate Agreement Algorithm



The approximate agreement approach enables correct 
nodes to reduce the range of values they hold at the 
beginning of an iteration, despite the Byzantine behavior.

Therefore, one can use the approach so if the values that 
correct nodes hold drifts apart (the range expands), we can 
occasionally run the basic iteration to converge back to a 
desired range of values.

Alternatively, we can run the iteration so the upper bound on 
the range of values will not exceed some maximal value, by 
regularly reducing the spread of values.

If the initial range is large, we can run full approximate 
agreement to reduce the initial range.

Insights



We will use the idea of the approximate agreement to present an 
algorithm that achieves better skew than what is obtained in the 
previous chapter. 

We will not exchange specific values, as we do in the approximate 
agreement.  Instead messages will be sent at a fixed amount of time 
past the beginning of each round, and from the reception of the 
messages nodes will try to determine the clock value at the sender's 
node when it began its round and invoked its pulse. 

There is uncertainty about the current clock value that stems from the 
initial skew, transmission time and clock drift. 

i.e, instead of rw we get, rw' where, rw ≤ rw' ≤ rw + 𝛿

where 𝛿 is the upper bound on the error of the estimates of other 
correct nodes' offsets.

Improving pulse skew
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4 nodes – 1 faulty
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4 nodes – 1 faulty and perturbation in values



Let 𝛿 be the upper bound on the neighbors clock estimates 
at a correct node.  The approximate agreement algorithm 
obtain the following:

For each v ∈ Vg is  rg
(1) ≤ ov ≤ rg

(n-f) + 𝛿
In each iteration, ⟦o⟧ ≤ ⟦ rg ⟧/2 + 𝛿

Corollary 10.5



The algorithm we present assumes known n, f, d and ϑ.
pv,r is the real time at which v ∈ Vg invokes its r-th pulse.

Nodes regularly invoke pulses, collect estimates of other nodes pulse 
invocation times and use the approximate agreement approach to 
estimate the desired correction to the time at which to invoke the next 
pulse.

S – is an upper bound of the initial hardware clock values, and we 
determine it value so  it will also be the upper bound on the skew of 
pulses.

T – the nominal round duration between pulses and between 
approximate agreement iterations

𝛿 – is the upper bound on the error of the estimates of other correct 
nodes' offsets

Basic Parameters



The approximate agreement approach enables correct 
nodes to reduce the range of values they hold at the 
beginning of an iteration, despite the Byzantine behavior.

Therefore, one can use the approach so if the values that 
correct nodes hold drifts apart (the range expands), we can 
occasionally run the basic iteration to converge back to a 
desired range of values.

Alternatively, we can run the iteration so the upper bound on 
the range of values will not exceed some maximal value, by 
regularly reducing the spread of values.

If the initial range is large, we can run full approximate 
agreement to reduce the initial range.

Insights (again)
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Since we simulate an approximate agreement in a 
synchronous environment we need to make sure that the 
following holds:

1) Messages sent by correct nodes in a given round should 
be received by all correct nodes after they start the 
current round and before they compute the clock 
estimates, i.e., during [pv,r, 𝜏v,r]

2) T is large enough to accommodate the adjustments for 
the next iteration, i.e., Hv(𝜏v,r) ≤ Hv(pv,r) + Δ + T

We prove by induction that both hold and that ⟦ pr ⟧ ≤ S
As a base case, we use the bound on the skew of the first round

Initial requirements on round execution

✓
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We will choose Δ(w) := Hv(t) – S – (d-u) – Hv(pv,r)

We can prove that -S ≤ Δv ≤ S + 𝛿

𝛿 will be chosen to satisfy our assumptions on estimates

Basic Inductive Step
T > 3S + d

S > 2(𝛿 + drift(T))



Observe that from -S ≤ Δv ≤ S + 𝛿

Hv(pv,r+1) - Hv(pv,r) = T + Δv ≥ T – S 
Therefore,     pv,r+1 - pv,r ≥ (T – S) / ϑ

Basic Inductive Step
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T > 3S + d

S > 2𝛿 + drift(T)



Observe that from -S ≤ Δv ≤ S + 𝛿

Hv(pv,r+1) - Hv(pv,r) = T + Δv ≤ T + S + 𝛿
from which we conclude the right hand side.

Basic Inductive Step
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T > 3S + d

S > 2𝛿 + drift(T)



pv,r+1 - pw,r+1 ≤ pv,r+ Δv + T – (pw,r+ (Δw + T )/ ϑ) =
pv,r+ Δv – (pw,r+ Δw) + (1-1/ ϑ) (Δw+ T)

≤ S/2 + 𝛿 + (1-1/ ϑ) (Δw+ T)
≤ S/2 + 𝛿 + (1-1/ ϑ) (T + S + 𝛿 )

Choosing S as stated in the lemma completes the proof

Basic Inductive Step
T > 3S + d

S > 2(𝛿 + drift(T))



The proof is straightforward, using the inductive claim and the
choices of the parameters.

The Final Claim



No Pulse Synch Algorithm for small outdegree
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