
Self-Stabilization & Recovery

Model

TMP, but faults are not eternal any more!

before:

time

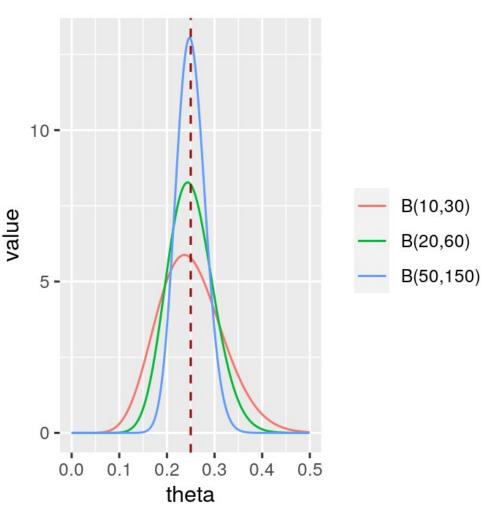
Model

TMP, but faults are not eternal any more!

before:

ofter:	time	
	time	

What if Nodes Fail Randomly (in Time)? If there is no recovery mechanism: time


System fails as soon as too many nodes failed!

What if Nodes Fail Randomly (in Time)? If there is no recovery mechanism: time System fails as soon as too many nodes failed!

MBTF for error rate λ (single node): $\int e^{-\lambda t} dt = -e^{-\lambda \infty}/\lambda - (-e^{-\lambda 0}/\lambda) = 1/\lambda$

P[fail by time t] = P[≤ 2/3 of nodes survive until time t] = F(2n/3;n, $e^{-\lambda t}$),

where F(k;n,p) = P[n independent probability-p coins show ≤ k heads]

If there is no recovery mechanism:

time

System fails once too many nodes failed!

MBTF for error rate λ (n nodes, <n/3 faults): $\int 1-F(2n/3;n,e^{-\lambda t}) dt \rightarrow \ln(3/2)/\lambda < 1/\lambda$, because $e^{-\lambda t} = 2/3 \ge t = \ln(3/2)/\lambda$

If we can ensure recovery within in time T:

time

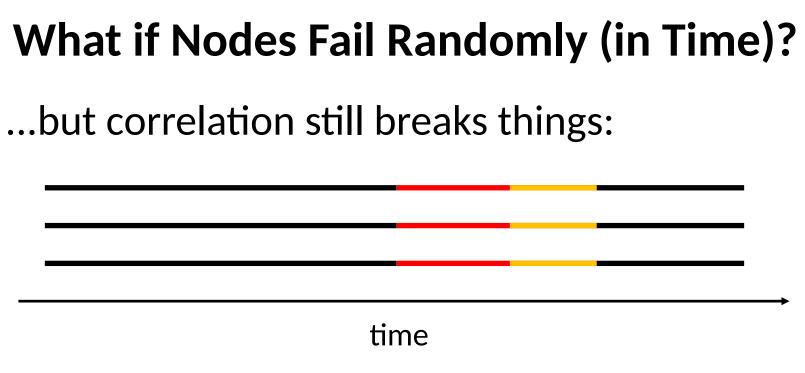
If we can ensure recovery within in time T:

Balance tips at $1/\lambda = \theta(T)$ (T includes time for transient faults to end)

If $1/\lambda <<$ T: As $n \rightarrow \infty$, probability density for failing at any given time t tends to 0

If $1/\lambda >> T$: prob. of fail state at time t > $1/\lambda \rightarrow 1$

...but correlation still breaks things:


time

What if Nodes Fail Randomly (in Time)? ...but correlation still breaks things:

time

Failure rate λ per node, but all nodes fail together:

Equivalent to 1-node system!

Failure rate λ per node, but all nodes fail together:

Equivalent to 1-node system!

=> want recovery from arbitrary states!

This Chapter

today:

breakout session on selfstabilizing BFS tree construction

(self-stabilization: recovery from arbitrary transient faults _{≥∈} getting a correct result from arbitrary initial state)

other sessions: Up to you!

This Chapter

menu options for the other two sessions:

- Gradient Clock Synchronization (GCS):
 - + overview of algorithm
 - + proof of key lemmas & local skew
 - + showing stabilization (unbounded time)
 - + how unbounded skew breaks implementation
 - + showing stabilization (bounded time)
- Lynch-Welch with recovery:
 - + overview of algorithm
 - + proof sketch
 - + why it's not self-stabilizing

This Chapter

today:

breakout session on selfstabilizing BFS tree construction

(self-stabilization: recovery from arbitrary transient faults _≥ getting a correct result from arbitrary initial state)

other sessions: Up to you!