
Gradient Clock Synchronization

max{v,w}ϵE|Lv-Lw| << maxv,wϵV|Lv-Lw| 



Today: GCS Algorithm with log. Skew 

Theorem 

For any μ > θ-1, there is an algorithm such that 
 

 dH/dt ≤ dL/dt ≤ (1+μ)dH/dt 
 

and the local skew is 
 

 O((u+μd) logσ D), 
 

where 

  σ = μ/(θ-1). 



GCS: General Approach 

repeat: 

1. measure skews 

 (to neighbors) 
 

 



GCS: General Approach 

repeat: 

1. measure skews 

 (to neighbors) 

2. determine range 
 

 



GCS: General Approach 

repeat: 

1. measure skews 

 (to neighbors) 

2. determine range 

3. find midpoint 
 

 



GCS: Naive Averaging Fails 

repeat: 

1. measure skews 

 (to neighbors) 

2. determine range 

3. find midpoint 

4. if behind, run faster 

    (else like HW clock) 
 

 



GCS: Naive Averaging Fails 

repeat: 

1. measure skews 

 (to neighbors) 

2. determine range 

3. find midpoint 

4. if behind, run faster 

    (else like HW clock) 
 

 



GCS: Naive Averaging Fails 

repeat: 

1. measure skews 

 (to neighbors) 

2. determine range 

3. find midpoint 

4. if behind, run faster 

    (else like HW clock) 
 

 



GCS: Naive Averaging Fails 

repeat: 

1. measure skews 

 (to neighbors) 

2. determine range 

3. find midpoint 

4. if behind, run faster 

    (else like HW clock) 
 

 



GCS: Naive Averaging Fails 

problem: 

Measurements 

are not perfect! 
 

 



GCS: Naive Averaging Fails 

problem: 

Measurements 

are not perfect! 

 

This blurs the line 

between fast and slow. 
 

 



GCS: Naive Averaging Fails 

problem: 

Measurements 

are not perfect! 

 

This blurs the line 

between fast and slow. 
 

=> system might not 

      respond to build-up 

  of skew! 
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GCS Algorithm 

idea: 

discretize skews and 

round conservatively 

 

=> local & limited 

   response to skews 

 

2κ = “height of stairs” 

δ = side of square 



Computing Clock Estimates 

 

 

 

breakout session: 

 

What‘s δ (asymptotically)? 
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- estimates are ≤ actual clock values 

=> slow mode trigger holds for all leading nodes 

=> Ψv
s(t‘) ≤ Ψv

s(t) + θ(t‘ – t) – (Lv(t‘) – Lv(t))   
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for t‘ just after skew G has been exceeded: 

Ψv
1(t‘) ≤ (θ – 1)(t‘ – max{0, t’ – G/μ}) ≤ G/σ ≤ κD/(σ – 1) 
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