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Today: GCS Algorithm with log. Skew

Theorem
For any pu > 0-1, there is an algorithm such that

dH/dt < dL/dt < (1+p)dH/dt
and the local skew is
O((u+d) log, D),

where
o = p/(6-1).
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repeat: A clock difference
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GCS: Naive Averaging Fails
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GCS: Naive Averaging Fails

problem:
Measurements
are not perfect!

This blurs the line

between fast and slow.

=> system might not
respond to build-up
of skew!

max

(fast)

(slow)

m ideal measurement

X real measurement

! .
' uncertainty
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GCS Algorithm

idea:
discretize skews and

round conservatively L

=> |local & limited

4 (fast)

max

- 4K

response to skews

2K = “height of stairs”

(slow)

b = side of square

m ideal measurement

X real measurement




Computing Clock Estimates

breakout session:

What’s 6 (asymptotically)?
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W s(t) = max,,, 1L, (t) = L (t) = (2s — 1)k dist(v,w)}

max

L,(t)
- estimates are < actual clock values
=> slow mode trigger holds for all leading nodes

=> W S(t) < W S(t) + Bt —t) — (L,(t) — L(t))
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GCS Analysis: Catching Up

W s(t) = max,,, 1L, (t) = L (t) = (2s — 1)k dist(v,w)}
Ws(t) = max,., 1W, (1)}

fix t and w that maximizes W 5(t), and set

f (t) =L,(t)+t" —t—L(t") —(2s — 2)kdist(v,w)
f(t’) = max,ey {f(t)}

W s(t) < f,(t)

ft) <0 => f.(t) <0

L) -Ly= " <0 &
t'—t+f(t) 2 () =

t =t + W S(t) LY
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GCS Analysis: Catching Up

f (t) = L,(t) +t' =t =L (t') — (25 — 2)kdist(v,w)
f(t’) = max,ey tf,(t)}

o >~ : <(2s-2)k
sufficient to show: ' \ /
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GCS Analysis: Local Skew Bound

W s(t) = max,,, 1L, (t) = L (t) = (2s — 1)k dist(v,w)}
Ws(t) = max,., 1W, (1)}

Lemma:
For times
t'>t+ Wsi(t)/u
we have
L,(t°) - L,(t) 2t =t + W 5(t).

Theorem:

Let G upper bound the global skew and W(0) = 0. Then
Ws(t) < G/os L.
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Wi(t) < G(t) <G =G/o"

Recall:
WA() S Ws(t) + B(t" = t) — (L,(t) — Ly(t)

fort’ < G/(no?):
W s(t) < Ws(0) + 6t — (L,(t') = L,(0)) < (6 = 1)t' < G/o™?

fort’ > G/(pnos?) set t =t — G/(nos?) <t — Ws1(t)/u; thus
WA(t) s Wa(t) + 0(t" —t) — (L(t) — L(t)

<WS(t) +O(t —t) — (t' —t + W 3(t))

=(0-1)(t'—t) = G/o%*!
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GCS Analysis: Skew Bounds

Theorem:
Let G upper bound the global skew and W(0) = 0. Then
Ws(t) < G/os 1.

=> L (t) = L, (t) — (2log,(G/k) — 1)k dist(v,w) < K
=>for {v,w} € E: |L,(t) = L,(t)| £ 2k(log,(G/Kk) + 1)

Theorem:
If W1(0) =0, then G <okD/(oc—1)=(1+1/(c -1))kD.

for t’ just after skew G has been exceeded:
W (t)<(0-1)(t"—max{0, t' — G/u}) £ G/o <kD/(oc — 1)
=> L (t') - L,(t') —kD < W (t) < kD/(c — 1)



