Gradient Clock Synchronization

$\max_{\{v,w\}\in E} |L_v - L_w| << \max_{v,w\in V} |L_v - L_w|$

Today: GCS Algorithm with log. Skew

Theorem

For any $\mu > \theta$ -1, there is an algorithm such that

$dH/dt \le dL/dt \le (1+\mu)dH/dt$

and the local skew is

```
O((u+\mu d) \log_{\sigma} D),
```

where

$$\sigma = \mu/(\theta - 1).$$

GCS: General Approach

repeat:

1. measure skews (to neighbors)

GCS: General Approach

repeat:

1. measure skews (to neighbors)

2. determine range

GCS: General Approach

- measure skews (to neighbors)
- 2. determine range
- 3. find midpoint

- 1. measure skews
 - (to neighbors)
- 2. determine range
- 3. find midpoint
- 4. if behind, run faster (else like HW clock)

- 1. measure skews (to neighbors)
- 2. determine range
- 3. find midpoint
- 4. if behind, run faster (else like HW clock)

- measure skews (to neighbors)
- 2. determine range
- 3. find midpoint
- 4. if behind, run faster (else like HW clock)

- measure skews (to neighbors)
- 2. determine range
- 3. find midpoint
- 4. if behind, run faster (else like HW clock)

problem: Measurements are not perfect!

problem: Measurements are not perfect!

This blurs the line between fast and slow.

problem: Measurements are not perfect!

This blurs the line between fast and slow.

=> system might not
 respond to build-up
 of skew!

idea:

discretize skews and round conservatively

=> local & limited response to skews

idea:

discretize skews and round conservatively

=> local & limited response to skews

aggressive averaging

idea:

discretize skews and round conservatively

=> local & limited response to skews

aggressive averaging

idea:

discretize skews and round conservatively

=> local & limited response to skews

conservative averaging

idea:

discretize skews and round conservatively

=> local & limited response to skews

conservative averaging

idea:

discretize skews and round conservatively

=> local & limited response to skews

 2κ = "height of stairs" δ = side of square

Computing Clock Estimates

breakout session:

What's δ (asymptotically)?

 $\Psi_v^{s}(t) = \max_{w \in V} \{L_w(t) - L_v(t) - (2s - 1)\kappa \operatorname{dist}(v, w)\}$

 $\Psi_v^{s}(t) = \max_{w \in V} \{L_w(t) - L_v(t) - (2s - 1)\kappa \operatorname{dist}(v, w)\}$

$$\Psi_v^{s}(t) = \max_{w \in V} \{L_w(t) - L_v(t) - (2s - 1)\kappa \operatorname{dist}(v, w)\}$$

$$\Psi_v^{s}(t) = \max_{w \in V} \{L_w(t) - L_v(t) - (2s - 1)\kappa \operatorname{dist}(v, w)\}$$

- estimates are \leq actual clock values
- => slow mode trigger holds for all leading nodes

$$\Psi_v^{s}(t) = \max_{w \in V} \{L_w(t) - L_v(t) - (2s - 1)\kappa \operatorname{dist}(v, w)\}$$

- estimates are ≤ actual clock values

=> slow mode trigger holds for all leading nodes => $\Psi_v^s(t') \le \Psi_v^s(t) + \theta(t'-t) - (L_v(t') - L_v(t))$

Lemma:

For times

 $t' \ge t + \Psi^{s-1}(t)/\mu$

we have

$$L_{v}(t') - L_{v}(t) \geq t' - t + \Psi_{v}^{s}(t).$$

$$\Psi_v^s(t) = \max_{w \in V} \{L_w(t) - L_v(t) - (2s - 1)\kappa \operatorname{dist}(v, w)\}$$

$$\Psi^s(t) = \max_{v \in V} \{\Psi_v^s(t)\}$$

fix t and w that maximizes $\Psi_v^{s}(t)$, and set $f_x(t') = L_w(t) + t' - t - L_x(t') - (2s - 2)\kappa \operatorname{dist}(v,w)$ $f(t') = \max_{x \in V} \{f_x(t')\}$

$$\Psi_v^s(t) = \max_{w \in V} \{L_w(t) - L_v(t) - (2s - 1)\kappa \operatorname{dist}(v, w)\}$$

$$\Psi^s(t) = \max_{v \in V} \{\Psi_v^s(t)\}$$

fix t and w that maximizes $\Psi_v^{s}(t)$, and set $f_x(t') = L_w(t) + t' - t - L_x(t') - (2s - 2)\kappa \operatorname{dist}(v,w)$ $f(t') = \max_{x \in V} \{f_x(t')\}$

$$\Psi_v^s(t) = \max_{w \in V} \{L_w(t) - L_v(t) - (2s - 1)\kappa \operatorname{dist}(v, w)\}$$

$$\Psi^s(t) = \max_{v \in V} \{\Psi_v^s(t)\}$$

fix t and w that maximizes $\Psi_v^s(t)$, and set $f_x(t') = L_w(t) + t' - t - L_x(t') - (2s - 2)\kappa \operatorname{dist}(v,w)$ $f(t') = \max_{x \in V} \{f_x(t')\}$

 $\Psi_v^{s}(t) \leq f_v(t)$

$$\Psi_v^s(t) = \max_{w \in V} \{L_w(t) - L_v(t) - (2s - 1)\kappa \operatorname{dist}(v, w)\}$$

$$\Psi^s(t) = \max_{v \in V} \{\Psi_v^s(t)\}$$

fix t and w that maximizes $\Psi_v^{s}(t)$, and set $f_{v}(t') = L_{w}(t) + t' - t - L_{v}(t') - (2s - 2)\kappa dist(v,w)$ $f(t') = \max_{x \in V} \{f_x(t')\}$ $\Psi_v^{s}(t) \leq f_v(t)$ $f(t') \le 0 => f_{v}(t') \le 0$ L_w(t) $=> L_{v}(t') - L_{v}(t) =$ $t' - t + f_{v}(t) \geq$ $L_x(t)$ L_v(t) $t' - t + \Psi_v^{s}(t)$

f(t)

$$f_{x}(t') = L_{w}(t) + t' - t - L_{x}(t') - (2s - 2)\kappa \operatorname{dist}(v,w)$$

$$f(t') = \max_{x \in V} \{f_{x}(t')\}$$
sufficient to show:
$$t' \ge t + \Psi^{s-1}(t)/\mu$$

$$=> f(t') \le 0$$

$$f(t')$$

$$f_{x}(t') = L_{w}(t) + t' - t - L_{x}(t') - (2s - 2)\kappa \operatorname{dist}(v,w)$$

$$f(t') = \max_{x \in V} \{f_{x}(t')\}$$
sufficient to show:
$$t' \ge t + \Psi^{s-1}(t)/\mu$$

$$=> f(t') \le 0$$

$$(2s-2)\kappa$$

$$L_{x}(t')$$

$$f_{x}(t') = L_{w}(t) + t' - t - L_{x}(t') - (2s - 2)\kappa \operatorname{dist}(v,w)$$

$$f(t') = \max_{x \in V} \{f_{x}(t')\}$$
sufficient to show:

$$t' \ge t + \Psi^{s-1}(t)/\mu$$

$$=> f(t') \le 0$$

$$i \le (2s-2)\kappa$$

$$f_{x}(t') = L_{w}(t) + t' - t - L_{x}(t') - (2s - 2)\kappa \operatorname{dist}(v,w)$$

$$f(t') = \max_{x \in V} \{f_{x}(t')\}$$
sufficient to show:

$$t' \ge t + \Psi^{s-1}(t)/\mu$$

$$=> f(t') \le 0$$

$$\geq (2s-2)\kappa$$

$$L_{x}(t')$$

$$f(t) = \max_{x \in V} \{f_x(t)\}$$

$$\leq \max_{x \in V} \{L_w(t) - L_x(t) - (2s - 3)\kappa \operatorname{dist}(x, w)\}$$

$$\leq \Psi^{s-1}(t)$$

Lemma:

For times

 $t' \ge t + \Psi^{s-1}(t)/\mu$

we have

$$L_{v}(t') - L_{v}(t) \geq t' - t + \Psi_{v}^{s}(t).$$

GCS Analysis: Local Skew Bound

Lemma:

For times

 $t' \ge t + \Psi^{s-1}(t)/\mu$

we have

$$L_{v}(t') - L_{v}(t) \geq t' - t + \Psi_{v}^{s}(t).$$

Theorem:

Let G upper bound the global skew and $\Psi^1(0) = 0$. Then $\Psi^s(t) \le G/\sigma^{s-1}$.

 $\Psi^1(t) \leq G(t) \leq G = G/\sigma^0$

```
\Psi^1(t) \leq G(t) \leq G = G/\sigma^0
```

Recall:

 $\Psi_v^{s}(t') \leq \Psi_v^{s}(t) + \theta(t'-t) - (L_v(t') - L_v(t))$

 $\Psi^1(t) \leq G(t) \leq G = G/\sigma^0$

 $\begin{aligned} &\text{Recall:} \\ &\Psi_v^s(t') \leq \Psi_v^s(t) + \theta(t'-t) - (\mathsf{L}_v(t') - \mathsf{L}_v(t)) \\ &\text{for } t' \leq G/(\mu\sigma^{s-2}): \\ &\Psi_v^s(t') \leq \Psi^s(0) + \theta t' - (\mathsf{L}_v(t') - \mathsf{L}_v(0)) \leq (\theta - 1)t' \leq G/\sigma^{s-1} \end{aligned}$

 $\Psi^1(t) \leq G(t) \leq G = G/\sigma^0$

Recall: $\Psi_v^{s}(t') \le \Psi_v^{s}(t) + \theta(t'-t) - (L_v(t') - L_v(t))$ for t' $\le G/(\mu\sigma^{s-2})$: $\Psi_v^{s}(t') \le \Psi^{s}(0) + \theta t' - (L_v(t') - L_v(0)) \le (\theta - 1)t' \le G/\sigma^{s-1}$ for t' $> G/(\mu\sigma^{s-2})$ set t = t' $- G/(\mu\sigma^{s-2}) \le t' - \Psi^{s-1}(t)/\mu$

 $\Psi^1(t) \leq G(t) \leq G = G/\sigma^0$

Recall: $\Psi_{v}^{s}(t') \leq \Psi_{v}^{s}(t) + \Theta(t'-t) - (L_{v}(t') - L_{v}(t))$ for t' $\leq G/(\mu\sigma^{s-2})$: $\Psi_{v}(t') \leq \Psi^{s}(0) + \theta t' - (L_{v}(t') - L_{v}(0)) \leq (\theta - 1)t' \leq G/\sigma^{s-1}$ for t' > G/($\mu\sigma^{s-2}$) set t = t' - G/($\mu\sigma^{s-2}$) \leq t' - $\Psi^{s-1}(t)/\mu$; thus $\Psi_{v}^{s}(t') \leq \Psi_{v}^{s}(t) + \Theta(t'-t) - (L_{v}(t') - L_{v}(t))$ $\leq \Psi_{v}^{s}(t) + \theta(t'-t) - (t'-t+\Psi_{v}^{s}(t))$ $= (\theta - 1)(t' - t) = G/\sigma^{s-1}$

Theorem:

Let G upper bound the global skew and $\Psi^1(0) = 0$. Then $\Psi^s(t) \le G/\sigma^{s-1}$.

Theorem:

Let G upper bound the global skew and $\Psi^1(0) = 0$. Then $\Psi^s(t) \le G/\sigma^{s-1}$.

 $=>L_v(t)-L_w(t)-(2\log_{\sigma}(G/\kappa)-1)\kappa\,dist(v,w)\leq\kappa$

Theorem:

Let G upper bound the global skew and $\Psi^1(0) = 0$. Then $\Psi^s(t) \le G/\sigma^{s-1}$.

 $\begin{aligned} & => L_v(t) - L_w(t) - (2\log_{\sigma}(G/\kappa) - 1)\kappa \operatorname{dist}(v,w) \leq \kappa \\ & => \text{for } \{v,w\} \in E: |L_v(t) - L_w(t)| \leq 2\kappa (\log_{\sigma}(G/\kappa) + 1) \end{aligned}$

Theorem:

Let G upper bound the global skew and $\Psi^1(0) = 0$. Then $\Psi^s(t) \le G/\sigma^{s-1}$.

 $\begin{aligned} & => L_v(t) - L_w(t) - (2\log_{\sigma}(G/\kappa) - 1)\kappa \operatorname{dist}(v,w) \leq \kappa \\ & => \text{for } \{v,w\} \in E: |L_v(t) - L_w(t)| \leq 2\kappa (\log_{\sigma}(G/\kappa) + 1) \end{aligned}$

Theorem:

If $\Psi^1(0) = 0$, then $G \leq \sigma \kappa D/(\sigma - 1) = (1 + 1/(\sigma - 1))\kappa D$.

Theorem:

Let G upper bound the global skew and $\Psi^1(0) = 0$. Then $\Psi^s(t) \le G/\sigma^{s-1}$.

Theorem:

If $\Psi^1(0) = 0$, then $G \leq \sigma \kappa D/(\sigma - 1) = (1 + 1/(\sigma - 1))\kappa D$.

for t' just after skew G has been exceeded: $\Psi_v^1(t') \le (\theta - 1)(t' - \max\{0, t' - G/\mu\}) \le G/\sigma \le \kappa D/(\sigma - 1)$

Theorem:

Let G upper bound the global skew and $\Psi^1(0) = 0$. Then $\Psi^s(t) \le G/\sigma^{s-1}$.

Theorem:

If $\Psi^1(0) = 0$, then $G \leq \sigma \kappa D/(\sigma - 1) = (1 + 1/(\sigma - 1))\kappa D$.

for t' just after skew G has been exceeded: $\Psi_v^1(t') \le (\theta - 1)(t' - \max\{0, t' - G/\mu\}) \le G/\sigma \le \kappa D/(\sigma - 1)$ $=> L_v(t') - L_w(t') - \kappa D \le \Psi_v^1(t') \le \kappa D/(\sigma - 1)$