Self-Stabilization & Recovery

Want: Self-stabilizing GCS

Theorem
Forany u > 2(0-1), there is a self-stabilizing algorithm s.t.

dH/dt < dL/dt < (1+p)dH/dt,
the global and local skew are

O((u+pd) D) and O((u+pd) log, D), respectively,
where o = p/(6-1), and the stabilization time is

O((d+u/p)D).

Self-stabilizing GCS, Step by Step
Step Done? Time

Stabilize BFS tree O(dD)

Self-stabilizing GCS, Step by Step
Step Done? Time
Stabilize BFS tree O(dD)

Reduce global skew to O((u+ud)D) X 0O(dD)

Self-stabilizing GCS, Step by Step

Step Done? Time
Stabilize BFS tree O(dD)
Reduce global skew to O((u+ud)D) ¥ 0(dD)

Stabilize estimates of 6 = O(u+ud) O(d)

Self-stabilizing GCS, Step by Step

Step Done? Time
Stabilize BFS tree O(dD)
Reduce global skew to O((u+ud)D) X 0O(dD)
Stabilize estimates of 6 = O(u+ud) O(d)

*

Maintain global skew of O((u+ud)D) 0

*Almost same proof, but modify for small times.

Self-stabilizing GCS, Step by Step

Step Done? Time
Stabilize BFS tree O(dD)
Reduce global skew to O((u+ud)D) X 0O(dD)
Stabilize estimates of 6 = O(u+ud) O(d)

Maintain global skew of O((u+ud)D) 0

Stabilize local skew to O((u+pd) log, D) " O(u/u+d)D)

*Almost same proof, but modify for/discard small times.

Self-stabilizing GCS, Step by Step

Step Done? Time
Stabilize BFS tree O(dD)
Reduce global skew to O((u+ud)D) X 0O(dD)
Stabilize estimates of 6 = O(u+ud) O(d)
Maintain global skew of O((u+ud)D) * 0

Stabilize local skew to O((u+pd) log, D) " O(u/u+d)D)

=> O(u/p+d)D)

*Almost same proof, but modify for/discard small times.

Breakout Session

Step Done? Time
Stabilize BFS tree O(dD)
Reduce global skew to O((u+ud)D) @ O(dD)

catch: this subroutine must modify logical clocks
=> need to avoid messing up the GCS algorithm!

Adding Recovery to Lynch-Welch

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

ASS u m t i o n ° mechanism, code for node v € V.
p ° wait until getH() > § /I H,,(0) € [0,8) for correct nodes w

l:
2: for all rounds r € N do
There are a Iwa ys n_f 3 generate r-th pulse
4 h « getH()
. 5 wait until getH() > h + 29S8 or getH() < & // all nodes are in round r
C O r re Ct & Sy n C h ro n | Z e d 6: broadcast empty message to all nodes (including self)
7: wait until getH() > i + 2(9%2 +9)S + 9d or getH() < h + 298 /!
denote this time by 7,

n O d e S . /I correct nodes” messages should have arrived

8: if received messages from n — f distinct nodes during current loop
iteration then
. 9: h" <« median of {h, | h, local reception time of latest message
Th ese WI I I p u Ise a S fo r from some x € V} (as multiset, i.e., values may repeat)
10: for each node w € V do
" 7] 11 if received message from w during current loop iteration then
Sta n d a rd LW . 12: let i, be local time at latest received message from w
13: Aw) —hy—-h—-d+u-28
14: else
15: A(w) « h" = h—d +u — 28 // replace missing ones by
G Oa I : median
16: end if
17: end for
N O d es S h O u Id resy n C 18: U « {A(w) |w € V} (as multiset, i.e., values may repeat)
19: A (UYHD +Uu=1)) 2
. ope 20: wait until getH() > h+A+T or getH() < h+ A -38
after transiently failing! > o
22: wait for n — f messages from distinct nodes within 928 + Pu local
time
23: let 1’ be the local reception time of the (f + 1)-th such message
24: wait until getH() > h’' —d+u—2S+T or getH() < h’ — (9>S+1u)
25: end if

26: end for

Adding Recovery to Lynch-Welch

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

H ° mechanism, code for node v € V.
M a l n Ch a nges . wait until getH() > § /I H,,(0) € [0,8) for correct nodes w

l:
2: for all rounds r € N do
1 h k 3 generate r-th pulse
. timing checks . et
5: wait until getH() > h + 29S8 or getH() < & // all nodes are in round r
'{] . ” . . .
= > n O gettl n g St u C 6: broadcast empty message to all nodes (including self)
7 wait until getH() > i + 292 +9)S + ¥d or getH() < h + 298 /!
denote this time by 7,

d u e to b u ggy Sta te // correct nodes’ messages should have arrived

t 1

8: if received messages from n — f distinct nodes during current loop
iteration then

9: h" <« median of {h, | h, local reception time of latest message
from some x € V} (as multiset, i.e., values may repeat)

10: for each node w € V do

11: if received message from w during current loop iteration then

12: let i, be local time at latest received message from w

13: Aw) — hy—-—h—-d+u-2S

14: else

15: A(w) « h' — h—d +u — 28 // replace missing ones by
median

16: end if

17: end for

18: U «— {A(w) |w € V} (as multiset, i.e., values may repeat)

19: A (UYHD +Uu=1)) 2

20: wait until getH() > h+ A+ T or getH() < h+A - 38 <

21: else

22: wait for n — f messages from distinct nodes within 928 + Pu local
time

23: let 2’ be the local reception time of the (f + 1)-th such message

24: wait until getH() > h’' —d+u—2S+T or getH() < h’ — (9>S+1u) S

25: end if

26: end for

Adding Recovery to Lynch-Welch

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

H . mechanism, code for node v € V.
M a l n Ch a nges . wait until getH() > § /I H,,(0) € [0,8) for correct nodes w

for all rounds r € N do

wait until getH() > / + 2¢S8 or getH() < & // all nodes are in round r

=2}

broadcast empty message to all nodes (including self)

|
2:
I I h k 3: generate r-th pulse
1. timing checks E
5 «
o . V44
=> k
no gettl N g St uc 7. wait until getH() > h + 2(9% + 9)S + 9d or getH() < h + 208 /| < —
denote this time by 7,
d u e to b u g gy Sta te // correct nodes’ messages should have arrived

8: if received messages from n — f distinct nodes during current loop
iteration then
9: h" <« median of {h, | h, local reception time of latest message
2 . eXt ra S I a C k fo r m essa ge from some x € V} (as multiset, i.e., values may repeat)
10: for each node w € V do
. 11 if received message from w during current loop iteration then
re C e pt I O n 12: let i, be local time at latest received message from w
13: Aw) —hy—-h—-d+u-28
14: else
=> WO rkS fo r SkeW ZS 15: A(w) « h" — h—d +u — 28 // replace missing ones by
median
16: end if
17: end for
18: U « {A(w) |w € V} (as multiset, i.e., values may repeat)
19: A (UYHD +Uu=1)) 2
20: wait until getH() > h+ A+ T or getH() < h+A - 38
21: else
22: wait for n — f messages from distinct nodes within 928 + Pu local
time
23: let 1’ be the local reception time of the (f + 1)-th such message
24: wait until getH() > h’' —d+u—2S+T or getH() < h’ — (9>S+1u)
25: end if

26: end for

Adding Recovery to Lynch-Welch

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

M a i n ch a n e S ° mechanism, code for node v € V.
g * wait until getH() > § /I H,,(0) € [0,8) for correct nodes w

for all rounds r € N do

o))

broadcast empty message to all nodes (including self)

l:
2:
1 1 h k 3: generate r-th pulse
1. timing checks } e
" . 1T 5 wait until getH() > h + 29S8 or getH() < & // all nodes are in round r

=>no “getting stuck adeas :
7: wait until getH() > A +2(9 + 9)S + ¢d or getH() < h + 298 /!

denote this time by 7,

d u e to b u g gy Sta te /I correct nodes” messages should have arrived

8: if received messages from n — f distinct nodes during current loop
iteration then
9: h’ « median of {h, | h, local reception time of latest message
2 . eXt ra S I a C k fo r m essa ge from some x € V} (as multiset, i.e., values may repeat)
10: for each node w € V do
. 11 if received message from w during current loop iteration then
re C e pt I O n 12: let i, be local time at latest received message from w
13: Aw) —hy—-h—-d+u-28
14: else
=> WO rks fo r Skew ZS 15: A(w) « h" — h—d +u — 28 // replace missing ones by
median
16: end if
. 17: end for
3 . recove ry m O d e If < n —f 18: U « {A(w) |w € V} (as multiset, i.e., values may repeat)
19: A (UYHD +Uu=1)) 2
. 20: wait until getH() > h+A+T or getH() < h+ A -38
Mmessages received 20 else
22: wait for n — f messages from distinct nodes within 928 + Pu local
{ time
- > resy n C tO Sy n C e d 23: let 1’ be the local reception time of the (f + 1)-th such message
24: wait until getH() > h’' —d+u—2S+T or getH() < h’ — (9>S+1u)

majority (skew <2S) 2 .

t1 1t

Adding Recovery to Lynch-Welch

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

: ° mechanism, code for node v € V.
W hy It Wo rks (1) o wait until getH() > § /I H,,(0) € [0,8) for correct nodes w

for all rounds r € N do

- can‘t get stuck on these : wmernp

h < getH()

wait until getH() > h + 29S8 or getH() < & // all nodes are in round r

broadcast empty message to all nodes (including self)

wait until getH() > i + 292 +9)S + ¥d or getH() < h + 298 /!
denote this time by 7,

d u e to C h e C kS /I correct nodes” messages should have arrived

t 1

> & ¥

waiting statements

8: if received messages from n — f distinct nodes during current loop
iteration then

9: h" <« median of {h, | h, local reception time of latest message
from some x € V} (as multiset, i.e., values may repeat)

10: for each node w € V do

11: if received message from w during current loop iteration then

12: let i, be local time at latest received message from w

13: Aw) — hy—-—h—-d+u-2S

14: else

15: A(w) « h' — h—d +u — 28 // replace missing ones by
median

16: end if

17: end for

18: U «— {A(w) |w € V} (as multiset, i.e., values may repeat)

19: A (UYHD +Uu=1)) 2

20: wait until getH() > h+ A+ T or getH() < h+A - 38 <

21: else

22: wait for n — f messages from distinct nodes within 928 + Pu local
time

23: let 2’ be the local reception time of the (f + 1)-th such message

24: wait until getH() > h’' —d+u—2S+T or getH() < h’ — (9>S+1u) S

25: end if

26: end for

Adding Recovery to Lynch-Welch

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

W h it WO rks (1) o mechanism, code for node v € V.
y * wait until getH() > § /I H,,(0) € [0,8) for correct nodes w

for all rounds r € N do
broadcast empty message to all nodes (including self)
8: if received messages from n — f distinct nodes during current loop

|
2:
- f k h 3: generate r-th pulse
can‘t get stuck on these :
5
wait until getH() > i + 2(9%2 +9)S + 9d or getH() < h + 298 /!
iteration then

h « getH()
waiting statements
denote this time by 7,
l)
= Ca n t get Stu C k O n t h IS 9: h" <« median of {h, | h, local reception time of latest message

wait until getH() > / + 2¢S8 or getH() < & // all nodes are in round r
d u e to C h e C kS /l correct nodes’ messages should have arrived
from some x € V} (as multiset, i.e., values may repeat)

> & ¥

Wa itin Statement 10: foreachnfwdewe‘/do ' ‘ .
g 11 if received message from w during current loop iteration then
12: let i, be local time at latest received message from w
due to Syncled pulses 13: Aw) —hy—-h—-d+u-28
14: else
15: A(w) « h' — h—d +u — 28 // replace missing ones by
median
16: end if
17: end for
18: U « {A(w) |w € V} (as multiset, i.e., values may repeat)
19: A (UYHD +Uu=1)) 2
20: wait until getH() > h+ A+ T or getH() < h+A - 38
21: else
22: wait for n — f messages from distinct nodes within 928 + Pu local
time
23: let 1’ be the local reception time of the (f + 1)-th such message
24: wait until getH() > h’' —d+u—2S+T or getH() < h’ — (9>S+1u)
25: end if

26: end for

Adding Recovery to Lynch-Welch

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

H ° mechanism, code for node v € V.
W hy It Wo rks (1) * 1: wait until getH() > § /I H,,(0) € [0,8) for correct nodes w
{
- can‘t get stuck on these
walting statements adeas ;
wait until getH() > A +2(9 + 9)S + ¢d or getH() < h + 298 /!
denote this time by 7,
d u e to C h e C kS // correct nodes’ messages should have arrived

8: if received messages from n — f distinct nodes during current loop
iteration then

l .
= Ca n t get Stu C k O n t h IS 9: h’ « median of {h, | h, local reception time of latest message

from some x € V} (as multiset, i.e., values may repeat)

141 10: for each node w € V do
Wa Itl n g Sta te m e nt 11 if received message from w during current loop iteration then

2: for all rounds r € N do

3 generate r-th pulse

4 h « getH()

5 wait until getH() > h + 29S8 or getH() < & // all nodes are in round r
broadcast empty message to all nodes (including self)

> & ¥

12: let i, be local time at latest received message from w
(d | 13: Aw) — hy—h—d+u-28
due to sync‘ed pulses @)
. . 15: A(w) « h" = h—d +u — 28 // replace missing ones by
- I median
> new loop Iteration 16: i
. R . 17: end for
Wlt h I n O (T) tl m e 18: U {A(zy) | weV} (115 multiset, i.e., values may repeat)
19: A (UYHD +Uu=1)) 2
20: wait until getH() > h+ A+ T or getH() < h+A - 38
(clears all state but =«
22: wait for n — f messages from distinct nodes within 928 + Pu local
. . time
tl m I n g Of n eW 23: let 1’ be the local reception time of the (f + 1)-th such message
24: wait until getH() > h’' —d+u—2S+T or getH() < h’ — (9>S+1u)

iteration) s cendif

Adding Recovery to Lynch-Welch

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

W h it WO rks (2) o mechanism, code for node v € V.
y * wait until getH() > § /I H,,(0) € [0,8) for correct nodes w

for all rounds r € N do
broadcast empty message to all nodes (including self)
8: if received messages from n — f distinct nodes during current loop

|
2:
> _f g 1 d 3. generate r-th pulse
2 N-T MesSSages recelve . &
5
7: wait until getH() > i + 2(9%2 +9)S + 9d or getH() < h + 298 1/
iteration then

h « getH()

p wait until getH() > h + 29S8 or getH() < & // all nodes are in round r

=> n-2f > f from sync‘ed

o . denote this time by 7,
- > (f+ 1)_t h Wlt h I n ra n ge L /l correct nodes’ messages should have arrived
{
S pa n n e d by Sy n C Ed 9: h" <« median of {h, | h, local reception time of latest message
from some x € V} (as multiset, i.e., values may repeat)

=2}

10: for each node w € V do

11: if received message from w during current loop iteration then

12: let i, be local time at latest received message from w

13: Aw) — hy—-h—-d+u-2S

14: else

15: A(w) « h' — h—d +u — 28 // replace missing ones by
median

16: end if

17: end for

18: U « {A(w) |w € V} (as multiset, i.e., values may repeat)

19: A« (U‘f“‘”+U‘”‘f’)/2

20: wait until getH() > h+ A+ T or getH() < h+A - 38

21: else

22: wait for n — f messages from distinct nodes within 928 + Pu local
time

23: let 2’ be the local reception time of the (f + 1)-th such message

24: wait until getH() > h’' —d+u—2S+T or getH() < h’ — (9>S+1u)

25: end if

26: end for

Adding Recovery to Lynch-Welch

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

=2}

|
2:
> _f g 1 d 3 generate r-th pulse
2 N-T MesSSages recelve . &
5
7: wait until getH() > i + 2(9%2 +9)S + 9d or getH() < h + 298 /!
iteration then

H ° mechanism, code for node v € V.
W hy It Wo rks (2) o wait until getH() > § /I H,,(0) € [0,8) for correct nodes w
h « getH()

(wait until getH() > / + 2¢S8 or getH() < & // all nodes are in round r

=> n-2f > f from sync‘ed

o . denote this time by 7,
- > (f+ 1)_t h Wlt h I n ra n ge l /l correct nodes’ messages should have arrived
{

S pa n n e d by Sy n C ed 9: h" <« median of {h, | h, local reception time of latest message
from some x € V} (as multiset, i.e., values may repeat)

for all rounds r € N do
broadcast empty message to all nodes (including self)
8: if received messages from n — f distinct nodes during current loop
— k S f { d 10: for each node w € V do
_> S eW (rO m Sy n C e) 11 if received message from w during current loop iteration then

12: let i, be local time at latest received message from w
plus 6 (meas error) 13: Aw) — hy—h—d+u-28
¢ 14: else
. 15: A(w) « h" = h—d +u — 28 // replace missing ones by
plus ~(8-1)T (drift)
16: end if
17: end for
< 2 S 18: U « {A(w) |w € V} (as multiset, i.e., values may repeat)
19: A (UYHD +Uu=1)) 2
20: wait until getH() > h+A+T or getH() < h+ A -38
21: else
22: wait for n — f messages from distinct nodes within 928 + Pu local
time
23: let 1’ be the local reception time of the (f + 1)-th such message
24: wait until getH() > h’' —d+u—2S+T or getH() < h’ — (9>S+1u)
25: end if

26: end for

Adding Recovery to Lynch-Welch

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

W h it WO rks (2) ° mechanism, code for node v € V.
y * wait until getH() > § /I H,,(0) € [0,8) for correct nodes w

for all rounds r € N do
broadcast empty message to all nodes (including self)
8: if received messages from n — f distinct nodes during current loop

|
2:
> _f g 1 d 3 generate r-th pulse
2 N-T MesSSages recelve i
5
7: wait until getH() > i + 2(9% + S + 9d or getH() < h + 298 /!
iteration then

h « getH()

(wait until getH() > h + 29S8 or getH() < & // all nodes are in round r

=> n-2f > f from sync‘ed

. . denote this time by 7,
- > (f+ 1)_t h Wlt h I n ra n ge /Il correct nodes’ messages should have arrived
{
S pa n n e d by Sy n C ed 9: h’ « median of {h, | h, local reception time of latest message
from some x € V} (as multiset, i.e., values may repeat)

o)

_> SkeW S (from S ncled) 10: for each node w € V do
- y 11 if received message from w during current loop iteration then
12: let i, be local time at latest received message from w
plus 6 (meas error) 13: Aw) — hy—h—d+u-28
¢ 14: else
. 15: A(w) « h" = h—d +u — 28 // replace missing ones by
plus ~(8-1)T (drift)
16: end if
17: end for
< 2 S 18: U « {A(w) |w € V} (as multiset, i.e., values may repeat)
19: A (UYHD +Uu=1)) 2
. { 20: wait until getH() > h+ A+ T or getH() < h+A - 38
=> receive all sync‘ed e
22: wait for n — f messages from distinct nodes within 928 + Pu local
time
m eSS . O n n eXt Cyc I e 23: let 1’ be the local reception time of the (f + 1)-th such message
24: wait until getH() > h’' —d+u—2S+T or getH() < h’ — (9>S+1u)

=> sync to n-f sync‘ed e d

Adding Recovery to Lynch-Welch

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

W h it WO rks ° mechanism, code for node v € V.
y * wait until getH() > § /I H,,(0) € [0,8) for correct nodes w

o))

|
2:
_f 1 d 3: generate r-th pulse
< N-T messages receive . &
5
7: wait until getH() > i + 2(9%2 +9)S + 9d or getH() < h + 298 /!
iteration then

h « getH()

. wait until getH() > h + 29S8 or getH() < & // all nodes are in round r

=> switch to recovery

. . denote this time by 7,
- > (f+ 1)_t h Wlt h I n ra n ge /l correct nodes’ messages should have arrived
{
S pa n n e d by Sy n C ed 9: h’ « median of {h, | h, local reception time of latest message
from some x € V} (as multiset, i.e., values may repeat)

for all rounds r € N do
broadcast empty message to all nodes (including self)
8: if received messages from n — f distinct nodes during current loop
(h : d 10: for each node w € V do
(Ca n t a Ve m Isse 11 if received message from w during current loop iteration then

P 12: let i, be local time at latest received message from w
1 13: Aw) —hy—-h—-d+u-28
first sync’ed, as then ¢ o
p 15: A(w) « h" = h—d +u — 28 // replace missing ones by
all sync’ed would have e
16: end if
. 17: end for
bee n O ut Of WI n d OW 18: U « {A(w) |w € V} (as multiset, i.e., values may repeat)
19: A (UYHD +Uu=1)) 2
20: wait until getH() > h+A+T or getH() < h+ A -38
before branch) e
22: wait for n — f messages from distinct nodes within 928 + Pu local
time
23: let 1’ be the local reception time of the (f + 1)-th such message
24: wait until getH() > h’' —d+u—2S+T or getH() < h’ — (9>S+1u)
25: end if

26: end for

=
o

—
—

Adding Recovery to Lynch-Welch

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery

W h it WO rks o mechanism, code for node v € V.
y ° 1: wait until getH() > § /I H,,(0) € [0,8) for correct nodes w

< n-f messages received
=> switch to recovery -

=> (f+1)-th within range

spanned by sync‘ed .
(can‘t have missed
first sync‘ed, as then =

all sync‘ed would have

been out of window =
before branch)
=> also restart loop with ..
skew 2S & recover

. end for

for all rounds r € N do
generate r-th pulse
h « getH()
wait until getH() > h + 29S8 or getH() < & // all nodes are in round r
broadcast empty message to all nodes (including self)
wait until getH() > i + 2(9% + S + 9d or getH() < h + 298 /!
denote this time by 7,
/Il correct nodes’ messages should have arrived
if received messages from n — f distinct nodes during current loop
iteration then
h’ « median of {h, | h, local reception time of latest message
from some x € V} (as multiset, i.e., values may repeat)
for each node w € V do
if received message from w during current loop iteration then
let i, be local time at latest received message from w
Aw) —hy—-h—-d+u-28
else
A(w) « h" = h—d +u — 28 // replace missing ones by
median
end if
end for
U « {A(w) |w € V} (as multiset, i.e., values may repeat)
A — (U(f+l'| + U(H—,f')) /2
wait until getH() > h+A+T or getH() < h+ A -38
else
wait for n — f messages from distinct nodes within 928 + Pu local
time
let 1’ be the local reception time of the (f + 1)-th such message
wait until getH() > h’' —d+u—2S+T or getH() < h’ — (9>S+1u)
end if

=
o

—
—

