
Self-Stabilization & Recovery 



Want: Self-stabilizing GCS 

Theorem 

For any μ ≥ 2(θ-1), there is a self-stabilizing algorithm s.t. 
 

 dH/dt ≤ dL/dt ≤ (1+μ)dH/dt, 
 

the global and local skew are 
 

  O((u+μd) D) and O((u+μd) logσ D), respectively, 
 

where σ = μ/(θ-1), and the stabilization time is 
 

  O((d+u/μ)D). 



Self-stabilizing GCS, Step by Step 

Step      Done?     Time 
 

Stabilize BFS tree      O(dD) 



Self-stabilizing GCS, Step by Step 

Step      Done?     Time 
 

Stabilize BFS tree      O(dD) 
 

Reduce global skew to O((u+μd)D)   O(dD) 



Self-stabilizing GCS, Step by Step 

Step      Done?     Time 
 

Stabilize BFS tree      O(dD) 
 

Reduce global skew to O((u+μd)D)   O(dD) 
 

Stabilize estimates of δ = O(u+μd)   O(d) 



Self-stabilizing GCS, Step by Step 

Step      Done?     Time 
 

Stabilize BFS tree      O(dD) 
 

Reduce global skew to O((u+μd)D)   O(dD) 
 

Stabilize estimates of δ = O(u+μd)   O(d) 
 

Maintain global skew of O((u+μd)D)   0 * 

*Almost same proof, but modify for small times. 



Self-stabilizing GCS, Step by Step 

Step      Done?     Time 
 

Stabilize BFS tree      O(dD) 
 

Reduce global skew to O((u+μd)D)   O(dD) 
 

Stabilize estimates of δ = O(u+μd)   O(d) 
 

Maintain global skew of O((u+μd)D)   0 
 

Stabilize local skew to O((u+μd) logσ D)  O(u/μ+d)D) 

* 

*Almost same proof, but modify for/discard small times. 

* 



Self-stabilizing GCS, Step by Step 

Step      Done?     Time 
 

Stabilize BFS tree      O(dD) 
 

Reduce global skew to O((u+μd)D)   O(dD) 
 

Stabilize estimates of δ = O(u+μd)   O(d) 
 

Maintain global skew of O((u+μd)D)   0 
 

Stabilize local skew to O((u+μd) logσ D)  O(u/μ+d)D) 
 

              => O(u/μ+d)D) 

* 

*Almost same proof, but modify for/discard small times. 

* 



Breakout Session 

Step      Done?     Time 
 

Stabilize BFS tree      O(dD) 
 

Reduce global skew to O((u+μd)D)    ??  O(dD) 

 

 

catch: this subroutine must modify logical clocks 

    => need to avoid messing up the GCS algorithm! 



Adding Recovery to Lynch-Welch 

Assumption: 

There are always n-f 

correct & synchronized 

nodes. 
 

These will pulse as for 

“standard” LW. 
 

Goal: 

Nodes should resync 

after transiently failing! 



Adding Recovery to Lynch-Welch 

Main changes: 

1. timing checks 

 => no “getting stuck” 

  due to buggy state 



Adding Recovery to Lynch-Welch 

Main changes: 

1. timing checks 

 => no “getting stuck” 

  due to buggy state 
 

2. extra slack for message 

 reception 

 => works for skew 2S 



Adding Recovery to Lynch-Welch 

Main changes: 

1. timing checks 

 => no “getting stuck” 

  due to buggy state 
 

2. extra slack for message 

 reception 

 => works for skew 2S 
 

3. recovery mode if < n-f 

 messages received 

 => resync to sync‘ed 

  majority (skew <2S) 



Adding Recovery to Lynch-Welch 

Why it works (1): 

- can‘t get stuck on these 

 waiting statements 

 due to checks 

 



Adding Recovery to Lynch-Welch 

Why it works (1): 

- can‘t get stuck on these 

 waiting statements 

 due to checks 

- can‘t get stuck on this 

 waiting statement 

 due to sync‘ed pulses 



Adding Recovery to Lynch-Welch 

Why it works (1): 

- can‘t get stuck on these 

 waiting statements 

 due to checks 

- can‘t get stuck on this 

 waiting statement 

 due to sync‘ed pulses 

=> new loop iteration 

 within O(T) time 

 (clears all state but 

 timing of new 

 iteration) 



Adding Recovery to Lynch-Welch 

Why it works (2): 

≥ n-f messages received 

=> n-2f > f from sync‘ed 

=> (f+1)-th within range 

 spanned by sync‘ed 



Adding Recovery to Lynch-Welch 

Why it works (2): 

≥ n-f messages received 

=> n-2f > f from sync‘ed 

=> (f+1)-th within range 

 spanned by sync‘ed 

=> skew S (from sync‘ed) 

 plus δ (meas. error) 

 plus ≈(θ-1)T (drift) 

 < 2S 



Adding Recovery to Lynch-Welch 

Why it works (2): 

≥ n-f messages received 

=> n-2f > f from sync‘ed 

=> (f+1)-th within range 

 spanned by sync‘ed 

=> skew S (from sync‘ed) 

 plus δ (meas. error) 

 plus ≈(θ-1)T (drift) 

 < 2S 

=> receive all sync‘ed 

 mess. on next cycle 

=> sync to n-f sync‘ed 



Adding Recovery to Lynch-Welch 

Why it works: 

< n-f messages received 

=> switch to recovery 

=> (f+1)-th within range 

 spanned by sync‘ed 

 (can‘t have missed 

 first sync‘ed, as then 

 all sync‘ed would have 

 been out of window 

 before branch) 



Adding Recovery to Lynch-Welch 

Why it works: 

< n-f messages received 

=> switch to recovery 

=> (f+1)-th within range 

 spanned by sync‘ed 

 (can‘t have missed 

 first sync‘ed, as then 

 all sync‘ed would have 

 been out of window 

 before branch) 

=> also restart loop with 

 skew 2S & recover 


