Self-Stabilization & Recovery

Want: Self-stabilizing GCS

Theorem

For any $\mu \ge 2(\theta-1)$, there is a self-stabilizing algorithm s.t.

$dH/dt \le dL/dt \le (1+\mu)dH/dt$,

the global and local skew are

O((u+μd) D) and **O((u+μd) log_σ D)**, respectively,

where $\sigma = \mu/(\theta-1)$, and the stabilization time is

$O((d+u/\mu)D)$.

Step

Done? Time

Stabilize BFS tree

Step

Done? Time

Stabilize BFS tree

Reduce global skew to O((u+µd)D)

Step

Stabilize BFS tree

Reduce global skew to $O((u+\mu d)D)$

Stabilize estimates of $\delta = O(u+\mu d)$

Step Done? Time

Stabilize BFS tree

Reduce global skew to $O((u+\mu d)D)$

Stabilize estimates of $\delta = O(u+\mu d)$

Maintain global skew of $O((u+\mu d)D)$

*Almost same proof, but modify for small times.

*Almost same proof, but modify for/discard small times.

*Almost same proof, but modify for/discard small times.

Breakout Session

catch: this subroutine must modify logical clocks => need to avoid messing up the GCS algorithm!

Assumption:

There are always n-f correct & synchronized nodes.

These will pulse as for "standard" LW.

Goal: Nodes should resync after transiently failing!

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery
mechanism, code for node $v \in V_g$.
1: wait until getH() $\geq S$ // $H_w(0) \in [0, S)$ for correct nodes w
2: for all rounds $r \in \mathbb{N}$ do
3: generate <i>r</i> -th pulse
4: $h \leftarrow \text{getH}()$
5: wait until getH() $\ge h + 2\vartheta S$ or getH() $< h //$ all nodes are in round r
6: broadcast empty message to all nodes (including self)
7: wait until getH() $\ge h + 2(\vartheta^2 + \vartheta)S + \vartheta d$ or getH() $< h + 2\vartheta S$ //
denote this time by $\tau_{v,r}$
// correct nodes' messages should have arrived
8: if received messages from $n - f$ distinct nodes during current loop
iteration then
9: $h' \leftarrow$ median of $\{h_x \mid h_x \text{ local reception time of latest message}$
from some $x \in V$ (as multiset, i.e., values may repeat)
10: for each node $w \in V$ do
11: if received message from <i>w</i> during current loop iteration then
12: let h_w be local time at latest received message from w
13: $\Delta(w) \leftarrow h_w - h - d + u - 2S$
14: else
15: $\Delta(w) \leftarrow h' - h - d + u - 2S$ // replace missing ones by
median
16: end if
17: end for
18: $U \leftarrow \{\Delta(w) \mid w \in V\}$ (as multiset, i.e., values may repeat)
19: $\Delta \leftarrow \left(U^{(f+1)} + U^{(n-f)} \right) / 2$
20: wait until getH() $\geq h + \Delta + T$ or getH() $< h + \Delta - 3S$
21: else
22: wait for $n - f$ messages from distinct nodes within $\vartheta^2 S + \vartheta u$ local
time
23: let h' be the local reception time of the $(f + 1)$ -th such message
24: wait until getH() $\geq h' - d + u - 2S + T$ or getH() $< h' - (\vartheta^2 S + \vartheta u)$
25: end if
26: end for

Main changes:

1. timing checks => no "getting stuck" due to buggy state

Alg	orithm 12 Lynch-Welch pulse synchronization algorithm with recovery
mee	chanism, code for node $v \in V_g$.
1:	wait until getH() $\geq S$ // $H_w(0) \in [0, S)$ for correct nodes w
2:	for all rounds $r \in \mathbb{N}$ do
3:	generate r-th pulse
4:	$h \leftarrow \text{getH}()$
5:	wait until getH() $\ge h + 2\vartheta S$ or getH() $< h //$ all nodes are in round r
6:	broadcast empty message to all nodes (including self)
7:	wait until getH() $\geq h + 2(\vartheta^2 + \vartheta)S + \vartheta d$ or getH() $< h + 2\vartheta S$ //
	denote this time by $\tau_{v,r}$
	// correct nodes' messages should have arrived
8:	if received messages from $n - f$ distinct nodes during current loop
	iteration then
9:	$h' \leftarrow$ median of $\{h_x \mid h_x \text{ local reception time of latest message}$
	from some $x \in V$ (as multiset, i.e., values may repeat)
10:	for each node $w \in V$ do
11:	if received message from w during current loop iteration then
12:	let h_w be local time at latest received message from w
13:	$\Delta(w) \leftarrow h_w - h - d + u - 2S$
14:	else
15:	$\Delta(w) \leftarrow h' - h - d + u - 2S$ // replace missing ones by
	median
16:	end if
17:	end for
18:	$U \leftarrow \{\Delta(w) \mid w \in V\}$ (as multiset, i.e., values may repeat)
19:	$\Delta \leftarrow \left(U^{(f+1)} + U^{(n-f)} \right) / 2$
20:	wait until getH() $\geq h + \Delta + T$ or getH() $< h + \Delta - 3S$
21:	else
22:	wait for $n - f$ messages from distinct nodes within $\vartheta^2 S + \vartheta u$ local
	time
23:	let h' be the local reception time of the $(f + 1)$ -th such message
24:	wait until getH() $\geq h' - d + u - 2S + T$ or getH() $< h' - (\vartheta^2 S + \vartheta u)$
25:	end if
26:	end for

Main changes:

1. timing checks
 => no "getting stuck"
 due to buggy state

2. extra slack for message reception
 => works for skew 2S

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery mechanism, code for node $v \in V_{\varrho}$. 1: wait until getH() $\geq S$ $//H_w(0) \in [0, S)$ for correct nodes w 2: for all rounds $r \in \mathbb{N}$ do generate *r*-th pulse 3: 4: $h \leftarrow \text{getH}()$ wait until getH() $\geq h + 2\vartheta S$ or getH() < h // all nodes are in round r 5: broadcast empty message to all nodes (including self) 6: wait until getH() $\geq h + 2(\vartheta^2 + \vartheta)S + \vartheta d$ or getH() $< h + 2\vartheta S$ 7: denote this time by $\tau_{v,r}$ // correct nodes' messages should have arrived if received messages from n - f distinct nodes during current loop 8: iteration then $h' \leftarrow$ median of $\{h_x \mid h_x \text{ local reception time of latest message}$ 9: from some $x \in V$ (as multiset, i.e., values may repeat) for each node $w \in V$ do 10: if received message from w during current loop iteration then 11: let h_w be local time at latest received message from w12: $\Delta(w) \leftarrow h_w - h - d + u - 2S$ 13: else 14: $\Delta(w) \leftarrow h' - h - d + u - 2S$ // replace missing ones by 15: median end if 16: end for 17: $U \leftarrow \{\Delta(w) \mid w \in V\}$ (as multiset, i.e., values may repeat) 18: $\Delta \leftarrow \left(U^{(f+1)} + U^{(n-f)} \right) / 2$ 19: wait until getH() $\geq h + \Delta + T$ or getH() $< h + \Delta - 3S$ 20: else 21: wait for n - f messages from distinct nodes within $\vartheta^2 S + \vartheta u$ local 22: time let h' be the local reception time of the (f + 1)-th such message 23: wait until getH() $\geq h' - d + u - 2S + T$ or getH() $< h' - (\vartheta^2 S + \vartheta u)$ 24: end if 25: 26: end for

Main changes:

- 1. timing checks
 => no "getting stuck"
 due to buggy state
- 2. extra slack for message
 reception
 => works for skew 2S
- 3. recovery mode if < n-f messages received => resync to sync'ed majority (skew <2S)

Why it works (1):

 can't get stuck on these waiting statements due to checks

Alg	porithm 12 Lynch-Welch pulse synchronization algorithm with recovery sharism, and for node $n \in V$
mee	manism, code for node $v \in v_g$.
1:	wait until getH() $\geq S$ // $H_w(0) \in [0, S)$ for correct nodes w
2:	for all rounds $r \in \mathbb{N}$ do
3:	generate <i>r</i> -th pulse
4:	$h \leftarrow \text{getH}()$
5:	wait until getH() $\geq h + 2\vartheta S$ or getH() $< h //$ all nodes are in round r
6:	broadcast empty message to all nodes (including self)
7:	wait until getH() $\geq h + 2(\vartheta^2 + \vartheta)S + \vartheta d$ or getH() $< h + 2\vartheta S$ //
	denote this time by $\tau_{v,r}$
	// correct nodes' messages should have arrived
8:	if received messages from $n - f$ distinct nodes during current loop
	iteration then
9:	$h' \leftarrow$ median of $\{h_x \mid h_x \text{ local reception time of latest message}$
	from some $x \in V$ (as multiset, i.e., values may repeat)
10:	for each node $w \in V$ do
11:	if received message from w during current loop iteration then
12:	let h_w be local time at latest received message from w
13:	$\Delta(w) \leftarrow h_w - h - d + u - 2\mathcal{S}$
14:	else
15:	$\Delta(w) \leftarrow h' - h - d + u - 2S$ // replace missing ones by
	median
16:	end if
17:	end for
18:	$U \leftarrow \{\Delta(w) \mid w \in V\}$ (as multiset, i.e., values may repeat)
19:	$\Delta \leftarrow \left(U^{(f+1)} + U^{(n-f)} \right) / 2$
20:	wait until getH() $\geq h + \Delta + T$ or getH() $< h + \Delta - 3S$
21:	else
22:	wait for $n - f$ messages from distinct nodes within $\vartheta^2 S + \vartheta u$ local
	time
23:	let h' be the local reception time of the $(f + 1)$ -th such message
24:	wait until getH() $\geq h' - d + u - 2S + T$ or getH() $< h' - (\vartheta^2 S + \vartheta u)$
25:	end if
26:	end for

Why it works (1):

- can't get stuck on these waiting statements due to checks
- can't get stuck on this waiting statement due to sync'ed pulses

Algorithm 12 Lynch-Welch pulse synchronization algorithm	with recovery
mechanism, code for node $v \in V_g$.	
1: wait until getH() $\geq S$ // $H_w(0) \in [0, S)$ for G	correct nodes u
2: for all rounds $r \in \mathbb{N}$ do	
3: generate <i>r</i> -th pulse	
4: $h \leftarrow \text{getH}()$	
5: wait until getH() $\ge h + 2\vartheta S$ or getH() $< h //$ all node:	s are in round <i>r</i>
6: broadcast empty message to all nodes (including self)	
7: wait until getH() $\ge h + 2(\vartheta^2 + \vartheta)S + \vartheta d$ or getH() < h	$h + 2\vartheta S$ //
denote this time by $\tau_{v,r}$	
// correct nodes' messages shou	Ild have arrived
8: if received messages from $n - f$ distinct nodes durin	ng current loop
iteration then	
9: $h' \leftarrow \text{median of } \{h_x \mid h_x \text{ local reception time of } \}$	f latest message
from some $x \in V$ } (as multiset, i.e., values may repeat)	
10: for each node $w \in V$ do	
11: if received message from <i>w</i> during current loop	iteration then
12: let h_w be local time at latest received messa	ge from w
13: $\Delta(w) \leftarrow h_w - h - d + u - 2S$	
14: else	
15: $\Delta(w) \leftarrow h' - h - d + u - 2S$ // replace m	uissing ones by
median	
16: end if	
17: end for	
18: $U \leftarrow \{\Delta(w) \mid w \in V\}$ (as multiset, i.e., values may n	repeat)
19: $\Delta \leftarrow \left(U^{(f+1)} + U^{(n-f)} \right) / 2$	
20: wait until getH() $\geq h + \Delta + T$ or getH() $< h + \Delta -$	3 <i>S</i>
21: else	
22: wait for $n - f$ messages from distinct nodes within	$\vartheta^2 S + \vartheta u \log d$
time	
23: let h' be the local reception time of the $(f + 1)$ -th s	uch message
24: wait until getH() $\ge h' - d + u - 2S + T$ or getH() < h	$h' - (\vartheta^2 \mathcal{S} + \vartheta u)$
25: end if	
26: end for	

Why it works (1):

- can't get stuck on these waiting statements due to checks
- can't get stuck on this waiting statement due to sync'ed pulses
- => new loop iteration within O(T) time (clears all state but timing of new iteration)

Alg	orithm 12 Lynch-Welch pulse synchronization algorithm with recovery
med	chanism, code for node $v \in V_g$.
1:	wait until getH() $\geq S$ // $H_w(0) \in [0, S)$ for correct nodes w
2:	for all rounds $r \in \mathbb{N}$ do
3:	generate <i>r</i> -th pulse
4:	$h \leftarrow \text{getH}()$
5:	wait until getH() $\geq h + 2\vartheta S$ or getH() $< h //$ all nodes are in round r
6:	broadcast empty message to all nodes (including self)
7:	wait until getH() $\geq h + 2(\vartheta^2 + \vartheta)S + \vartheta d$ or getH() $< h + 2\vartheta S$ //
	denote this time by $\tau_{v,r}$
	// correct nodes' messages should have arrived
8:	if received messages from $n - f$ distinct nodes during current loop
	iteration then
9:	$h' \leftarrow$ median of $\{h_x \mid h_x \text{ local reception time of latest message}$
	from some $x \in V$ (as multiset, i.e., values may repeat)
10:	for each node $w \in V$ do
11:	if received message from w during current loop iteration then
12:	let h_w be local time at latest received message from w
13:	$\Delta(w) \leftarrow h_w - h - d + u - 2S$
14:	else
15:	$\Delta(w) \leftarrow h' - h - d + u - 2S$ // replace missing ones by
	median
16:	end if
17:	end for
18:	$U \leftarrow \{\Delta(w) \mid w \in V\}$ (as multiset, i.e., values may repeat)
19:	$\Delta \leftarrow \left(U^{(f+1)} + U^{(n-f)} \right) / 2$
20:	wait until getH() $\geq h + \Delta + T$ or getH() $< h + \Delta - 3S$
21:	else
22:	wait for $n - f$ messages from distinct nodes within $\vartheta^2 S + \vartheta u$ local
	time
23:	let h' be the local reception time of the $(f + 1)$ -th such message
24:	wait until getH() $\geq h' - d + u - 2S + T$ or getH() $< h' - (\vartheta^2 S + \vartheta u)$
25:	end if
26:	end for

Why it works (2):

- \geq n-f messages received
- => n-2f > f from sync'ed
- => (f+1)-th within range
 spanned by sync'ed

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery mechanism, code for node $v \in V_{\rho}$. 1: wait until getH() $\geq S$ $//H_w(0) \in [0, S)$ for correct nodes w 2: for all rounds $r \in \mathbb{N}$ do generate *r*-th pulse 3: $h \leftarrow \text{getH}()$ 4: wait until getH() $\geq h + 2\vartheta S$ or getH() < h // all nodes are in round r 5: broadcast empty message to all nodes (including self) 6: wait until getH() $\geq h + 2(\vartheta^2 + \vartheta)S + \vartheta d$ or getH() $< h + 2\vartheta S$ 11 7: denote this time by $\tau_{v,r}$ // correct nodes' messages should have arrived if received messages from n - f distinct nodes during current loop 8: iteration then $h' \leftarrow$ median of $\{h_x \mid h_x \text{ local reception time of latest message}$ 9: from some $x \in V$ (as multiset, i.e., values may repeat) for each node $w \in V$ do 10: if received message from w during current loop iteration then 11: let h_w be local time at latest received message from w12: $\Delta(w) \leftarrow h_w - h - d + u - 2S$ 13: else 14: $\Delta(w) \leftarrow h' - h - d + u - 2S$ // replace missing ones by 15: median end if 16: end for 17: $U \leftarrow \{\Delta(w) \mid w \in V\}$ (as multiset, i.e., values may repeat) 18: $\Delta \leftarrow \left(U^{(f+1)} + U^{(n-f)} \right) / 2$ 19: wait until getH() $\geq h + \Delta + T$ or getH() $< h + \Delta - 3S$ 20: else 21: wait for n - f messages from distinct nodes within $\vartheta^2 S + \vartheta u$ local 22: time let h' be the local reception time of the (f + 1)-th such message 23: wait until getH() $\geq h' - d + u - 2S + T$ or getH() $< h' - (\vartheta^2 S + \vartheta u)$ 24: end if 25: 26: end for

Why it works (2):

- \geq n-f messages received
- => n-2f > f from sync'ed
- => (f+1)-th within range
 spanned by sync'ed
- => skew S (from sync'ed) plus δ (meas. error) plus ≈(θ-1)T (drift) < 2S</p>

Algo	orithm 12 Lynch-Welch pulse synchronization algorithm with recovery
mec	hanism, code for node $v \in V_g$.
1:	wait until getH() $\geq S$ // $H_w(0) \in [0, S)$ for correct nodes w
2:	for all rounds $r \in \mathbb{N}$ do
3:	generate <i>r</i> -th pulse
4:	$h \leftarrow \text{getH}()$
5:	wait until getH() $\geq h + 2\vartheta S$ or getH() $< h //$ all nodes are in round r
6:	broadcast empty message to all nodes (including self)
7:	wait until getH() $\ge h + 2(\vartheta^2 + \vartheta)S + \vartheta d$ or getH() $< h + 2\vartheta S$ //
j.	denote this time by $\tau_{v,r}$
	// correct nodes' messages should have arrived
8:	if received messages from $n - f$ distinct nodes during current loop
	iteration then
9:	$h' \leftarrow$ median of $\{h_x \mid h_x \text{ local reception time of latest message}$
	from some $x \in V$ (as multiset, i.e., values may repeat)
10:	for each node $w \in V$ do
11:	if received message from w during current loop iteration then
12:	let h_w be local time at latest received message from w
13:	$\Delta(w) \leftarrow h_w - h - d + u - 2S$
14:	else
15:	$\Delta(w) \leftarrow h' - h - d + u - 2S$ // replace missing ones by
1000	median
16:	end if
17:	end for
18:	$U \leftarrow \{\Delta(w) \mid w \in V\}$ (as multiset, i.e., values may repeat)
19:	$\Delta \leftarrow \left(U^{(f+1)} + U^{(n-f)} \right) / 2$
20:	wait until getH() $\geq h + \Delta + T$ or getH() $< h + \Delta - 3S$
21:	else
22:	wait for $n - f$ messages from distinct nodes within $\vartheta^2 S + \vartheta u$ local
	time
23:	let h' be the local reception time of the $(f + 1)$ -th such message
24:	wait until getH() $\geq h' - d + u - 2S + T$ or getH() $< h' - (\vartheta^2 S + \vartheta u)$
25:	end if
26:	end for

Why it works (2):

- \geq n-f messages received
- => n-2f > f from sync'ed
- => (f+1)-th within range
 spanned by sync'ed
- => skew S (from sync'ed) plus δ (meas. error) plus ≈(θ-1)T (drift) < 2S</p>
- => receive all sync'ed mess. on next cycle
- => sync to n-f sync'ed

algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery
hechanism, code for node $v \in V_g$.
1: wait until getH() $\geq S$ // $H_w(0) \in [0, S)$ for correct nodes w
2: for all rounds $r \in \mathbb{N}$ do
3: generate <i>r</i> -th pulse
4: $h \leftarrow \text{getH}()$
5: wait until getH() $\ge h + 2\vartheta S$ or getH() $< h //$ all nodes are in round r
6: broadcast empty message to all nodes (including self)
7: wait until getH() $\ge h + 2(\vartheta^2 + \vartheta)S + \vartheta d$ or getH() $< h + 2\vartheta S$ //
denote this time by $\tau_{v,r}$
// correct nodes' messages should have arrived
8: if received messages from $n - f$ distinct nodes during current loop
iteration then
9: $h' \leftarrow \text{median of } \{h_x \mid h_x \text{ local reception time of latest message} \}$
from some $x \in V$ (as multiset, i.e., values may repeat)
0: for each node $w \in V$ do
1: if received message from <i>w</i> during current loop iteration then
2: let h_w be local time at latest received message from w
3: $\Delta(w) \leftarrow h_w - h - d + u - 2S$
4: else
5: $\Delta(w) \leftarrow h' - h - d + u - 2S$ // replace missing ones by
median
6: end if
7: end for
8: $U \leftarrow \{\Delta(w) \mid w \in V\}$ (as multiset, i.e., values may repeat)
9: $\Delta \leftarrow \left(U^{(f+1)} + U^{(n-f)} \right) / 2$
0: wait until getH() $\geq h + \Delta + T$ or getH() $< h + \Delta - 3S$
1: else
2: wait for $n - f$ messages from distinct nodes within $\vartheta^2 S + \vartheta u$ local
time
3: let h' be the local reception time of the $(f + 1)$ -th such message
4: wait until getH() $\geq h' - d + u - 2S + T$ or getH() $< h' - (\vartheta^2 S + \vartheta u)$
5: end if
6: end for

Why it works:

- < n-f messages received
- => switch to recovery
- => (f+1)-th within range spanned by sync'ed (can't have missed first sync'ed, as then all sync'ed would have been out of window before branch)

Alg	orithm 12 Lynch-Welch pulse synchronization algorithm with recovery
mee	chanism, code for node $v \in V_g$.
1:	wait until getH() $\geq S$ // $H_w(0) \in [0, S)$ for correct nodes w
2:	for all rounds $r \in \mathbb{N}$ do
3:	generate r-th pulse
4:	$h \leftarrow \text{getH}()$
5:	wait until getH() $\ge h + 2\vartheta S$ or getH() $< h //$ all nodes are in round r
6:	broadcast empty message to all nodes (including self)
7:	wait until getH() $\geq h + 2(\vartheta^2 + \vartheta)S + \vartheta d$ or getH() $< h + 2\vartheta S$ //
	denote this time by $\tau_{v,r}$
	// correct nodes' messages should have arrived
8:	if received messages from $n - f$ distinct nodes during current loop
	iteration then
9:	$h' \leftarrow$ median of $\{h_x \mid h_x \text{ local reception time of latest message}$
	from some $x \in V$ (as multiset, i.e., values may repeat)
10:	for each node $w \in V$ do
11:	if received message from w during current loop iteration then
12:	let h_w be local time at latest received message from w
13:	$\Delta(w) \leftarrow h_w - h - d + u - 2S$
14:	else
15:	$\Delta(w) \leftarrow h' - h - d + u - 2S$ // replace missing ones by
	median
16:	end if
17:	end for
18:	$U \leftarrow \{\Delta(w) \mid w \in V\}$ (as multiset, i.e., values may repeat)
19:	$\Delta \leftarrow \left(U^{(f+1)} + U^{(n-f)} \right) / 2$
20:	wait until getH() $\geq h + \Delta + T$ or getH() $< h + \Delta - 3S$
21:	else
22:	wait for $n - f$ messages from distinct nodes within $\vartheta^2 S + \vartheta u$ local
	time
23:	let h' be the local reception time of the $(f + 1)$ -th such message
24:	wait until getH() $\geq h' - d + u - 2S + T$ or getH() $< h' - (\vartheta^2 S + \vartheta u)$
25:	end if
26:	end for

Why it works:

- < n-f messages received
- => switch to recovery
- => (f+1)-th within range spanned by sync'ed (can't have missed first sync'ed, as then all sync'ed would have been out of window before branch)
- => also restart loop with skew 2S & recover

Algorithm 12 Lynch-Welch pulse synchronization algorithm with recovery	
mechanism, code for node $v \in V_g$.	
1: wait until getH() $\geq S$ // $H_w(0) \in [0, S)$ for correct nodes w	
2: for all rounds $r \in \mathbb{N}$ do	
3: generate <i>r</i> -th pulse	
4: $h \leftarrow \text{getH}()$	
5: wait until getH() $\ge h + 2\vartheta S$ or getH() $< h //$ all nodes are in round r	
6: broadcast empty message to all nodes (including self)	
7: wait until getH() $\geq h + 2(\vartheta^2 + \vartheta)S + \vartheta d$ or getH() $< h + 2\vartheta S$ //	
denote this time by $\tau_{v,r}$	
// correct nodes' messages should have arrived	
8: if received messages from $n - f$ distinct nodes during current loop	
iteration then	
9: $h' \leftarrow$ median of $\{h_x \mid h_x \text{ local reception time of latest message}$	
from some $x \in V$ (as multiset, i.e., values may repeat)	
10: for each node $w \in V$ do	
11: if received message from <i>w</i> during current loop iteration then	
12: let h_w be local time at latest received message from w	
13: $\Delta(w) \leftarrow h_w - h - d + u - 2S$	
14: else	
15: $\Delta(w) \leftarrow h' - h - d + u - 2S$ // replace missing ones by	
median	
16: end if	
17: end for	
18: $U \leftarrow \{\Delta(w) \mid w \in V\}$ (as multiset, i.e., values may repeat)	
19: $\Delta \leftarrow \left(U^{(f+1)} + U^{(n-f)} \right) / 2$	
20: wait until getH() $\geq h + \Delta + T$ or getH() $< h + \Delta - 3S$	
21: else	
22: wait for $n - f$ messages from distinct nodes within $\vartheta^2 S + \vartheta u$ local	
time	
23: let h' be the local reception time of the $(f + 1)$ -th such message	
24: wait until getH() $\geq h' - d + u - 2S + T$ or getH() $< h' - (\vartheta^2 S + \vartheta u)$	
25: end if	
26: end for	