Ch 13 — Self-Stabilizing Lynch-Welch

The objective is to make the Lynch-Welch
algorithm of Ch10 withstand any number of
transient faults and and at the same time up
to f Byzantine faults.

Algorithm 11 Lynch-Welch pulse synchronization algorithm, the code for a
node v € V,. 8 denotes a (to-be-determined) upper bound on ||p,|| for each
r € Nog and T is the nominal round duration and it needs to be specified how
Line 9 1s implemented.

I: wait until getH() =S /l H,(0) € [0,S) forallw eV
2: for all round r € N do

3:

4
5:
6:
7

o0

10:
11:

12:
13:

generate r-th pulse
h « getH()
wait until getH() = h + 9S8 // all nodes are in round r
broadcast empty message to all nodes (including self)
wait until getH() = 1 + (9% + S + 9d // denote this time by 7, ,
// correct nodes’ messages should have arrived
for each node w € V do
compute A(w) € [pw,r —PorsPwyr —Por Tt 5]
/I denote p, = maxyev, {Pw,r}
end for
S «— {A(w) |w € V} (as multiset, i.e., values may repeat)

A (Sl()f+l) +S£'1—.f'>) /2
wait until getH() =h+A+T

14: end for

Initial requirements on round execution

Since we simulate an approximate agreement in a
synchronous environment we need to make sure that the

following holds:

1) Messages sent by correct nodes in a given round should
be received by all correct nodes after they start the
current round and before they compute the clock
estimates, i.e., during [p,,, 7,]

2) T is large enough to accommodate the adjustments for
the next iteration, i.e., H/(z,,) <H,(p,,) + A+T

4 nodes — 1 faulty and perturbation in values

/ f+l+s —f

median

Siﬁ\ Su

w
| | | >

pulse send

wn

©
—>
_>
_>
v
_>

Self-Stabilizing Lynch-Welch

The objective is to make the Lynch-Welch algorithm
of Ch10 withstand any number of transient faults
and and at the same time up to f Byzantine faults.

- Main weaknesses of the original algorithm:
1. assumed pretty strong synchronization
2. assumed a small initial skew

3. assumed receiving of at least n-t values from
correct nodes in each "window"

Algorithm 16 The loop of Algorithm 11, which is run alongside the local
instances of the beat generation algorithm and Algorithm 17. Note that Algo-
rithm 17 may reset the loop for stabilization purposes.

1: while true do first line removed
2: generate pulse // assume that r € N is the pulse index

3 h « getH()

4: wait until getH() = h+ 98 // all nodes are in round r

5 broadcast empty message to all nodes (including self)

6 wait until getH() = h + (9 +9)S +9d

// denote this time by 7, ,
// correct nodes’ messages should have arrived

7: for each node w € V do we cannot wait
8: compute A(w) € [pwr = PorsPwr = Por +90] for n-t values
/l denote p, = maxyev, {Pw.r}
9: end for
10: U « {A(w) |w € V} (as multiset, i.e., values may repeat)
11: A(_(U(f+l)+U(ll—f))/2
12: wait until getH() = h+A+T
13: end while

To prevent chaos the algorithm will be reset
when events do not line up properly

Background Synchronization

We assume: some time after the number of existing faults
falls below t, the following can be achieved:

« Every correct node generates an event (Beat) at a
"regular" period

 All events of non-faulty nodes in each wave of events
are within some o, of each other

 We have lower and upper bounds on the period length
between waves of events.

We will show how to obtain that in a later chapter.

Background Synchronization

@ G1 —(Propose

Guard

Condition

=N

Gl
G2
G3
G4

G5

H,(t) = Hy

(T)) expires or > f PROPOSE flags set

>n — f PROPOSE flags set

(T) expires

(T3) expires or > f PROPOSE flags set

G3

'

(Propose

G4

We will make this state-machine self-stabilizing
Can this replace LW?

Coordinating Two Independent Cycles

Beat
—)

next
C——

To prevent chaos we need to coordinate the two streams of
events

Our aim is to reduce the skew — waiting for the slow process
to produce the desired beat increases the skew.

We need another approach

Beats and Feedbacks

Definition 13.2 (Feedback Mechanism). Nodes v € V, generate beats at times
h,; € B, i € N, such that for parameters) < By < B < By € R and oy, (a
skew bound) the following properties hold, for all i € IN.

1. Forallv,w €V,, we have that |h, ; — h,, ;| < op.

Beats and Feedbacks

Definition 13.2 (Feedback Mechanism). Nodes v € V, generate beats at times
h,; € B, i € N, such that for parameters) < By < B < By € R and oy, (a
skew bound) the following properties hold, for all i € N.

1. Forallv,w €V,, we have that |h, ; — h,, ;| < op.
2. Ifno v € Vg triggers its NEXT signal during [miny,cy, {hy i} + B).1] for
some t < minyey, {hy;}+ B3, then ming, ey, {hy i1} > 1.

h h+B; t h+B;

ﬁ;g i-beats i+1 beats >

v

no
"next

Beats and Feedbacks

Definition 13.2 (Feedback Mechanism). Nodes v € V, generate beats at times
h,; € B, i € N, such that for parameters) < By < B < By € R and oy, (a
skew bound) the following properties hold, for all i € N.

1. Forallv,w € Vg, we have that |h, ; — h, ;| < o7p,.

2. Ifno v € Vg triggers its NEXT signal during [miny,cy, {hy i} + B).1] for
some t < minyey, {hy;}+ B3, then ming, ey, {hy i1} > 1.

3. If all v € Vg trigger their NEXT signals during [minycy, {hy ;} + B>.1]
for some t < mingev, {hw,i}+ B3, then maxyev, {hw is1} <t + Oh.

h h+B; h+B, T h+Bs

ﬁ;g i-beats i i i+1 beats| | T
! i T |[TTERT |

v

t+o,

Beats and Feedbacks

Definition 13.2 (Feedback Mechanism). Nodes v € V, generate beats at times
h,; € B, i € N, such that for parameters) < By < B < By € R and oy, (a
skew bound) the following properties hold, for all i € N.

1. Forallv,w € Vg, we have that |h, ; — h, ;| < o7p,.

2. Ifno v € Vg triggers its NEXT signal during [miny,cy, {hy i} + B).1] for
some t < minyey, {hy;}+ B3, then ming, ey, {hy i1} > 1.

3. If all v € Vg trigger their NEXT signals during [minycy, {hy ;} + B>.1]
for some t < mingev, {hw,i}+ B3, then maxyev, {hw is1} <t + Oh.

h h+B; h+B, T h+Bs

‘ljg i-beats | i+1 beats|| -

v

Plan

 If events do not lineup — we will reset LW - an extreme
measure that we take to converge from faults

* To obtain small skew we should not take such an action
when events line up.

» To overcome the extra skew that the synchronization with
the beats produce, we reduce the skew prior to that stage.
We repeat the LW (approximate agreement) loop for
several times in a row. (M iterations)

How to put all of that together?

Recall: Approximate Agreement Algorithm

The algorithm proceeds in rounds.

The Basic Iteration:

1. sendr,to all.
2. receiver,,, the value sent by w in this round.
// replace any "missing" value by r,
3. S, :={ruv} //ordered set
4, o,:= (S +S /2. [/ the (f+1)st and (n-f)-th valuesin S
5. Return o,

The initial range is reduced by half at the end of each iteration

We will start with S and end with S(M) after M iterations

Beats and Pulses Alignment

h h+B; h+B, t h+B;

% i-beats | i i+1 beatd| -

{ e / t+o,
"next"

. IS(M) :7

{ { If pulses are clustered we get the
pulse 0 mod M next| ho next" window followed by

the "next" window

_

The Meta Algorithm

Algorithm 17 Interface algorithm, actions for node v € V, in response to a
local event at ime 7. Runs in parallel to local instances of the beat generation
algorithm and Algorithm 16.

I: > algorithm maintains local variable i € | M|
. if v generates a pulse at im en

i=i+1mod M

2

3

4: if / = 0 then

5: wait until local lil IS(M)
6:

7.

8

trigger NEXT signal
: end if
- end if

« Cycle for M rounds —
« Wait for the skew to pass
« Invoke a NEXT event

Beats and Pulses Alighment

-+~

-

h h+B; h+B, T h+Bs
i-beats ! i ijkl beatd !
next
no t+o,
"next

A well aligned Beat \

requires that

the next "Pulse 1" will

be within

the "green" window

Otherwise — invoke a Resey

Algorithm 17 Interface algorithm, actions for node v € V, in response to a
local event at time 7. Runs in parallel to local instances of the beat generation
algorithm and Algorithm 16.

1: > The algorithm maintains local variable i € [M]
2: if v generates a pulse at time 7 then
3 i:=1+1mod M
4 if i = 0 then
5 wait until local time H, (1) + 9S(M)
6: trigger NEXT signal
7 end if
8: end if
9: if v generates a beat at time 7 then
10: if i # O then

> beats should align with every M'" pulse, hence reset

11: reset(R")

12: else if Algorithm 16 requires generating a pulse before H, () + R~ then
13: > reset at pulse time ¢’ to avoid early pulse or message
14: reset(R* — (H,(t") — H,(t))), where t’ is the current time

15: else if next pulse is not generated by local time H,(7) + R* then

16: > reset to avoid late pulse and
17: > start listening for other nodes’ pulses on time
18: reset(0)

19: end if

20: end if

21: Function(reset(7))

22: stop local instance of Algorithm 16

23: wait for 7 local time

24: 1:=0

25: initialize a new local instance of Algorithm 16

0.
10:

11:

if v generates a beat at time ¢ then
if i # O then
> beats should align with every M'" pulse, hence reset
reset(R")

-

21
22:
23:
24
25:

Function(reset(7))

stop local instance of Algorithm 16

wait for 7 local time

i=0

initialize a new local instance of Algorithm 16

9: if v generates a beat at time ¢ then
10: if i # 0 then
> beats should align with every M'" pulse, hence reset
11 reset(R")
12: else if Algorithm 16 requires generating a pulse before H, () + R~ then
13 > reset at pulse time ¢’ to avoid early pulse or message
14: reset(R* — (H,(t") — H,(t))), where t’ is the current time

4 N R

>

beat

N Y "

21: Function(reset(7))

22: stop local instance of Algorithm 16

23: wait for 7 local time

24: i :=0

25: 1nitialize a new local instance of Algorithm 16

9. if v generates a beat at time ¢ then

15:
16:
17:
18:
19:
20:
21
22:
23:
24.
25:

else if next pulse is not generated by local time H,(7) + R* then
> reset to avoid late pulse and

> start listening for other nodes’ pulses on time
end 1

end if

Function(reset(7))

stop local instance of Algorithm 16

wait for 7 local time

i=0

initialize a new local instance of Algorithm 16

We force an
immediate pulse

9. if v generates a beat at time ¢ then

-
|
— Puse
beat -
- >
N Y "
5: else if next pulse is not generated by local time H,(7) + R* then
16: > reset to avoid late pulse and
17: > start listening for other nodes’ pulses on time
18: reset(0)
19;

i=0 and well alighed (green window)

20:¢
21: Function(reset(7))

22: stop local instance of Algorithm 16

23: wait for 7 local time

24: i :=0

25: 1nitialize a new local instance of Algorithm 16

9: if v generates a beat at time ¢ then
10: if i # 0 then
> beats should align with every M'" pulse, hence reset

1: reset(R*) delay the next pulse
12: else if Algorithm 16 requires generating a pulse b@m

13: > reset at pulse time ¢’ to avoid early pulse or message

14: reset(R* — (H,(t') — H,(t))), where ¢ is the current time ~ delay the next pulse
15: else if next pulse is not generated by local time H,(¢) + R* then

16: > reset to avoid late pulse and

17: > start listening for other nodes’ pulses on time

18: reset(0)

S force a pulse

20: end if i=0 and well aligned (green window)

21: Function(reset(7))

22: stop local instance of Algorithm 16

23: wait for 7 local time

24: 1:=0

25: initialize a new local instance of Algorithm 16

From the pseudocode given in Algorithm 17, it 1s straightforward to verify
thatv € V, generates a pulse at alocal time from [H (k. —H (h,)+R"],
and does not generate a pulse at a local time frpm [H,(h,). H,(h, 1) + R7).

Beats and Feedbacks

Definition 13.2 (Feedback Mechanism). Nodes v € V, generate beats at times
h,; € B, i € N, such that for parameters) < By < B < By € R and oy, (a
skew bound) the following properties hold, for all i € N.

1. Forallv,w € V,, we have that |h, ; — hy, ;| < o,
2. Ifno v € Vg triggers its NEXT signal during [miny,cy, {hy i} + B).1] for
some t < minyey, {hy;}+ B3, then ming ey, {hy is1} > 1.

h h+B; t h+B;

ﬁ;g i-beats i+1 beats g

o =
/ Wndow without NEXT

can be large

unstable h, h+ B,
Iy yATrmm |
TTRTTT T I
' \
' \
. \\ \
spurious \ \
NEXT \ \
signals \ N
. \
\‘ \
\ \
\
h \
A —
unstable ﬁl P2

|Pum || + P

beat

h+ By h+ By could be
| 4 [l | : t‘rlggered
BTSN : w/o NEXT
ha . signals
‘, \‘ :
|
\ |
\ |
. \ |
\ \ |
\ \ |
.‘ \‘ .
\ \ |
CN :
\ \ |
i :
PM-1 PM PM 41 '

valid time range for p),

26

