
The objective is to make the Lynch-Welch
algorithm of Ch10 withstand any number of
transient faults and and at the same time up
to f Byzantine faults.

Ch 13 – Self-Stabilizing Lynch-Welch

2

11

Since we simulate an approximate agreement in a
synchronous environment we need to make sure that the
following holds:

1) Messages sent by correct nodes in a given round should
be received by all correct nodes after they start the
current round and before they compute the clock
estimates, i.e., during [pv,r, 𝜏v,r]

2) T is large enough to accommodate the adjustments for
the next iteration, i.e., Hv(𝜏v,r) ≤ Hv(pv,r) + Δ + T

Initial requirements on round execution

4

4 nodes – 1 faulty and perturbation in values

S d
p
q

S S
pulse send

pulse send

The objective is to make the Lynch-Welch algorithm
of Ch10 withstand any number of transient faults
and and at the same time up to f Byzantine faults.

- Main weaknesses of the original algorithm:
1. assumed pretty strong synchronization
2. assumed a small initial skew
3. assumed receiving of at least n-t values from

correct nodes in each "window"

Self-Stabilizing Lynch-Welch

6

To prevent chaos the algorithm will be reset
when events do not line up properly

we cannot wait
for n-t values

first line removed

We assume: some time after the number of existing faults
falls below t, the following can be achieved:

• Every correct node generates an event (Beat) at a
"regular" period

• All events of non-faulty nodes in each wave of events
are within some 𝞼h of each other

• We have lower and upper bounds on the period length
between waves of events.

We will show how to obtain that in a later chapter.

Background Synchronization

8

beat

Background Synchronization

We will make this state-machine self-stabilizing
Can this replace LW?

• To prevent chaos we need to coordinate the two streams of
events

• Our aim is to reduce the skew – waiting for the slow process
to produce the desired beat increases the skew.

• We need another approach

Coordinating Two Independent Cycles

Beat

next

Beats and Feedbacks

Beats and Feedbacks

i-beats i+1 beats

no
"next"

h h+B1 t h+B3

Beats and Feedbacks

i-beats i+1 beats

h h+B1 t h+B3h+B2

next

t+𝞼h

Beats and Feedbacks

i-beats i+1 beats

no
"next"

h h+B1 t h+B3h+B2

next

t+𝞼h

• If events do not lineup – we will reset LW - an extreme
measure that we take to converge from faults

• To obtain small skew we should not take such an action
when events line up.

• To overcome the extra skew that the synchronization with
the beats produce, we reduce the skew prior to that stage.
We repeat the LW (approximate agreement) loop for
several times in a row. (M iterations)

How to put all of that together?

Plan

The algorithm proceeds in rounds.

The Basic Iteration:

1. send rv to all.
2. receive rw,v , the value sent by w in this round.

// replace any "missing" value by rv

3. Sv := {rw,v }; //ordered set
4. ov := (Sv

(f+1) + Sv
(n-f))/2; // the (f+1)st and (n-f)-th values in S

5. Return ov

The initial range is reduced by half at the end of each iteration

We will start with S and end with S(M) after M iterations

Recall: Approximate Agreement Algorithm

Beats and Pulses Alignment

i-beats i+1 beats

no
"next"

h h+B1 t h+B3h+B2

next

t+𝞼h

NEXT

#S(M)

pulse 0 mod M

R�

R+

beat

PulseIf pulses are clustered we get the
"no next" window followed by
the "next" window

17

• Cycle for M rounds –
• Wait for the skew to pass
• Invoke a NEXT event

The Meta Algorithm

Beats and Pulses Alignment

i-beats i+1 beats

no
"next"

h h+B1 t h+B3h+B2

next

t+𝞼h

NEXT

#S(M)

pulse 0 mod M

R�

R+

beat

Pulse
A well aligned Beat
requires that
the next "Pulse 1" will
be within
the "green" window

Otherwise – invoke a Reset

19

20

21

NEXT

#S(M)

pulse 0 mod M

R�

R+

beat

Pulse

22

NEXT

#S(M)

pulse 0 mod M

R�

R+

beat

Pulse

We force an
immediate pulse

23

NEXT

#S(M)

pulse 0 mod M

R�

R+

beat

Pulse

i=0 and well aligned (green window)

24

delay the next pulse

delay the next pulse

force a pulse
i=0 and well aligned (green window)

Beats and Feedbacks

i-beats i+1 beats

no
"next"

h h+B1 t h+B3

Window without NEXT
can be large

26

