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Exercise 1 6+7 points

Let P and Q be two convex polytopes in R3 given by their vertices, and suppose that they are in general
position, i.e., no four vertices in P ∪Q are coplanar. We are looking for a separating plane of P and Q.
a) Give an O(n) algorithm that finds a separating plane maximizing the variable ‘a’ which contains exactly
three vertices of P ∪Q (if a separating plane exists).
Hint: Transform P ∪Q so that the plane with equation ax+ by+ cz = 1 and the discussed separation LP with
the objective of maximizing a works.
b) Suppose that the separation LP is infeasible, and it returns four constraints that cannot be simultaneously
satisfied. Give an O(n) algorithm that identifies an intersection point of P and Q.

Exercise 2 10 points

Let P be an n-vertex polytope in R3 given by a DCEL, and let v be a fixed vertex, whose k incident edges form
the cyclic sequence S = e1, . . . , ek. Let E be a uniform random sample of

√
n edges of P , and let E′ = ei1 , . . . , ei`

be the cyclic subsequence of edges in E ∩ S. Show that the first two elements of E′ have expected distance at
most O(

√
n), or more precisely, that

E
(
I[|E′| < 2] · k + I[|E′| ≥ 2] · (i2 − i1)

)
= O(

√
n),

where I[x] is the indicator of event x.

Exercise 3 3+5 points

Consider the algorithm on monotonicity testing of images presented in the lecture, and the set of samples
S1 = S1

1 ∪ S2
1 such that S1

1 ∩ S2
1 = ∅, |S1

1 | = Θ(g1/ε) and |S2
1 | = Θ(g1 log n/ε2), where g1 = n2/3

w(M)1/3
.

(a) Prove that for any fixed choice of X ⊆ S1
1 , if the fraction of 1-pixels that do not belong to any submatrix

inM(X) is at least ε/16, then with high probability, at least one such 1-pixel is selected in S2
1 .

(b) Show that unless there exists a violating pair in S1
1 , the set of non-heavy submatrices M(S1

1) contains at
least an 1− ε/8 fraction of the 1-pixels in the image M .

Exercise 4 9 points

Design an algorithm to obtain an estimate of the number of 1-pixels in an image m, denoted by w(M). More
specifically, the algorithm should output, with high constant probability, w(M)/c ≤ ŵ ≤ c · w(M) for some
constant c. The algorithm should use Õ

(
min

{√
w(M), n2

w(M)

})
samples or queries (according to the sparse

image testing model) in expectation.

1

https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer21/geometric-algorithms-with-limited-resources
https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer21/geometric-algorithms-with-limited-resources

