Ray shooting and volume approximation

Sándor Kisfaludi-Bak

Geometric algorithms with limited resources
Summer semester 2021
Overview

• Testing if convex polytopes intersect without preprocessing – wrap-up
• Ray shooting, nearest neighbor
• Volume approximation
Theorem (Chazelle, Liu, Magen ’06)
Given convex polyhedra \(P \) and \(Q \) by DCEL, and stored in a way that we can sample an edge from either, we can decide if \(P \) and \(Q \) intersect in \(O(\sqrt{n}) \) time.

Recall:
- sample from both of size \(r = \sqrt{n} \)
- find separating plane \(H \) (if not, return intersection)
- \(p \in H \cap V(P) \) has neighbor \(p_1 \) on other side, find it by resampling
Theorem (Chazelle, Liu, Magen ’06)
Given convex polyhedra P and Q by DCEL, and stored in a way that we can sample an edge from either, we can decide if P and Q intersect in $O(\sqrt{n})$ time.

Recall:
- sample from both of size $r = \sqrt{n}$
- find separating plane H (if not, return intersection)
- $p \in H \cap V(P)$ has neighbor p_1 on other side, find it by resampling

Todo: prove $E(|C_p| + |C_q|) = O(n/r)$.
Sublinear intersection of convex polytopes without preprocessing

Theorem (Chazelle, Liu, Magen ’06)
Given convex polyhedra P and Q by DCEL, and stored in a way that we can sample an edge from either, we can decide if P and Q intersect in $O(\sqrt{n})$ time.

Recall:
- sample from both of size $r = \sqrt{n}$
- find separating plane H (if not, return intersection)
- $p \in H \cap V(P)$ has neighbor p_1 on other side, find it by resampling

Todo: prove $\mathbb{E}(|C_p| + |C_q|) = O(n/r)$.

Last time:
Ground set S, (sample) set $R \subset S$ of size r. $\varphi : 2^S \to \mathbb{R}$ Let

$$V(R) := \{ s \in S \setminus R \mid \varphi(R \cup \{s\}) \neq \varphi(R) \}$$

$$X(R) := \{ s \in R \mid \varphi(R \setminus \{s\}) \neq \varphi(R) \}$$

Set $v_r := \mathbb{E}(V(R))$ and $x_r := \mathbb{E}(X(R))$.

Sampling Lemma (Gärtner, Welzl ’01)
For $0 \leq r < n$, we have:

$$\frac{v_r}{n-r} = \frac{x_r+1}{r+1}.$$
Perturbing and tweaking the sampling distribution

M: multiset of vertices of $P \cup Q$, where p has $\deg(p)$ copies

M': perturb M by moving infinitesimally randomly towards edge midpoints

D_3: Choose $R_p \cup R_q$ by selecting each vertex of M' indep. with prob. r/n

D_2: Choose $R_p \cup R_q$ by selecting each vertex of M indep. with prob. r/n
Ray shooting, Voronoi pt location

Theorem
Given a convex polytope (as DCEL) of n vertices and a directed line, their intersection can be computed in $O(\sqrt{n})$ time.

Theorem
Given a Delaunay triangulation or a Voronoi diagram as DCEL, we can compute point location (i.e., identify the cell a given query point falls into) in $O(\sqrt{n})$ time.

\[p = (p_x, p_y) \rightarrow H_p : z = 2p_x x + 2p_y y - (p_x^2 + p_y^2) \]
Nearest point of a polytope

\(n_P(q) \): nearest point of \(P \) to \(q \)
\(\xi_P(\ell) \): point of largest \(\ell \)-coordinate in \(P \)
\(\xi_P(H, \ell) \): point of largest \(\ell \)-coordinate in \(P \cap H \)

Theorem
Given a convex polytope \(P \) (as DCEL) of \(n \) vertices, a point \(q \) and a directed line \(\ell \), we can compute \(n_P(q), \xi_P(\ell), \xi_P(H, \ell) \) in \(O(\sqrt{n}) \) time.
Volume approximation

Theorem
Given $\varepsilon > 0$ and a convex polyope P on n vertices, we can compute a $(1 + \varepsilon)$-approximation of its volume in $O(\sqrt{n}/\varepsilon)$ time.
Volume approximation

Theorem
Given $\varepsilon > 0$ and a convex polyope P on n vertices, we can compute a $(1 + \varepsilon)$-approximation of its volume in $O(\sqrt{n}/\varepsilon)$ time.

Stage 1. Reshaping into ball-like polytope

Stage 2. Coreset-like approximation with $O(1/\varepsilon)$ size polytope Q s.t. $P \subset Q \subset P_{\varepsilon}$ by projecting $(1/\sqrt{\varepsilon})$-net of sphere.
Volume approximation

Theorem
Given $\varepsilon > 0$ and a convex polyope P on n vertices, we can compute a $(1 + \varepsilon)$-approximation of its volume in $O(\sqrt{n}/\varepsilon)$ time.

Stage 1. Reshaping into ball-like polytope

Stage 2. Coreset-like approximation with $O(1/\varepsilon)$ size polytope Q s.t. $P \subset Q \subset P_\varepsilon$ by projecting $(1/\sqrt{\varepsilon})$-net of sphere

Stage 1 will use:

Theorem. Any compact convex object $K \subset \mathbb{R}^d$ has a unique maximum volume ellipsoid $E \subseteq K$.

Theorem (John 1948). For any compact convex $K \subset \mathbb{R}^d$ with E centered at the origin, $E \subseteq K \subseteq dE$.