

Dániel Marx and Roohani Sharma

Summer 2023

10 points ——

Damer Marx and Rooman Sharma	Summer 2023
——————————————————————————————————————	gorithms, Exercise Sheet 5
cms.cispa.saarland/paramalg_23	
Total Points: 50	Due: Tuesday, June 27 , 2023
own words. Please indicate the names of your collaboration	but you have to write down a solution on your own, using your orators for each exercise you solve. Further, cite all external sources You need to collect at least 50% of all points on exercise sheets to an .esmer@cispa.de).
— Exercise 1 —	4 + 4 + 2 points —
Let G be an undirected graph, and let s and	t be two vertices of G .
(a) What is the maximum number of impor	extant (s,t) -cuts of size exactly 1 in G ?
(b) What is the maximum number of impor	etant (s,t) -cuts of size exactly 2 in G ?
(c) What is the maximum number of impor	rtant (s,t) -cuts of size at most 2 in G ?
Justify your answers.	
— Exercise 2 —	10 points
- ·	d t be two vertices of G . Is it true that the number of same as the number of important (t,s) -cuts of size at
— Exercise 3 —	10 points
-	ECTED MULTIWAY CUT to DIRECTED MULTIWAY CUT given an instance (G,T,k) of Undirected Multiway (x,k) of Directed Multiway Cut.
— Exercise 4 —	10 points
Cut problem asks for a set S of at most k edge	ertices, and two integers k and ℓ , the Short Multiway ges such that the graph $G-S$ contains no path of length show that the problem is FPT with combined parameters

In the MAX LEAF SUBTREE problem, given a graph G and integer k the goal is to find a sub-tree with at least k leaves. Show that this problem does not admit a polynomial kernel. You may use the fact that MAX LEAF SUBTREE is NP-complete.