Parameterized Algorithms
Introduction II

Lecture #2
April 18, 2023
Recap: fixed-parameter tractability

Main definition
A parameterized problem is **fixed-parameter tractable (FPT)** if there is an $f(k)n^c$ time algorithm for some constant c.
Recap: fixed-parameter tractability

Main definition

A parameterized problem is **fixed-parameter tractable (FPT)** if there is an \(f(k)n^c \) time algorithm for some constant \(c \).

Examples of **NP**-hard problems that are FPT:

- Finding a vertex cover of size \(k \).
- Finding a path of length \(k \).
- Finding \(k \) disjoint triangles.
- Drawing the graph in the plane with \(k \) edge crossings.
- Finding disjoint paths that connect \(k \) pairs of points.
- ...
Recap: fixed-parameter tractability

Main definition

A parameterized problem is **fixed-parameter tractable (FPT)** if there is an $f(k)n^c$ time algorithm for some constant c.

Main questions:
- Is the problem fixed-parameter tractable (FPT) with a given parameter?
- What is the best possible $f(k)$ in the running time?
Recap: FPT techniques

- Bounded-depth search trees
- Kernelization
- Algebraic techniques
- Treewidth
- Color coding
- Iterative compression
Recap: branching

Idea: reduce the problem into a bounder number of instances with strictly smaller parameter.

- Branching into c directions: $O^*(c^k)$ algorithms.
- Branching into k directions: $O^*(k^k)$ algorithms.
- Branching vectors and analysis of recurrences of the form

$$T(k) \leq T(k - 1) + 2T(k - 2) + T(k - 3)$$

- Graph modification problems where the graph property can be characterized by a finite set of forbidden induced subgraphs is FPT.
Closest String

Given strings s_1, \ldots, s_k of length L over alphabet Σ, and an integer d, find a string s (of length L) such that Hamming distance $d(s, s_i) \leq d$ for every $1 \leq i \leq k$.

(Hamming distance: number of differing positions)

\[
\begin{array}{cccccccc}
s_1 & C & B & D & C & C & A & C & B & B \\
s_2 & A & B & D & B & C & A & B & D & B \\
s_3 & C & D & D & B & A & C & C & B & D \\
s_4 & D & D & A & B & A & C & C & B & D \\
s_5 & A & C & D & B & D & D & C & B & C \\
\end{array}
\]
Closest String

Given strings s_1, \ldots, s_k of length L over alphabet Σ, and an integer d, find a string s (of length L) such that Hamming distance $d(s, s_i) \leq d$ for every $1 \leq i \leq k$.

(Hamming distance: number of differing positions)

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_5</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Given strings s_1, \ldots, s_k of length L over alphabet Σ, and an integer d, find a string s (of length L) such that Hamming distance $d(s, s_i) \leq d$ for every $1 \leq i \leq k$.

(Hamming distance: number of differing positions)

Different parameters:
- Number k of strings.
- Length L of strings
- Maximum distance d.
- Alphabet size $|\Sigma|$.
Given strings s_1, \ldots, s_k of length L over alphabet Σ, and an integer d, find a string s (of length L) such that Hamming distance $d(s, s_i) \leq d$ for every $1 \leq i \leq k$.

(Hamming distance: number of differing positions)

Different parameters:
- Number k of strings.
- Length L of strings
- Maximum distance d.
- Alphabet size $|\Sigma|$.

We can ask for running time for example
- $f(d)n^{O(1)}$: FPT parameterized by d
- $f(k, |\Sigma|)n^{O(1)}$: FPT with combined parameters k and $|\Sigma|$
Note: Taking the majority at each position is in general *not* the best solution.

\[
\begin{array}{ccccccc}
s_2 & B & B & B & B & B & B \\
s_3 & B & B & B & B & B & B \\
s_4 & B & B & B & B & B & B \\
s_5 & B & B & B & B & B & B \\
\hline
\text{majority} & B & B & B & B & B & B \\
\text{opt} & A & A & A & B & B & B
\end{array}
\]

- Distance 6 from \(s_1 \)
- Distance 3 from every \(s_i \)

The positions are not independent!
Theorem

Closest String can be solved in time $2^{O(d \log d)} n^{O(1)}$.

- **Main idea**: Given a string y at Hamming distance ℓ from some solution, we use branching to find a string at distance at most $\ell - 1$ from some solution.
- Initially, $y = x_1$ is at distance at most d from some solution.
Closest String

Theorem

Closest String can be solved in time $2^{O(d \log d)} n^{O(1)}$.

- **Main idea:** Given a string y at Hamming distance ℓ from some solution, we use branching to find a string at distance at most $\ell - 1$ from some solution.
- Initially, $y = x_1$ is at distance at most d from some solution.
- If y is not a solution, then there is an x_i with $d(y, x_i) \geq d + 1$.
 - Look at the first $d + 1$ positions p where $x_i[p] \neq y[p]$. For every solution z, it is true for one such p that $x_i[p] = z[p]$.
 - Branch on choosing one of these $d + 1$ positions and replace $y[p]$ with $x_i[p]$; distance of y from solution z decreases to $\ell - 1$.
- Running time $(d + 1)^d \cdot n^{O(1)} = 2^{O(d \log d)} n^{O(1)}$.

Branching: wrap up

- Branching into c directions: $O^*(c^k)$ algorithms.
- Branching into k directions: $O^*(k^k)$ algorithms.
- Branching vectors and analysis of recurrences of the form

$$T(k) \leq T(k - 1) + 2T(k - 2) + T(k - 3)$$

- Graph modification problems where the graph property can be characterized by a finite set of forbidden induced subgraphs is FPT.
Kernelization
Data reductions

We would like to efficiently reduce the input size of a hard problem to make it more tractable.
We would like to efficiently reduce the input size of a hard problem to make it more tractable.

Is there a polynomial-time algorithm that always reduces the size of the input by 1?
Data reductions

We would like to efficiently reduce the input size of a hard problem to make it more tractable.

Is there a polynomial-time algorithm that always reduces the size of the input by 1?

Obviously, only if the problem is polynomial-time solvable.
Kernelization is a method for parameterized preprocessing:
- We want to efficiently reduce the size of the instance \((x, k)\) to an equivalent instance with size bounded by \(f(k)\).
- A basic way of obtaining FPT algorithms:
 - Reduce the size of the instance to \(f(k)\) in polynomial time and then apply any brute force algorithm to the shrunk instance.
- Kernelization is also a rigorous mathematical analysis of efficient preprocessing.
Data reductions—with a guarantee

- **Kernelization** is a method for parameterized preprocessing:
 - We want to efficiently reduce the size of the instance \((x, k)\) to an equivalent instance with size bounded by \(f(k)\).

- A basic way of obtaining FPT algorithms:
 - Reduce the size of the instance to \(f(k)\) in polynomial time and then apply any brute force algorithm to the shrunk instance.

- Kernelization is also a rigorous mathematical analysis of efficient preprocessing.
Kernel for Vertex Cover

Reduction rules for instance \((G, k)\):

(R1) If \(v\) is an isolated vertex, then reduce to \((G - v, k)\).

(R2) If \(v\) has degree more than \(k\), then reduce to \((G - v, k - 1)\).
Kernel for Vertex Cover

Reduction rules for instance \((G, k)\):

(R1) If \(v\) is an isolated vertex, then reduce to \((G - v, k)\).

(R2) If \(v\) has degree more than \(k\), then reduce to \((G - v, k - 1)\).

Lemma

If \((G, k)\) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be applied, then \(|E(G)| \leq k^2\) and \(|V(G)| \leq k^2 + k\).
Kernel for Vertex Cover

Reduction rules for instance \((G, k)\):

(R1) If \(v\) is an isolated vertex, then reduce to \((G - v, k)\).

(R2) If \(v\) has degree more than \(k\), then reduce to \((G - v, k - 1)\).

Lemma

If \((G, k)\) is a yes-instance of Vertex Cover such that (R1) and (R2) cannot be applied, then \(|E(G)| \leq k^2\) and \(|V(G)| \leq k^2 + k\).

Proof:

- Each of the \(k\) vertices of the solution can cover at most \(k\) edges (by (R2)).
- Every vertex of \(G\) is either in the solution, or one of the \(\leq k\) neighbors of a vertex in a solution (by (R1)+(R2)).
Kernel for \textsc{Vertex Cover}

Reduction rules for instance \((G, k)\):

(R1) If \(v\) is an isolated vertex, then reduce to \((G - v, k)\).

(R2) If \(v\) has degree more than \(k\), then reduce to \((G - v, k - 1)\).

\textbf{Lemma}

If \((G, k)\) is a yes-instance of \textsc{Vertex Cover} such that (R1) and (R2) cannot be applied, then \(|E(G)| \leq k^2\) and \(|V(G)| \leq k^2 + k\).

Kernelization for \textsc{Vertex Cover}:

- Apply rules (R1) and (R2) exhaustively.
- If \(|E(G)| > k^2\) or \(|V(G)| > k^2 + k\), then we have a no-instance.
- Otherwise, we have a kernel of size \(O(k^2)\).
Kernelization: formal definition

- Let $P \subseteq \Sigma^* \times \mathbb{N}$ be a parameterized problem and $f : \mathbb{N} \rightarrow \mathbb{N}$ a computable function.

- A **kernel** for P of size f is an algorithm that, given (x, k), takes time polynomial in $|x| + k$ and outputs an instance (x', k') such that
 - $(x, k) \in P \iff (x', k') \in P$
 - $|x'| \leq f(k)$, $k' \leq f(k)$.

- A **polynomial kernel** is a kernel whose function f is polynomial.
Kernelization: formal definition

- Let $P \subseteq \Sigma^* \times \mathbb{N}$ be a parameterized problem and $f: \mathbb{N} \rightarrow \mathbb{N}$ a computable function.

- A **kernel** for P of size f is an algorithm that, given (x, k), takes time polynomial in $|x| + k$ and outputs an instance (x', k') such that
 - $(x, k) \in P \iff (x', k') \in P$
 - $|x'| \leq f(k)$, $k' \leq f(k)$.

- A **polynomial kernel** is a kernel whose function f is polynomial.

Which parameterized problems have kernels?
Theorem
A parameterized problem is FPT if and only if it is decidable and has a kernel (of arbitrary size).

Proof:
If the problem has a kernel:
Reducing the size of the instance to \(f(k) \) in poly time + brute force \(\Rightarrow \) problem is FPT.

If the problem can be solved in time \(f(k) |x| O(1) \):
If \(|x| \leq f(k) \), then we already have a kernel of size \(f(k) \).
If \(|x| \geq f(k) \), then we can solve the problem in time \(f(k) |x| O(1) \leq |x| \cdot |x| O(1) \) (polynomial in \(|x| \)).
A surprising equivalence

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>A parameterized problem is FPT if and only if it is decidable and has a kernel (of arbitrary size).</td>
</tr>
</tbody>
</table>

Proof:
- If the problem has a kernel:
 - Reducing the size of the instance to $f(k)$ in poly time + brute force
 - \Rightarrow problem is FPT.
A surprising equivalence

Theorem

A parameterized problem is FPT if and only if it is decidable and has a kernel (of arbitrary size).

Proof:

- If the problem has a kernel:
 Reducing the size of the instance to $f(k)$ in poly time + brute force
 \Rightarrow problem is FPT.

- If the problem can be solved in time $f(k)|x|^{O(1)}$:
 - If $|x| \leq f(k)$, then we already have a kernel of size $f(k)$.
 - If $|x| \geq f(k)$, then we can solve the problem in time $f(k)|x|^{O(1)} \leq |x| \cdot |x|^{O(1)}$ (polynomial in $|x|$) and then output a trivial yes- or no-instance.
A surprising equivalence

Theorem

A parameterized problem is FPT if and only if it is decidable and has a kernel (of arbitrary size).

Proof:

- If the problem has a kernel:
 Reducing the size of the instance to $f(k)$ in poly time + brute force
 \Rightarrow problem is FPT.

- If the problem can be solved in time $f(k)|x|^{O(1)}$:
 - If $|x| \leq f(k)$, then we already have a kernel of size $f(k)$.
 - If $|x| \geq f(k)$, then we can solve the problem in time $f(k)|x|^{O(1)} \leq |x| \cdot |x|^{O(1)}$ (polynomial in $|x|$) and then output a trivial yes- or no-instance.

- The existence of kernels is not a separate question...

- ...but the existence of polynomial kernels is a deep and nontrivial topic!
Kernelization: summary

- Can we efficiently preprocess the input to reduce the size to $f(k)$?
- We have seen: a kernel of size $O(k^2)$ for Vertex Cover.
- Kernelization follows from FPT algorithm, but the existence of a polynomial kernel is a separate question.
- There are problems where e.g. branching immediately gives an FPT algorithm, but this does not give a polynomial kernel.
- Later:
 - Sunflower Lemma
 - 2-Expansion Lemma
 - Crown Decomposition
 - Linear Programming
- Lower bounds
Color Coding
Why randomized?

- A guaranteed error probability of 10^{-100} is as good as a deterministic algorithm. (Probability of hardware failure is larger!)
- Randomized algorithms can be more efficient and/or conceptually simpler.
- Can be the first step towards a deterministic algorithm.
Polynomial-time vs. FPT randomization

Polynomial-time randomized algorithms
- Randomized selection to pick a **typical**, **unproblematic**, **average** element/subset.
- Success probability is constant or at most polynomially small.

Randomized FPT algorithms
- Randomized selection to satisfy a **bounded number** of (unknown) constraints.
- Success probability might be exponentially small.
Randomization as reduction

Problem A
(what we want to solve)

Problem B
(what we can solve)

Randomized magic
Color Coding

k-Path

Input: A graph G, integer k.

Find: A simple path on k vertices.

Note: The problem is clearly NP-hard, as it contains the Hamiltonian Path problem. But finding a walk is easy.

Theorem

k-Path can be solved in time $2^{O(k)} \cdot n^{O(1)}$.
Color Coding

- Assign colors from \([k]\) to vertices \(V(G)\) uniformly and independently at random.

\[\text{Check if there is a path colored } 1 - 2 - \cdots - k; \text{ output } "YES" \text{ or } "NO".\]

\[\text{If there is no } k \text{-path: no path colored } 1 - 2 - \cdots - k \text{ exists } \Rightarrow "NO".\]

\[\text{If there is a } k \text{-path: the probability that such a path is colored } 1 - 2 - \cdots - k \text{ is } k^{-k} \text{ thus the algorithm outputs } "YES" \text{ with at least that probability.}\]
Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

Check if there is a path colored $1 - 2 - \cdots - k$; output "YES" or "NO".

- If there is no k-path: no path colored $1 - 2 - \cdots - k$ exists \Rightarrow "NO".
- If there is a k-path: the probability that such a path is colored $1 - 2 - \cdots - k$ is $\frac{1}{k}$ thus the algorithm outputs "YES" with at least that probability.
Color Coding

- Assign colors from \([k]\) to vertices \(V(G)\) uniformly and independently at random.

- Check if there is a path colored \(1 - 2 - \cdots - k\); output “YES” or “NO”.
 - If there is no \(k\)-path: no path colored \(1 - 2 - \cdots - k\) exists \(\Rightarrow\) “NO”.
 - If there is a \(k\)-path: the probability that such a path is colored \(1 - 2 - \cdots - k\) is \(k^{-k}\) thus the algorithm outputs “YES” with at least that probability.
Useful fact

If the probability of success is at least p, then the probability that the algorithm **does not** say “YES” after $1/p$ repetitions is at most

$$(1 - p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$
Error probability

Useful fact

If the probability of success is at least \(p \), then the probability that the algorithm does not say “YES” after \(1/p \) repetitions is at most

\[
(1 - p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38
\]

- Thus if \(p > k^{-k} \), then error probability is at most \(1/e \) after \(k^k \) repetitions.
- Repeating the whole algorithm a constant number of times can make the error probability an arbitrary small constant.
- For example, by trying \(100 \cdot k^k \) random colorings, the probability of a wrong answer is at most \(1/e^{100} \).
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

Edges connecting nonadjacent color classes are removed.

The remaining edges are directed towards the larger class.

All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Color Coding

k-PATH

Color Coding
success probability: k^{-k}

Finding a
$1 - 2 - \cdots - k$ colored path

polynomial-time solvable
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Check if there is a **colorful** path where each color appears exactly once on the vertices; output “YES” or “NO”.

![Graph with colored vertices]
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Check if there is a colorful path where each color appears exactly once on the vertices; output “YES” or “NO”.
 - If there is no k-path: no colorful path exists \Rightarrow “NO”.
 - If there is a k-path: the probability that it is colorful is
 \[
 \frac{k!}{k^k} > \frac{(\frac{k}{e})^k}{k^k} = e^{-k},
 \]
 thus the algorithm outputs “YES” with at least that probability.
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

Repeating the algorithm $100e^k$ times decreases the error probability to e^{-100}.

How to find a colorful path?
- Try all permutations ($k! \cdot n^{O(1)}$ time)
- Dynamic programming ($2^k \cdot n^{O(1)}$ time)
Finding a colorful path

Subproblems:
We introduce $2^k \cdot |V(G)|$ Boolean variables:

\[
x(v, C) = \text{TRUE} \quad \text{for some } v \in V(G) \text{ and } C \subseteq [k]
\]

⇔
There is a path P ending at v such that each color in C appears on P exactly once and no other color appears.

Answer:
There is a colorful path $\iff x(v, [k]) = \text{TRUE}$ for some vertex v.
Finding a colorful path

Subproblems:
We introduce $2^k \cdot |V(G)|$ Boolean variables:

\[x(v, C) = \text{TRUE} \text{ for some } v \in V(G) \text{ and } C \subseteq [k] \]
\[\uparrow \]
There is a path P ending at v such that each color in C appears on P exactly once and no other color appears.

Initialization:
For every v with color r, $x(v, \{r\}) = \text{TRUE}$.

Recurrence:
For every v with color r and set $C \subseteq [k]$

\[x(v, C) = \bigvee_{u \in N(v)} x(u, C \setminus \{r\}). \]
Improved Color Coding

k-PATH

Color Coding
success probability: e^{-k}

Finding a colorful path

Solvable in time $2^k \cdot n^{O(1)}$
Derandomization

De-randomization: removing the random choices, making the algorithm deterministic.
Derandomization

De-randomization: removing the random choices, making the algorithm deterministic.

Randomized

Instead of repeatedly using randomness, we go through a special family of colorings.
Derandomization

De-randomization: removing the random choices, making the algorithm deterministic.

Randomized

- Dice
- Colors: red, yellow, green, blue
Derandomization

De-randomization: removing the random choices, making the algorithm deterministic.

Randomized

![Dice and color circles](image)
Derandomization

De-randomization: removing the random choices, making the algorithm deterministic.

Randomized
Derandomization

De-randomization: removing the random choices, making the algorithm deterministic.

Randomized

Deterministic
fixed family of colorings

Instead of repeatedly using randomness, we go through a special family of colorings.
Derandomization

Definition

A family \mathcal{H} of functions $[n] \rightarrow [k]$ is a k-perfect family of hash functions if for every $S \subseteq [n]$ with $|S| = k$, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S, x \neq y$.

Theorem

There is a k-perfect family of functions $[n] \rightarrow [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).
Derandomization

Definition

A family \mathcal{H} of functions $[n] \to [k]$ is a k-perfect family of hash functions if for every $S \subseteq [n]$ with $|S| = k$, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S$, $x \neq y$.

Theorem

There is a k-perfect family of functions $[n] \to [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).

Instead of trying $O(e^k)$ random colorings, we go through a k-perfect family \mathcal{H} of functions $V(G) \to [k]$.

If there is a solution S

\Rightarrow The vertices of S are colorful for at least one $h \in \mathcal{H}$

\Rightarrow Algorithm outputs “YES”.

\Rightarrow k-Path can be solved in deterministic time $2^{O(k)} \cdot n^{O(1)}$.

Derandomized Color Coding

k-PATH

k-perfect family
$2^{O(k)} \log n$ functions

Finding a colorful path

Solvable in time $2^k \cdot n^{O(1)}$
Bounded-degree graphs

Meta theorems exist for bounded-degree graphs, but randomization is usually simpler.

Dense k-vertex Subgraph

Input: A graph G, integers k, m.

Find: A set of k vertices inducing $\geq m$ edges.

Note: on general graphs, the problem is $W[1]$-hard parameterized by k, as it contains k-Clique.

Theorem

Dense k-vertex Subgraph can be solved in randomized time $2^{k(d+1)} \cdot n^{O(1)}$ on graphs with maximum degree d.
Dense k-vertex Subgraph

- Remove each vertex with probability $1/2$ independently.
Dense k-vertex Subgraph

- Remove each vertex with probability $1/2$ independently.

- With probability 2^{-k} no vertex of the solution is removed.

- With probability 2^{-kd} every neighbor of the solution is removed.

\implies We have to find a solution that is the union of connected components!
Dense k-vertex Subgraph

- Remove each vertex with probability $1/2$ independently.

- With probability 2^{-k} no vertex of the solution is removed.
- With probability 2^{-kd} every neighbor of the solution is removed.

\implies We have to find a solution that is the union of connected components!
Dense \(k \)-vertex Subgraph

- Remove each vertex with probability \(\frac{1}{2} \) independently.

\[
\begin{array}{cccc}
\text{k}_1 \text{ vertices} & \text{k}_2 \text{ vertices} & \text{k}_3 \text{ vertices} & \ldots & \text{k}_i \text{ vertices} \\
\text{m}_1 \text{ edges} & \text{m}_2 \text{ edges} & \text{m}_3 \text{ edges} & \ldots & \text{m}_i \text{ edges}
\end{array}
\]

Select connected components with
- at most \(k \) vertices and
- at least \(m \) edges.

What problem is this?
Dense k-vertex Subgraph

- Remove each vertex with probability $1/2$ independently.

k_1 vertices m_1 edges
k_2 vertices m_2 edges
k_3 vertices m_3 edges
... k_i vertices m_i edges

Select connected components with
- at most k vertices and
- at least m edges.

What problem is this?

KNAPSACK!
Solving \textsc{Knapsack} using dynamic programming

\textbf{Knapsack}

\begin{itemize}
 \item \textbf{Input:} \(n \) items with values \(v_i \) and weights \(w_i \).
 \item \textbf{Task:} Find a subset \(S \) of items maximizing \(\sum_{i \in S} v_i \) subject to \(\sum_{i \in S} w_i \leq W \).
\end{itemize}

\textbf{Theorem}

\textsc{Knapsack} with integer weights can be solved in time \(O(nW) \).
Solving Knapsack using dynamic programming

Knapsack

Input: n items with values v_i and weights w_i.

Task: Find a subset S of items maximizing $\sum_{i \in S} v_i$ subject to $\sum_{i \in S} w_i \leq W$.

Theorem

Knapsack with integer weights can be solved in time $O(nW)$.

Knapsack is NP-hard, but not strongly NP-hard: there is a pseudopolynomial-time algorithm (or in other words, there is a polynomial-time algorithm if the weights are given in unary encoding in the input).
Solving Knapsack using dynamic programming

Knapsack

Input: n items with values v_i and weights w_i.

Task: Find a subset S of items maximizing $\sum_{i \in S} v_i$ subject to $\sum_{i \in S} w_i \leq W$.

Theorem

Knapsack with integer weights can be solved in time $O(nW)$.

Let $m[i, w]$ be the maximum value using only the first i items and weight bound w.

Recurrence:

$$m[0, w] = 0$$

$$m[i, w] = \begin{cases} m[i - 1, w] & \text{if } w_i > w \\ m[i, w] = \max\{m[i - 1, w], m[i - 1, w - w_i] + v_i\} & \text{if } w_i \leq w \end{cases}$$

The solution to the original question is exactly $m[n, W]$.
Random subset

Densest k-vertex Subgraph

Random subset success probability: $2^{-k(d+1)}$

Knapsack

polynomial-time solvable (with bounded weights)
Recap: Feedback Vertex Set

Feedback Vertex Set:
Given \((G, k)\), find a set \(S\) of at most \(k\) vertices such that \(G - S\) has no cycles.

- We allow multiple parallel edges and self loops.
- A feedback vertex set is a set that hits every cycle in the graph.
Recap: Feedback Vertex Set

Feedback Vertex Set:
Given \((G, k)\), find a set \(S\) of at most \(k\) vertices such that \(G - S\) has no cycles.

- We allow multiple parallel edges and self loops.
- A feedback vertex set is a set that hits every cycle in the graph.
Recap: Feedback Vertex Set

- If we find a cycle, then we have to include at least one of its vertices into the solution. But the length of the cycle can be arbitrary large!
- **Main idea:** We identify a set of $O(k)$ vertices such that any size-k feedback vertex set has to contain one of these vertices.
- But first: some reductions to simplify the problem.
Reduction rules

(R1) If there is a loop at v, then delete v and decrease k by one.

(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.

(R3) If there is a vertex v of degree at most 1, then delete v.

(R4) If there is a vertex v of degree 2, then delete v and add an edge between the neighbors of v.

If the reduction rules cannot be applied, then every vertex has degree at least 3.
Recap: Branching for Feedback Vertex Set

Let G be a graph whose vertices have degree at least 3.

- Order the vertices as v_1, v_2, \ldots, v_n by decreasing degree (breaking ties arbitrarily).
- Let $V_{3k} = \{v_1, \ldots, v_{3k}\}$ be the $3k$ largest-degree vertices.

Lemma

If G has minimum degree at least 3, then every feedback vertex set S of size at most k contains a vertex from V_{3k}.
Recap: Branching for Feedback Vertex Set

Let \(G \) be a graph whose vertices have degree at least 3.

- Order the vertices as \(v_1, v_2, \ldots, v_n \) by \textbf{decreasing} degree (breaking ties arbitrarily).
- Let \(V_{3k} = \{v_1, \ldots, v_{3k}\} \) be the \(3k \) largest-degree vertices.

Lemma

If \(G \) has minimum degree at least 3, then every feedback vertex set \(S \) of size at most \(k \) contains a vertex from \(V_{3k} \).

Algorithm:

- Apply the reduction rules (poly time) \(\Rightarrow \) graph has minimum degree 3.
- For each vertex \(v \in V_{3k} \), recurse on the instance \((G - v, k - 1) \).
- Running time \((3k)^{k} \cdot n^{O(1)} = 2^{O(k \log k)} \cdot n^{O(1)} \).
Randomized algorithm for \textbf{Feedback Vertex Set}

Identifying a vertex of the solution randomly:

\textbf{Lemma}

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Algorithm for finding a solution of size k with probability $\geq 4 - k$:

Apply reductions.

Select random edge and random endpoint $x \in \{u, v\}$.

\implies good with prob. $\geq 1/4$

Remove x.

Recurse with parameter $k - 1$.

\implies good with prob. $\geq 4 - (k - 1)$

Note: $1/4 \cdot 4 - (k - 1) = 4 - k$.

Randomized algorithm for Feedback Vertex Set

Identifying a vertex of the solution randomly:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Consequence: if we select a random edge uv and select a random endpoint $x \in \{u, v\}$, then x is in some solution S with probability at least $1/4$.
Randomized algorithm for Feedback Vertex Set

Identifying a vertex of the solution randomly:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Consequence: if we select a random edge uv and select a random endpoint $x \in \{u, v\}$, then x is in some solution S with probability at least $\frac{1}{4}$.

Algorithm for finding a solution of size k with probability $\geq 4^{-k}$:

- Apply reductions.
- Select random edge and random endpoint x.
- Remove x.
- Recurse with parameter $k - 1$.
Randomized algorithm for Feedback Vertex Set

Identifying a vertex of the solution randomly:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Consequence: if we select a random edge uv and select a random endpoint $x \in \{u, v\}$, then x is in some solution S with probability at least $1/4$.

Algorithm for finding a solution of size k with probability $\geq 4^{-k}$:

- Apply reductions.
- Select random edge and random endpoint x. \Rightarrow good with prob. $\geq 1/4$
- Remove x.
- Recurse with parameter $k - 1$. \Rightarrow good with prob. $\geq 4^{-(k-1)}$

Note: $1/4 \cdot 4^{-(k-1)} = 4^{-k}$.
Proof of lemma:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

![Diagram of G - S and J intersecting S]
Proof of lemma:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Only the edges in $G - S$ are BAD $\Rightarrow < |V(G - S)|$ BAD edges.
Proof of lemma:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Only the edges in $G - S$ are BAD $\Rightarrow < |V(G - S)|$ BAD edges.

Every edge in J is GOOD, lower bound on their number:

- Classify the vertices of $G - S$ into $V_{\leq 1}$, $V_{= 2}$, $V_{> 2}$ by degree.
- Each vertex in $V_{\leq 1}$ contributes ≥ 2 edges to J.
- Each vertex in $V_{= 2}$ contributes ≥ 1 edges to J.
Proof of lemma:

Lemma

Let G be a graph with minimum degree at least 3 and let S be a feedback vertex set of G. Then more than half of the edges have at least one endpoint in S.

Only the edges in $G - S$ are BAD $\Rightarrow |V(G - S)|$ BAD edges.

Every edge in J is GOOD, lower bound on their number:
- Classify the vertices of $G - S$ into $V_{\leq 1}$, $V_{= 2}$, $V_{> 2}$ by degree.
- Each vertex in $V_{\leq 1}$ contributes ≥ 2 edges to J.
- Each vertex in $V_{= 2}$ contributes ≥ 1 edges to J.
- Number of GOOD edges is more than the number of BAD edges:

$$2|V_{\leq 1}| + |V_{= 2}| > |V_{\leq 1}| + |V_{= 2}| + |V_{> 2}| = |V(G - S)|$$

$(|V_{\leq 1}| > |V_{> 2}|$ because $G - S$ is a forest)$
Summary

Questions
- Is the problem fixed-parameter tractable (FPT) with a given parameter?
- What is the best possible $f(k)$ in the running time?
- Is there a polynomial kernel?

Branching
- $2^{O(k)} \cdot n^{O(1)}$ time algorithms for Vertex Cover and Triangle Free Deletion.
- $2^{O(k \log k)} n^{O(1)}$ time algorithms for Feedback Vertex Set and Closest String.

Kernelization
- $O(k^2)$ kernel for Vertex Cover.

Randomization
- $2^{O(k)} \cdot n^{O(1)}$ (randomized) algorithm for k-Path using Color Coding.
- $2^{k(d+1)} \cdot n^{O(1)}$ (randomized) algorithm for Dense k-vertex Subgraph.
- $4^k \cdot n^{O(1)}$ (randomized) algorithm for Feedback Vertex Set.
The race for better FPT algorithms

"Slightly super-exponential"

Double exponential

Tower of exponentials

Single exponential

Subexponential