Topics in Computational Social Choice Theory

Lecture 01: Introduction on Discrete Fair Division

Hannaneh Akrami
Organization

Seminar: 2+0, 7 CPS

Organized by Kurt Mehlhorn, Nidhi Rathi, and Hannaneh Akrami

When? Every Tuesday 14:15 - 15:45

Requirements: Basic algorithms lecture
(Introduction to Algorithms and Data Structures)

Your task:
• Present a paper from the list in 60-85 minutes.
• Write a summary of the paper by August 2nd.
• The presentation needs to be discussed with us at least one week before your scheduled talk.
• Send us your preferred order of the papers by April 30th.
Computational Social Choice Theory

Social Choice Theory: Making a collective decision from individual preferences.
Computational Social Choice Theory

Social Choice Theory: Making a collective decision from individual preferences.

Voting
Social Choice Theory: Making a collective decision from individual preferences.

Voting

Resource Allocation
Computational Social Choice Theory

Social Choice Theory: Making a collective decision from individual preferences.

Voting

Resource Allocation

Stable Matchings
Computational Social Choice Theory

Social Choice Theory: Making a collective decision from individual preferences.

Economists and Politicians: Does there exist a social choice mechanism with the desired economic properties?
Computational Social Choice Theory

Social Choice Theory: Making a collective decision from individual preferences.

Economists and Politicians: Does there exist a social choice mechanism with the desired economic properties?

Computer Scientists: How to efficiently compute such a mechanism?
Computational Social Choice Theory

Social Choice Theory: Making a collective decision from individual preferences.

Economists and Politicians: Does there exists a social choice mechanism with the desired economic properties?

Computer Scientists: How to efficiently compute such a mechanism?
Fair Division

Divide **items** among **agents** in a **fair** manner.
Fair Division

Divide **items** among **agents** in a **fair** manner.

Applications:

- Partnership dissolution
- Divorce settlements
- Household chores
- Air traffic management
Items

Desirable

Undesirable
Items

Desirable

Divorce settlements

Undesirable

Household chores
Items

Desirable

Divisible goods

Indivisible goods

Undesirable
Items

Desirable

Divisible goods

Indivisible goods

Undesirable
Items

Desirable
- Divisible goods
- Indivisible goods

Undesirable
- Divisible chores
- Indivisible chores
Items

- Desirable
 - Divisible goods
 - Indivisible goods
- Undesirable
 - Divisible chores
 - Indivisible chores
Items

Desirable

Divisible goods

Indivisible goods

Undesirable

Divisible chores

Indivisible chores

Today
Items

Desirable
- Divisible goods
- Next week
- Today

Undesirable
- Undesirable
- Divisible chores
- Indivisible chores
- Next week
Discrete Fair Division

Divide **indivisible items** among **agents** in a **fair** manner.

Input: $\mathcal{I} = (N, M, V)$

- N: set of n agents
- M: set of m indivisible goods
- Valuation functions $v_i : 2^M \to \mathbb{R}_{\geq 0}$
Discrete Fair Division

Divide **indivisible items** among **agents** in a **fair** manner.

Input: \(\mathcal{I} = (N, M, V) \)

- \(N \): set of \(n \) agents
- \(M \): set of \(m \) indivisible goods
- Valuation functions \(v_i : 2^M \to \mathbb{R}_{\geq 0} \)
Discrete Fair Division

Divide **indivisible items** among **agents** in a **fair** manner.

Input: $\mathcal{I} = (N, M, V)$

- N: set of n agents
- M: set of m indivisible goods
- Valuation functions $v_i : 2^M \rightarrow \mathbb{R}_{\geq 0}$
Discrete Fair Division

Divide **indivisible items** among **agents** in a **fair** manner.

Input: \(I = (N, M, V)\)

- \(N\): set of \(n\) agents
- \(M\): set of \(m\) indivisible goods
- Valuation functions \(v_i : 2^M \rightarrow \mathbb{R}_{\geq 0}\)

<table>
<thead>
<tr>
<th></th>
<th>🍎</th>
<th>🍊</th>
<th>🍓</th>
<th>🍊</th>
<th>🍊</th>
</tr>
</thead>
<tbody>
<tr>
<td>🍓</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>🍓</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>🍓</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Discrete Fair Division

Divide *indivisible items* among *agents* in a *fair* manner.

Input: \(I = (N, M, V) \)

- \(N \): set of \(n \) agents
- \(M \): set of \(m \) indivisible goods
- Valuation functions \(v_i : 2^M \rightarrow \mathbb{R}_{\geq 0} \)

<table>
<thead>
<tr>
<th></th>
<th>(\text{Banana})</th>
<th>(\text{Apple})</th>
<th>(\text{Strawberry})</th>
<th>(\text{Orange})</th>
<th>(\text{Peach})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Agent 2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Agent 3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Goal: Find a *fair* allocation of the goods to the agents.
Discrete Fair Division

Divide **indivisible items** among **agents** in a **fair** manner.

Input: $\mathcal{I} = (N, M, V)$

- N: set of n agents
- M: set of m indivisible goods
- Valuation functions $v_i : 2^M \rightarrow \mathbb{R}_{\geq 0}$

Goal: Find a **fair** allocation of the goods to the agents.

A partition $X = (X_1, X_2, \ldots, X_n, P)$ of M
Discrete Fair Division

Divide **indivisible items** among **agents** in a **fair** manner.

Input: \(I = (N, M, V) \)

- **\(N \):** set of \(n \) agents
- **\(M \):** set of \(m \) indivisible goods
- **Valuation functions** \(v_i : 2^M \rightarrow \mathbb{R}_{\geq 0} \)

Goal: Find a **fair** allocation of the goods to the agents.

A partition \(X = (X_1, X_2, \ldots, X_n, P) \) of \(M \)
Discrete Fair Division

Divide **indivisible items** among **agents** in a **fair** manner.

Input: \(I = (N, M, V) \)

- \(N = \{a_1, a_2, a_3\} \)
- \(M = \{g_1, g_2, g_3, g_4, g_5\} \)
- \(X_1 = \{g_1\}, X_2 = \{g_2, g_5\}, X_3 = \{g_3\}, P = \{g_4\} \)
- \(v_1(X_1) = 4, v_1(X_2) = 3 \)
Discrete Fair Division

Divide *indivisible items* among *agents* in a *fair* manner.

Input: $\mathcal{I} = (N, M, V)$

- $N = \{a_1, a_2, a_3\}$
- $M = \{g_1, g_2, g_3, g_4, g_5\}$
- $X_1 = \{g_1\}$, $X_2 = \{g_2, g_5\}$, $X_3 = \{g_3\}$, $P = \{g_4\}$
- $v_1(X_1) = 4$, $v_1(X_2) = 3$

<table>
<thead>
<tr>
<th></th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
<th>g_4</th>
<th>g_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>a_2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

assuming v_1 is additive: for all $S \subseteq M$, $v_1(S) = \sum_{g \in S} v_i(\{g\})$
Discrete Fair Division

Divide **indivisible items** among **agents** in a **fair** manner.

Input: \(\mathcal{I} = (N, M, V) \)

- \(N = \{a_1, a_2, a_3\} \)
- \(M = \{g_1, g_2, g_3, g_4, g_5\} \)
- \(X_1 = \{g_1\}, \ X_2 = \{g_2, g_5\}, \ X_3 = \{g_3\}, \ P = \{g_4\} \)
- \(v_1(X_1) = 4, \ v_1(X_2) = 3 \)

<table>
<thead>
<tr>
<th></th>
<th>(g_1)</th>
<th>(g_2)</th>
<th>(g_3)</th>
<th>(g_4)</th>
<th>(g_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(a_2)</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_3)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

An allocation is **complete**, if \(P = \emptyset \) and **partial** otherwise.
Fairness
Which allocation is fair?
Fairness

- Envy Based
- Share Based
Fairness

- Envy Based
 - Envy Freeness
 - EF1
 - EFX
- Share Based
Fairness

- Envy Based
 - Envy Freeness
 - EF1
 - EFX
- Share Based
 - Proportionality
 - MMS
Envy Freeness

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j:

$v_i(X_i) \geq v_i(X_j)$. [Foley 1967]
Envy Freeness

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j:
$$v_i(X_i) \geq v_i(X_j).$$ [Foley 1967]

Which allocation is envy free?

1.
2.
3.

[Diagrams showing allocations]
Envy Freeness

Definition: An allocation X is envy free, if and only if for all agents $a_i, a_j:$
$v_i(X_i) \geq v_i(X_j).$ [Foley 1967]

Do complete envy free allocations always exist?
Envy Freeness

Definition: An allocation X is envy free, if and only if for all agents a_i, a_j:
$\forall i \in [1,n], \forall j \in [1,n] (i \neq j): v_i(X_i) \geq v_i(X_j)$. [Foley 1967]

Do complete envy free allocations always exist?

- For divisible goods, YES! (Next weeks)
Envy Freeness

Definition: An allocation X is envy free, if and only if for all agents a_i, a_j:

$$v_i(X_i) \geq v_i(X_j).$$ [Foley 1967]

Do complete envy free allocations always exist?

- For divisible goods, YES! (Next weeks)
- For indivisible goods, NO!

Envy Freeness

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j:

$$v_i(X_i) \geq v_i(X_j).$$

[Foley 1967]

Do complete envy free allocations always exist?

- For divisible goods, YES! (Next weeks)
- For indivisible goods, NO!

Others should not get more than me!
EF1

Definition: An allocation X is **envy free up to one item** or **EF1**, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.
EF1

Definition: An allocation X is **envy free up to one item** or EF1, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.
EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

I do not envy him if the apple is removed!
EF1

Definition: An allocation X is **envy free up to one item** or EF1, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

Do complete EF1 allocations always exist?
EF1

Definition: An allocation X is **envy free up to one item** or **EF1**, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

Do complete EF1 allocations always exist?

- YES for monotone valuations!

I do not envy him if the apple is removed!
EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

Do complete EF1 allocations always exist?

- YES for monotone valuations!

for all $S \subseteq M$ and $g \in M$, $v(S \cup \{g\}) \geq v(S)$
EF1

Definition: An allocation X is **envy free up to one item** or **EF1**, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

Do complete EF1 allocations always exist?

- **YES** for **monotone valuations**!

 for all $S \subseteq M$ and $g \in M$, $v(S \cup \{g\}) \geq v(S)$

- A complete EF1 allocation can be found in polynomial time.

 [Lipton, Markakis, Mossel, Saberi 2004]
EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

Do complete EF1 allocations always exist?

- YES for monotone valuations!

> for all $S \subseteq M$ and $g \in M$, $v(S \cup \{g\}) \geq v(S)$

- A complete EF1 allocation can be found in polynomial time.

- Today: A polynomial time algorithm to find a complete EF1 allocation for additive valuations.

[Lipton, Markakis, Mossel, Saberi 2004]
Round-Robin Algorithm

• Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
• Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.
Round-Robin Algorithm

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
<th>🍓</th>
<th>🍊</th>
<th>🍊</th>
</tr>
</thead>
<tbody>
<tr>
<td>🧑‍♀️</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>🧑‍♀️</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>🧑‍♀️</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Round-Robin Algorithm

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
<th>🍓</th>
<th>🍊</th>
<th>🍉</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Round-Robin Algorithm

- Fix an ordering of the agents, say \(a_1, a_2, \ldots, a_n\).
- Agents take turns according to the ordering \((a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)\) to pick their favorite items from the set of the remaining items.

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
<th>🍓</th>
<th>🍊</th>
<th>🍊</th>
</tr>
</thead>
<tbody>
<tr>
<td>🧑‍ê�</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>🧑‍ู่</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>🧑‍ ريال</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Round-Robin Algorithm

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
<th>🍓</th>
<th>🍊</th>
<th>🍏</th>
</tr>
</thead>
<tbody>
<tr>
<td>🧑‍❤️‍👨</td>
<td>[4]</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>🧑‍:Any</td>
<td>1</td>
<td>0</td>
<td>[5]</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>🧑‍:Any</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>[1]</td>
</tr>
</tbody>
</table>
Round-Robin Algorithm

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
<th>🍓</th>
<th>🍊</th>
<th>🍏</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Round-Robin Algorithm

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[a_1 \quad a_2 \quad a_3 \quad \ldots \quad a_n \]
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[a_1 \quad a_2 \quad a_3 \quad \ldots \quad a_n \]

First round:
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[a_1 \quad a_2 \quad a_3 \quad \ldots \quad a_n \]

First round: \[\bullet \]
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[a_1 \quad a_2 \quad a_3 \quad \ldots \quad a_n \]

First round: [Image of colored circles indicating allocation]
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[a_1, a_2, a_3, \ldots, a_n \]

First round: \[\bullet, \odot, \odot, \cdots, \bullet \]

Second round: \[\bullet \]
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[a_1, a_2, a_3, \ldots, a_n\]

First round:
- \(a_1\) (red)
- \(a_2\) (yellow)
- \(a_3\) (blue)
- \(\ldots\)
- \(a_n\) (black)

Second round:
- \(a_1\) (red)
- \(a_2\) (yellow)
- \(a_3\) (blue)
- \(\ldots\)
- \(a_n\) (black)
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[
\begin{array}{cccccc}
\ldots & a_1 & a_2 & a_3 & \ldots & a_n \\
\text{First round:} & \bullet & \circ & \bullet & \ldots & \bullet \\
\text{Second round:} & \bullet & \circ & \bullet & \ldots & \bullet \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\text{Last round:} & \end{array}
\]
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).

\[
\begin{array}{c}
\text{First round:} \\
\text{Second round:} \\
\text{Last round:}
\end{array}
\]

\[
\begin{array}{c}
\cdots \, \bullet \, \cdots \, \bullet \, \cdots \\
\cdots \, \bullet \, \cdots \, \bullet \, \cdots \\
\cdots \, \cdots \, \cdots \\
\cdots \, \bullet
\end{array}
\]
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).

\[
\begin{align*}
\text{First round:} & \quad \cdots \quad r \rightarrow b \quad \cdots \\
\text{Second round:} & \quad \cdots \quad r \rightarrow b \quad \cdots \\
\text{Last round:} & \quad \cdots \quad b
\end{align*}
\]
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).

If \(r\) precedes \(b\), by additivity
\[
v_r(X_r) \geq v_r(X_b).
\]
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).

\[
\begin{array}{c|c|c}
 & b & r \\
\hline
\text{First round:} & \cdots & \bullet & \cdots & \bullet & \cdots \\
\text{Second round:} & \cdots & \bullet & \cdots & \bullet & \cdots \\
\hline
\text{Last round:} & \cdots & \bullet
\end{array}
\]
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

\begin{align*}
\text{First round:} & \quad \cdots \quad g \quad \cdots \quad \bullet \quad \cdots \\
\text{Second round:} & \quad \cdots \quad \bullet \quad \cdots \quad \bullet \quad \cdots \\
\vdots & \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\
\text{Last round:} & \quad \cdots \quad \bullet
\end{align*}
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).

\[
\begin{array}{cccc}
& b & r \\
First round: & \cdots & g & \cdots & \bullet & \cdots \\
Second round: & \cdots & \bullet & \cdots & \bullet & \cdots \\
. & . & . & . & . & . \\
Last round: & \cdots & \bullet & \cdots \\
\end{array}
\]
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r,b)\). Analyze envy from \(r\) to \(b\).

\[
\begin{align*}
\text{First round:} & \quad \cdots \quad g \quad \cdots \quad \bullet \quad \cdots \\
\text{Second round:} & \quad \cdots \quad \bullet \quad \cdots \quad \bullet \quad \cdots \\
\text{Last round:} & \quad \cdots \quad \bullet \quad \cdots
\end{align*}
\]

If \(b\) precedes \(r\), by additivity
\[
v_r(X_r) \geq v_r(X_b \setminus \{g\}).
\]
Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]
Definition: An allocation \(X \) is envy free up to any item or EFX, if and only if for all agents \(a_i, a_j \), and for all goods \(g \in X_j \):
\[v_i(X_i) \geq v_i(X_j \setminus \{g\}) . \]

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

Is the following allocation EFX?

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
<th>🍓</th>
<th>🍊</th>
<th>🍊</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

• EF \implies EFX \implies EF1
Definition: An allocation X is **envy free up to any item** or EFX, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

Do complete EFX allocations always exist?

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]
EFX

Definition: An allocation X is **envy free up to any item** or **EFX**, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

- $\text{EF} \implies \text{EFX} \implies \text{EF}^1$

Do complete EFX allocations always exist?

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]
EFX

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

- $\text{EF} \implies \text{EFX} \implies \text{EF1}$

Do complete EFX allocations always exist? OPEN

Fair division’s biggest problem!

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]
EFX

Definition: An allocation X is **envy free up to any item** or **EFX**, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

- **EF \implies EFX \implies EF1**

Do complete EFX allocations always exist? **OPEN**

Fair division’s biggest problem!

In this seminar we will see:

- Complete EFX allocations exist for 3 agents if at least one has an additive valuation. [Akrami, Alon, Chaudhury, Garg, Mehlhorn, Mehta 2023]

- “Good” partial EFX allocations exists. [Chaudhury, Kavitha, Mehlhorn, Sgouritsa 2020]

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]
Fairness

- Envy Based
 - Envy Freeness
 - EF1
 - EFX

- Share Based
 - Proportionality
 - MMS
Proportionality

Definition: An allocation X is proportional, if and only if for all agents a_i:

$$v_i(X_i) \geq v_i(M)/n.$$
Proportionality

Definition: An allocation X is *proportional*, if and only if for all agents a_i:
$v_i(X_i) \geq v_i(M)/n$.

Which allocation is proportional?
Proportionality

Definition: An allocation X is **proportional**, if and only if for all agents a_i: $v_i(X_i) \geq v_i(M)/n$.

Do proportional allocations always exist?
Proportionality

Definition: An allocation X is proportional, if and only if for all agents a_i: $v_i(X_i) \geq v_i(M)/n$.

Do proportional allocations always exist?

- For divisible goods, YES! (Next week)
Proportionality

Definition: An allocation X is proportional, if and only if for all agents a_i:

$$v_i(X_i) \geq v_i(M)/n.$$

Do proportional allocations always exist?

- For divisible goods, YES! (Next week)
- For indivisible goods, NO!
Definition: An allocation X is **proportional**, if and only if for all agents a_i:

$$v_i(X_i) \geq v_i(M)/n.$$

Do proportional allocations always exist?

- For divisible goods, YES! (Next week)
- For indivisible goods, NO!

I am not getting my proportional share!
Maximin Share

- What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?
Maximin Share

What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS_{v_i}^n(M) = \max_{(A_1, \ldots, A_n) \in [n]} \min_{j \in [n]} v_i(A_j).$$
Maximin Share

- What value can I guarantee for myself if I divide the items into \(n \) bundles and receive the least valuable bundle?

Definition: For all agents \(a_i \), maximin share of agent \(i \) is

\[
MMS_i = MMS^n_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).
\]
Maximin Share

- What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS^n_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banana</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strawberry</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMS$_1$</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Item</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>Item</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>Item</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
</tbody>
</table>

MMS$_1 = 3$
Maximin Share

- What value can I guarantee for myself if I divide the items into \(n \) bundles and receive the least valuable bundle?

Definition: For all agents \(a_i \), maximin share of agent \(i \) is

\[
MMS_i = MMS_{v_i}^{n} (M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).
\]

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banana</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Apple</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Strawberry</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(MMS_1 = 3 \)

\(MMS_2 = 1 \)
Maximin Share

- What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS^n_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

<table>
<thead>
<tr>
<th></th>
<th>Banana</th>
<th>Apple</th>
<th>Strawberry</th>
<th>Orange</th>
<th>Mango</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

MMS$_1 = 3$

MMS$_2 = 1$

MMS$_3 = 2$
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS^n_{v_i}(M) = \max_{(A_1, \ldots, A_n) \in [n]} \min_{j \in [n]} v_i(A_j).$$

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>MMS$_1 = 3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>MMS$_2 = 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>MMS$_3 = 2$</td>
</tr>
</tbody>
</table>
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is MMS, if for all agents a_i, $v_i(X_i) \geq MMS_i$.

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
<th>🍓</th>
<th>🍊</th>
<th>🍊</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Person 1]</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>![Person 2]</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>![Person 3]</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

MMS$_1 = 3$

MMS$_2 = 1$

MMS$_3 = 2$
Maximin Share

Definition: For all agents \(a_i \), maximin share of agent \(i \) is

\[
MMS_i = MMS^n_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).
\]

Definition: An allocation \(X \) is MMS, if for all agents \(a_i \), \(v_i(X_i) \geq MMS_i \).

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>MMS_1 = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>MMS_2 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>MMS_3 = 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS^n_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is MMS, if for all agents a_i, $v_i(X_i) \geq MMS_i$.
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS^n_{v_i}(M) = \max_{(A_1, \ldots, A_n) \in [n]} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is MMS, if for all agents a_i, $v_i(X_i) \geq MMS_i$.

Do MMS allocations always exist?
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS^n_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i, $v_i(X_i) \geq MMS_i$.

Do MMS allocations always exist? **NO!** [Procaccia, Wang 2014]
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i, $v_i(X_i) \geq MMS_i$.

Do MMS allocations always exist? **NO!** [Procaccia, Wang 2014]

Definition: For all $\alpha \in [0, 1]$, an allocation X is α-MMS, if for all agents a_i, $v_i(X_i) \geq \alpha \cdot MMS_i$.
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS^n_{v_i}(M) = \max_{(A_1,\ldots,A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is MMS, if for all agents a_i, $v_i(X_i) \geq MMS_i$.

Do MMS allocations always exist? NO! [Procaccia, Wang 2014]

Definition: For all $\alpha \in [0, 1]$, an allocation X is α-MMS, if for all agents a_i, $v_i(X_i) \geq \alpha \cdot MMS_i$.

- The best known α: $3/4 + 3/3836$ [Akrami, Garg 2024]
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$
MMS_i = MMS^n_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).
$$

Definition: An allocation X is MMS, if for all agents a_i, $v_i(X_i) \geq MMS_i$.

Do MMS allocations always exist? NO! [Procaccia, Wang 2014]

Definition: For all $\alpha \in [0, 1]$, an allocation X is α-MMS, if for all agents a_i, $v_i(X_i) \geq \alpha \cdot MMS_i$.

- The best known α: $3/4 + 3/3836$ [Akrami, Garg 2024]

In this seminar we will see:
- $3/4$-MMS allocations exist. [Ghodsi, Hajiaghayi, Seddighin, Seddighin, Yami 2018] [Garg, Taki 2020] [Akrami, Garg, Taki 2023]
Fairness

- Envy Based
 - Envy Freeness
 - EF1
 - EFX
- Share Based
 - Proportionality
 - MMS
Are we done?
Are we done?

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>
Are we done?

<table>
<thead>
<tr>
<th>100</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>🍌</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Is the allocation “fair”?
- EF1?
Are we done?

<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Is the allocation “fair”?

- EF1?
- EFX?
Are we done?

<table>
<thead>
<tr>
<th></th>
<th>Banana</th>
<th>Apple</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>User 2</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Is the allocation "fair"?

- EF1?
- EFX?
- MMS?
Efficiency

Divide *indivisible items* among *agents* in a *fair* and *efficient* manner.
Efficiency

Divide indivisible items among agents in a fair and efficient manner.

Definition: Allocation X *pareto dominates* allocation Y, if and only if

- for all agents a_i, $v_i(X_i) \geq v_i(Y_i)$, and
- there exists an agent a_j, such that $v_j(X_j) > v_j(Y_j)$.

Efficiency

Divide *indivisible items* among *agents* in a *fair* and *efficient* manner.

Definition: Allocation X *pareto dominates* allocation Y, if and only if

- for all agents a_i, $v_i(X_i) \geq v_i(Y_i)$, and
- there exists an agent a_j, such that $v_j(X_j) > v_j(Y_j)$.

Definition: Allocation X is *pareto optimal* or *PO* if there exists no allocation Y such that Y pareto dominates X.
Efficiency

Divide **indivisible items** among **agents** in a **fair** and **efficient** manner.

Definition: Allocation X **pareto dominates** allocation Y, if and only if
- for all agents a_i, $v_i(X_i) \geq v_i(Y_i)$, and
- there exists an agent a_j, such that $v_j(X_j) > v_j(Y_j)$.

Definition: Allocation X is **pareto optimal** or PO if there exists no allocation Y such that Y pareto dominates X.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>![Banana]</td>
<td>![Apple]</td>
</tr>
<tr>
<td>![Person 1]</td>
<td>100</td>
</tr>
<tr>
<td>![Person 2]</td>
<td>1</td>
</tr>
</tbody>
</table>

Is the allocation pareto optimal?
Divide *indivisible items* among *agents* in a *fair* and *efficient* manner.

Definition: Allocation X *pareto dominates* allocation Y, if and only if
- for all agents a_i, $v_i(X_i) \geq v_i(Y_i)$, and
- there exists an agent a_j, such that $v_j(X_j) > v_j(Y_j)$.

Definition: Allocation X is *pareto optimal* or PO if there exists no allocation Y such that Y pareto dominates X.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Is the allocation pareto optimal?
Efficiency

Divide **indivisible items** among **agents** in a **fair** and **efficient** manner.

Definition: Allocation X **pareto dominates** allocation Y, if and only if
- for all agents a_i, $v_i(X_i) \geq v_i(Y_i)$, and
- there exists an agent a_j, such that $v_j(X_j) > v_j(Y_j)$.

Definition: Allocation X is **pareto optimal** or **PO** if there exists no allocation Y such that Y pareto dominates X.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Banana</td>
<td>Apple</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Is the allocation pareto optimal?</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Fairness and Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Banana</th>
<th>Apple</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Fair**: ✔️
- **Efficient**: ✗️

<table>
<thead>
<tr>
<th></th>
<th>Banana</th>
<th>Apple</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Fair**: ✔️
- **Efficient**: ✔️

<table>
<thead>
<tr>
<th></th>
<th>Banana</th>
<th>Apple</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Fair**: ✔️
- **Efficient**: ✔️
Fairness and Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Banana</th>
<th>Apple</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Fair**: A is fair, B is not fair.
- **Efficient**: A is efficient, B is efficient.

In this seminar we will see:

- EF1+PO allocations exist and can be computed in pseudopolynomial time.

[Barman, Krishnamurthy, Vaish 2018]
Nash Social Welfare

Definition: Nash social welfare of an allocation X is

$$\text{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i) \right)^{1/n}.$$
Nash Social Welfare

Definition: Nash social welfare of an allocation X is

$$\text{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i) \right)^{1/n}.$$

Definition: Allocation X is MNW, if $\text{NSW}(X) \geq \text{NSW}(Y)$ for all allocations Y.
Nash Social Welfare

Definition: Nash social welfare of an allocation X is

$$NSW(X) = \left(\prod_{a_i \in N} v_i(X_i) \right)^{1/n}.$$

Definition: Allocation X is α-MNW, if $NSW(X) \geq \alpha \cdot NSW(Y)$ for all allocations Y and $\alpha \in [0, 1]$.
Nash Soical Welfare

Definition: Nash social welfare of an allocation X is

$$\text{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i) \right)^{1/n}. $$

Definition: Allocation X is α-MNW, if $\text{NSW}(X) \geq \alpha \cdot \text{NSW}(Y)$ for all allocations Y and $\alpha \in [0, 1]$.

In this seminar we will see:

- MNW \implies EF1 + PO [Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]
Nash Social Welfare

Definition: Nash social welfare of an allocation X is

$$\text{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i) \right)^{1/n}.$$

Definition: Allocation X is α-MNW, if $\text{NSW}(X) \geq \alpha \cdot \text{NSW}(Y)$ for all allocations Y and $\alpha \in [0, 1]$.

In this seminar we will see:

- MNW \implies EF1 + PO
 [Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

- 1.45^{-1}-MNW allocations can be computed in polynomial time.
 [Barman, Krishnamurthy, Vaish 2018]
Recap

Divide **items** among **agents** in a **fair** and **efficient** manner.

Notions of fairness: envy freeness, EF1, EFX, proportionality, MMS, . . .

Notions of efficiency: pareto optimality, MNW . . .
Seminar Overview

23.04: Introduction on Discrete Fair Division (HA)

30.04: Introduction on Cake Cutting (NR)

07.05: EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number [Akrami, Alon, Chaudhury, Garg, Mehlhorn, Mehta 2023] (HA)
- EFX for 3 agents

14.05: Rental Harmony: Sperner’s Lemma in Fair Division [Su 1999] (NR)

21.05: no lecture

28.05: Fair and Efficient Cake Division with Connected Pieces [Arunachaleswaran, Barman, Kumar, Rathi 2019] (student talk)
-
Seminar Overview

04.06: The Unreasonable Fairness of Maximum Nash Welfare [Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016] (student talk)
- MNW \implies EF1+PO

11.06: A Little Charity Guarantees Almost Envy-Freeness [Chaudhury, Kavitha, Mehlhorn, Sgouritsa 2020] (student talk)
- “good” partial EFX allocation

18.06: no lecture

25.06: Existence and Computation of Epistemic EFX Allocations [Caragiannis, Sharma, Garg, Rathi, Varricchio 2023] (student talk)
- a relaxation of EFX
Seminar Overview

02.07: Simplification and Improvement of MMS Approximation [Akrami, Garg, Sharma, Taki 2023] (student talk)
- 3/4-MMS

09.07: Finding Fair and Efficient Allocations [Barman, Krishnamurthy, Vaish 2018] (student talk)
- 1.45^{-1}-MNW + EF1 + PO

16.07: On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources [Bhaskar, Sricharan, Vaish 2021] (student talk)
-

- randomized allocations
Don’t forget!

Send us your preferred list of the student papers by April 30th.