

Topics in Computational Social Choice Theory

Lecture 01: Introduction on Discrete Fair Division

Hannaneh Akrami

Organization

Seminar: 2+0, 7 CPS

Organized by
When?
Requirements:

Your task:

Kurt Mehlhorn, Nidhi Rathi, and Hannaneh Akrami
Every Tuesday 14:15-15:45
Basic algorithms lecture (Introduction to Algorithms and Data Structures)

- Present a paper from the list in 60-85 minutes.
- Write a summary of the paper by August 2nd.
- The presentation needs to be discussed with us at least one week before your scheduled talk.
- Send us your preferred order of the papers by April 30th.

Computational Social Choice Theory

Social Choice Theory: Making a collective desicion from individual preferences.

Computational Social Choice Theory

Social Choice Theory: Making a collective desicion from individual preferences.

Voting

Computational Social Choice Theory

Social Choice Theory: Making a collective desicion from individual preferences.

Computational Social Choice Theory

Social Choice Theory: Making a collective desicion from individual preferences.

Voting

Resource Allocation

Stable Matchings

Computational Social Choice Theory

Social Choice Theory: Making a collective desicion from individual preferences.

Economists and Politicians: Does there exists a social choice mechanism with the desired economic properties?

Computational Social Choice Theory

Social Choice Theory: Making a collective desicion from individual preferences.

Economists and Politicians: Does there exists a social choice mechanism with the desired economic properties?

Computer Scientists: How to efficiently compute such a mechanism?

Computational Social Choice Theory

Social Choice Theory: Making a collective desicion from individual preferences.

Economists and Politicians: Does there exists a social choice mechanism with the desired economic properties?

Computer Scientists: How to efficiently compute such a mechanism?

Fair Division

Divide items among agents in a fair manner.

Fair Division

Divide items among agents in a fair manner.

Applications:

Household chores

Air traffic management

Items

Desirable
Undesirable

Items

Items

Items

Items

Items

Items

Items

Discrete Fair Division

Divide indivisible items among agents in a fair manner.
Input: $\mathcal{I}=(N, M, V)$

- N : set of n agents
- M : set of m indivisible goods
- Valuation functions $v_{i}: 2^{M} \rightarrow \mathbb{R}_{\geq 0}$

Discrete Fair Division

Divide indivisible items among agents in a fair manner.
Input: $\mathcal{I}=(N, M, V)$

- N : set of n agents
- M : set of m indivisible goods
- Valuation functions $v_{i}: 2^{M} \rightarrow \mathbb{R}_{\geq 0}$

Discrete Fair Division

Divide indivisible items among agents in a fair manner.
Input: $\mathcal{I}=(N, M, V)$

- N : set of n agents
- M : set of m indivisible goods
- Valuation functions $v_{i}: 2^{M} \rightarrow \mathbb{R}_{\geq 0}$

Discrete Fair Division

Divide indivisible items among agents in a fair manner.
Input: $\mathcal{I}=(N, M, V)$

- N : set of n agents
- M : set of m indivisible goods
- Valuation functions $v_{i}: 2^{M} \rightarrow \mathbb{R}_{\geq 0}$

Discrete Fair Division

Divide indivisible items among agents in a fair manner.
Input: $\mathcal{I}=(N, M, V)$

- N : set of n agents
- M : set of m indivisible goods
- Valuation functions $v_{i}: 2^{M} \rightarrow \mathbb{R}_{\geq 0}$

Goal: Find a fair allocation of the goods to the agents.

Discrete Fair Division

Divide indivisible items among agents in a fair manner.
Input: $\mathcal{I}=(N, M, V)$

- N : set of n agents
- M : set of m indivisible goods
- Valuation functions $v_{i}: 2^{M} \rightarrow \mathbb{R}_{\geq 0}$

Goal: Find a fair allocation of the goods to the agents.

$$
\longrightarrow A \text { partition } X=\left(X_{1}, X_{2}, \ldots, X_{n}, P\right) \text { of } M
$$

Discrete Fair Division

Divide indivisible items among agents in a fair manner．
Input： $\mathcal{I}=(N, M, V)$
－N ：set of n agents
－M ：set of m indivisible goods
－Valuation functions $v_{i}: 2^{M} \rightarrow \mathbb{R}_{\geq 0}$

Goal：Find a fair allocation of the goods to the agents．

$$
\longrightarrow A \text { partition } X=\left(X_{1}, X_{2}, \ldots, X_{n}, P\right) \text { of } M
$$

Discrete Fair Division

Divide indivisible items among agents in a fair manner.
Input: $\mathcal{I}=(N, M, V)$

- $N=\left\{a_{1}, a_{2}, a_{3}\right\}$
- $M=\left\{g_{1}, g_{2}, g_{3}, g_{4}, g_{5}\right\}$
- $X_{1}=\left\{g_{1}\right\}, X_{2}=\left\{g_{2}, g_{5}\right\}$, $X_{3}=\left\{g_{3}\right\}, P=\left\{g_{4}\right\}$
- $v_{1}\left(X_{1}\right)=4, v_{1}\left(X_{2}\right)=3$

	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}
a_{1}	4	1	2	2	2
a_{2}	1	0	5	1	1
a_{3}	1	1	5	1	1

Discrete Fair Division

Divide indivisible items among agents in a fair manner．
Input： $\mathcal{I}=(N, M, V)$
－$N=\left\{a_{1}, a_{2}, a_{3}\right\}$
－$M=\left\{g_{1}, g_{2}, g_{3}, g_{4}, g_{5}\right\}$
－$X_{1}=\left\{g_{1}\right\}, X_{2}=\left\{g_{2}, g_{5}\right\}$ ， $X_{3}=\left\{g_{3}\right\}, P=\left\{g_{4}\right\}$
－$v_{1}\left(X_{1}\right)=4, v_{1}\left(X_{2}\right)=3$

	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}
a_{1}	4	1	2	2	2
a_{2}	1	0	5	1	1
a_{3}	1	1	5	1	1

$$
\text { assuming } v_{1} \text { is additive: for all } S \subseteq M, v_{1}(S)=\sum_{g \in S} v_{i}(\{g\})
$$

Discrete Fair Division

Divide indivisible items among agents in a fair manner.
Input: $\mathcal{I}=(N, M, V)$

- $N=\left\{a_{1}, a_{2}, a_{3}\right\}$
- $M=\left\{g_{1}, g_{2}, g_{3}, g_{4}, g_{5}\right\}$
- $X_{1}=\left\{g_{1}\right\}, X_{2}=\left\{g_{2}, g_{5}\right\}$, $X_{3}=\left\{g_{3}\right\}, P=\left\{g_{4}\right\}$
- $v_{1}\left(X_{1}\right)=4, v_{1}\left(X_{2}\right)=3$

	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}
a_{1}	4	1	2	2	2
a_{2}	1	0	5	1	1
a_{3}	1	1	5	1	1

An allocation is complete, if $P=\emptyset$ and partial otherwise.

Fairness

-
 Ω

 informatik

Fairness

Which allocation is fair?

Fairness

Envy Based
Share Based

Fairness

Fairness

Envy Freeness

Definition: An allocation X is envy free, if and only if for all agents a_{i}, a_{j} : $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)$. [Foley 1967]

Envy Freeness

Definition: An allocation X is envy free, if and only if for all agents a_{i}, a_{j} : $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)$.[Foley 1967]

Which allocation is envy free?

Envy Freeness

Definition: An allocation X is envy free, if and only if for all agents a_{i}, a_{j} : $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)$. [Foley 1967]

Do complete envy free allocations always exist?

Envy Freeness

Definition: An allocation X is envy free, if and only if for all agents a_{i}, a_{j} : $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)$.[Foley 1967]

Do complete envy free allocations always exist?

- For divisible goods, YES! (Next weeks)

Envy Freeness

Definition: An allocation X is envy free, if and only if for all agents a_{i}, a_{j} : $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)$.[Foley 1967]

Do complete envy free allocations always exist?

- For divisible goods, YES! (Next weeks)
- For indivisible goods, NO!

Envy Freeness

Definition: An allocation X is envy free, if and only if for all agents a_{i}, a_{j} : $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)$. [Foley 1967]

Do complete envy free allocations always exist?

- For divisible goods, YES! (Next weeks)
- For indivisible goods, NO!

EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_{i}, a_{j}, there exists a good $g \in X_{j}\left(\right.$ if $\left.X_{j} \neq \emptyset\right): v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.

EF1

Definition：An allocation X is envy free up to one item or EF1，if and only if for all agents a_{i}, a_{j} ，there exists a good $g \in X_{j}\left(\right.$ if $\left.X_{j} \neq \emptyset\right): v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$ ．

EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_{i}, a_{j}, there exists a good $g \in X_{j}\left(\right.$ if $\left.X_{j} \neq \emptyset\right): v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.

EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_{i}, a_{j}, there exists a good $g \in X_{j}\left(\right.$ if $\left.X_{j} \neq \emptyset\right): v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.

Do complete EF1 allocations always exist?

EF1

Definition：An allocation X is envy free up to one item or EF1，if and only if for all agents a_{i}, a_{j} ，there exists a good $g \in X_{j}\left(\right.$ if $\left.X_{j} \neq \emptyset\right): v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$ ．

Do complete EF1 allocations always exist？
－YES for monotone valuations！

EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_{i}, a_{j}, there exists a good $g \in X_{j}\left(\right.$ if $\left.X_{j} \neq \emptyset\right): v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.

Do complete EF1 allocations always exist?

- YES for monotone valuations!
for all $S \subseteq M$ and $g \in M, v(S \cup\{g\}) \geq v(S)$

EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_{i}, a_{j}, there exists a good $g \in X_{j}\left(\right.$ if $\left.X_{j} \neq \emptyset\right): v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.

Do complete EF1 allocations always exist?

- YES for monotone valuations!
for all $S \subseteq M$ and $g \in M, v(S \cup\{g\}) \geq v(S)$

- A complete EF1 allocation can be found in polynomial time.
[Lipton, Markakis, Mossel, Saberi 2004]

EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_{i}, a_{j}, there exists a good $g \in X_{j}\left(\right.$ if $\left.X_{j} \neq \emptyset\right): v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.

Do complete EF1 allocations always exist?

- YES for monotone valuations!
for all $S \subseteq M$ and $g \in M, v(S \cup\{g\}) \geq v(S)$

- A complete EF1 allocation can be found in polynomial time.
[Lipton, Markakis, Mossel, Saberi 2004]
- Today: A polynomial time algorithm to find a complete EF1 allocation for additive valuations.

Round－Robin Algorithm

－Fix an ordering of the agents，say $a_{1}, a_{2}, \ldots, a_{n}$ ．
－Agents take turns according to the ordering（ $a_{1}, a_{2}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ ） to pick their favorite items from the set of the remaining items．

Round-Robin Algorithm

- Fix an ordering of the agents, say $a_{1}, a_{2}, \ldots, a_{n}$.
- Agents take turns according to the ordering ($a_{1}, a_{2}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$) to pick their favorite items from the set of the remaining items.

		0			
0	4	1	2	2	2
0	1	0	5	1	1
Ω	1	1	5	1	1

Round-Robin Algorithm

- Fix an ordering of the agents, say $a_{1}, a_{2}, \ldots, a_{n}$.
- Agents take turns according to the ordering ($a_{1}, a_{2}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$) to pick their favorite items from the set of the remaining items.

		0			
0	4	1	2	2	2
0	1	0	5	1	1
Ω	1	1	5	1	1

Round-Robin Algorithm

- Fix an ordering of the agents, say $a_{1}, a_{2}, \ldots, a_{n}$.
- Agents take turns according to the ordering ($a_{1}, a_{2}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$) to pick their favorite items from the set of the remaining items.

		0			
0	4	1	2	2	2
0	1	0	5	1	1
Ω	1	1	5	1	1

Round-Robin Algorithm

- Fix an ordering of the agents, say $a_{1}, a_{2}, \ldots, a_{n}$.
- Agents take turns according to the ordering ($a_{1}, a_{2}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$) to pick their favorite items from the set of the remaining items.

		0			
0	4	1	2	2	2
0	1	0	5	1	1
Ω	1	1	5	1	1

Round-Robin Algorithm

- Fix an ordering of the agents, say $a_{1}, a_{2}, \ldots, a_{n}$.
- Agents take turns according to the ordering ($a_{1}, a_{2}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$) to pick their favorite items from the set of the remaining items.

	0			0	
\&	4	1	2	2	2
$\mathbf{8}$	1	0	5	1	1
Ω	1	1	5	1	1

Round-Robin Algorithm

- Fix an ordering of the agents, say $a_{1}, a_{2}, \ldots, a_{n}$.
- Agents take turns according to the ordering ($a_{1}, a_{2}, \ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$) to pick their favorite items from the set of the remaining items.

	0			0	
\&	4	1	2	2	2
$\mathbf{8}$	1	0	5	1	1
Ω	1	1	5	1	1

Round－Robin Algorithm

Theorem：For additive valuations，Round－Robin returns an EF1 allocation in polynomial time．

$$
\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n}
\end{array}
$$

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

$$
\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n}
\end{array}
$$

First round:

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

$$
\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n}
\end{array}
$$

First round:

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

$$
\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n}
\end{array}
$$

First round:

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

$$
\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n}
\end{array}
$$

First round:

Round－Robin Algorithm

Theorem：For additive valuations，Round－Robin returns an EF1 allocation in polynomial time．

First round： | a_{1} | a_{2} | a_{3} | \ldots | a_{n} |
| :---: | :---: | :---: | :---: | :---: |
| | | \bigcirc | \cdots | \bigcirc |

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

First round: | a_{1} | a_{2} | a_{3} | \ldots | a_{n} |
| :---: | :---: | :---: | :---: | :---: |
| | | | \cdots | \bigcirc |

Second round:

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

First round: | a_{1} | a_{2} | a_{3} | \ldots | a_{n} |
| :---: | :---: | :---: | :---: | :---: |
| | | \bigcirc | \cdots | \bigcirc |

Second round:

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
$\begin{array}{lllll}a_{1} & a_{2} & a_{3} & \ldots & a_{n}\end{array}$
First round:
Second round:

Round－Robin Algorithm

Theorem：For additive valuations，Round－Robin returns an EF1 allocation in polynomial time．

	a_{1}	a_{2}	a_{3}	\ldots	a_{n}
First round：			\bigcirc	\cdots	\bigcirc
Second round：					

Round－Robin Algorithm

Theorem：For additive valuations，Round－Robin returns an EF1 allocation in polynomial time．

	a_{1}	a_{2}	a_{3}	\ldots	a_{n}
First round：	\bigcirc		\bigcirc	\cdots	\bigcirc
Second round：				\ldots	\bigcirc

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

	a_{1}	a_{2}	a_{3}	\ldots	a_{n}
First round:	\bigcirc		\bigcirc	\cdots	\bigcirc
Second round:	\bigcirc			\cdots	\bigcirc

Last round:

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

	a_{1}	a_{2}	a_{3}	\ldots	a_{n}
First round:	\bigcirc		\bigcirc	\cdots	\bigcirc
Second round:	\bigcirc		\bigcirc	\cdots	\bigcirc
\cdot					
\cdot					
\cdot					

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

	a_{1}	a_{2}	a_{3}	\ldots	a_{n}
First round:	\bigcirc		\bigcirc	\cdots	\bigcirc
Second round:	\bigcirc		\bigcirc	\cdots	\bigcirc
\cdot					
\cdot					
\cdot					
Last round:	\bigcirc				

Round-Robin Algorithm

> Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

		r		b	
First round:	\cdots	\bigcirc	\cdots	\bigcirc	\cdots
Second round:	\cdots		\cdots		\cdots

Last round:

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Last round:

$$
\begin{aligned}
& \text { If } r \text { preceeds } b \text {, by additivity } \\
& \qquad v_{r}\left(X_{r}\right) \geq v_{r}\left(X_{b}\right)
\end{aligned}
$$

Round-Robin Algorithm

> Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Round－Robin Algorithm

Theorem：For additive valuations，Round－Robin returns an EF1 allocation in polynomial time．

Fix a pair of agents (r, b) ．Analyze envy from r to b ．

		b	r
First round：	\cdots	\boldsymbol{g}	\cdots
Second round：	\cdots	\cdots	\cdots
\cdot		\cdots	
\cdot		If b preceeds r, by additivity $v_{r}\left(X_{r}\right) \geq v_{r}\left(X_{b} \backslash\{g\}\right)$.	

EFX

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_{i}, a_{j}, and for all goods $g \in X_{j}: v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.
[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

EFX

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_{i}, a_{j}, and for all goods $g \in X_{j}: v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.
[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]
Is the following allocation EFX?

	0	0			
0	4	1	2	2	2
$\boldsymbol{8}$	1	0	5	1	1
Ω	1	1	5	1	1

EFX

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_{i}, a_{j}, and for all goods $g \in X_{j}: v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.
[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

- $\mathrm{EF} \Longrightarrow \mathrm{EFX} \Longrightarrow E F 1$

EFX

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_{i}, a_{j}, and for all goods $g \in X_{j}: v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.
[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

- $\mathrm{EF} \Longrightarrow \mathrm{EFX} \Longrightarrow \mathrm{EF} 1$

Do complete EFX allocations always exist?

EFX

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_{i}, a_{j}, and for all goods $g \in X_{j}: v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.
[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

- $\mathrm{EF} \Longrightarrow \mathrm{EFX} \Longrightarrow \mathrm{EF} 1$

Do complete EFX allocations always exist?

EFX

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_{i}, a_{j}, and for all goods $g \in X_{j}: v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.
[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

- $\mathrm{EF} \Longrightarrow \mathrm{EFX} \Longrightarrow \mathrm{EF} 1$

Do complete EFX allocations always exist?
Fair division's biggest problem!

EFX

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_{i}, a_{j}, and for all goods $g \in X_{j}: v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j} \backslash\{g\}\right)$.
[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

- EF $\Longrightarrow E F X \Longrightarrow E F 1$

Do complete EFX allocations always exist?
Fair division's biggest problem!

In this seminar we will see:

- Complete EFX allocations exist for 3 agents if at least one has an additive valuation. [Akrami, Alon, Chaudhury, Garg, Mehlhorn, Mehta 2023]
- "Good" partial EFX allocations exists. [Chaudhury, Kavitha, Mehlhorn, Sgouritsa 2020]

Fairness

Proportionality

Definition: An allocation X is proportional, if and only if for all agents a_{i} : $v_{i}\left(X_{i}\right) \geq v_{i}(M) / n$.

Proportionality

Definition：An allocation X is proportional，if and only if for all agents a_{i} ： $v_{i}\left(X_{i}\right) \geq v_{i}(M) / n$ ．

Which allocation is proportional？

【】【】【 $\max _{\text {informantik }}^{\text {mantitut }}$

Proportionality

Definition: An allocation X is proportional, if and only if for all agents a_{i} : $v_{i}\left(X_{i}\right) \geq v_{i}(M) / n$.

Do proportional allocations always exist?

Proportionality

Definition: An allocation X is proportional, if and only if for all agents a_{i} : $v_{i}\left(X_{i}\right) \geq v_{i}(M) / n$.

Do proportional allocations always exist?

- For divisible goods, YES! (Next week)

Proportionality

Definition: An allocation X is proportional, if and only if for all agents a_{i} : $v_{i}\left(X_{i}\right) \geq v_{i}(M) / n$.

Do proportional allocations always exist?

- For divisible goods, YES! (Next week)
- For indivisible goods, NO!

Proportionality

Definition: An allocation X is proportional, if and only if for all agents a_{i} : $v_{i}\left(X_{i}\right) \geq v_{i}(M) / n$.

Do proportional allocations always exist?

- For divisible goods, YES! (Next week)
- For indivisible goods, NO!

Maximin Share

- What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

Maximin Share

- What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

Definition: For all agents a_{i}, maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right) .
$$

Maximin Share

- What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

Definition: For all agents a_{i}, maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right) .
$$

		0			
	4	1	2	2	2
8	1	0	5	1	1
Ω	1	1	5	1	1

Maximin Share

- What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

Definition: For all agents a_{i}, maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right) .
$$

$\mathbf{@}$	4	1	2	2	2
Ω	1	0	5	1	1
Ω	1	1	5	1	1

Maximin Share

－What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle？

Definition：For all agents a_{i} ，maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right) .
$$

	4	1	2	2	2
Ω	1	0	5	1	1
Ω	1	1	5	1	1

Maximin Share

- What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

Definition: For all agents a_{i}, maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right)
$$

$囚$	4	1	2	2	2
Ω	1	0	5	1	1
Ω	1	1	5	1	1

Maximin Share

Definition: For all agents a_{i}, maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right) .
$$

$(8$	4	1	2	2	2	\quad	$\mathrm{MMS}_{1}=3$
:---							
Ω							
Ω	1						

Maximin Share

Definition: For all agents a_{i}, maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right) .
$$

Definition: An allocation X is MMS, if for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq \mathrm{MMS}_{i}$.

		0		0			
Ω	4	1	2	2	2	\quad	$\mathrm{MMS}_{1}=3$
:---							
Ω							

Maximin Share

Definition: For all agents a_{i}, maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right) .
$$

Definition: An allocation X is MMS, if for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq \mathrm{MMS}_{i}$.

		0		0			
Ω	4	1	2	2	2	\quad	$\mathrm{MMS}_{1}=3$
:---							
Ω							

Maximin Share

Definition: For all agents a_{i}, maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right) .
$$

Definition: An allocation X is MMS, if for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq \mathrm{MMS}_{i}$.

Maximin Share

Definition: For all agents a_{i}, maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right) .
$$

Definition: An allocation X is MMS, if for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq \mathrm{MMS}_{i}$.
Do MMS allocations always exist?

Maximin Share

Definition: For all agents a_{i}, maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right) .
$$

Definition: An allocation X is MMS, if for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq \mathrm{MMS}_{i}$.
Do MMS allocations always exist? NO! [Procaccia, Wang 2014]

Maximin Share

Definition: For all agents a_{i}, maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right) .
$$

Definition: An allocation X is MMS, if for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq \mathrm{MMS}_{i}$.
Do MMS allocations always exist? NO! [Procaccia, Wang 2014]
Definition: For all $\alpha \in[0,1]$, an allocation X is $\alpha-\mathrm{MMS}$, if for all agents a_{i}, $v_{i}\left(X_{i}\right) \geq \alpha \cdot \mathrm{MMS}_{i}$.

Maximin Share

Definition: For all agents a_{i}, maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right) .
$$

Definition: An allocation X is MMS, if for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq \mathrm{MMS}_{i}$.
Do MMS allocations always exist? NO! [Procaccia, Wang 2014]
Definition: For all $\alpha \in[0,1]$, an allocation X is $\alpha-\mathrm{MMS}$, if for all agents a_{i}, $v_{i}\left(X_{i}\right) \geq \alpha \cdot \mathrm{MMS}_{i}$.

- The best known $\alpha: 3 / 4+3 / 3836$ [Akrami, Garg 2024]

Maximin Share

Definition：For all agents a_{i} ，maximin share of agent i is

$$
\mathrm{MMS}_{i}=\mathrm{MMS}_{v_{i}}^{n}(M)=\max _{\left(A_{1}, \ldots, A_{n}\right)} \min _{j \in[n]} v_{i}\left(A_{j}\right)
$$

Definition：An allocation X is MMS，if for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq \mathrm{MMS}_{i}$ ．
Do MMS allocations always exist？NO！［Procaccia，Wang 2014］
Definition：For all $\alpha \in[0,1]$ ，an allocation X is $\alpha-\mathrm{MMS}$ ，if for all agents a_{i} ， $v_{i}\left(X_{i}\right) \geq \alpha \cdot \mathrm{MMS}_{i}$ ．
－The best known $\alpha: 3 / 4+3 / 3836$［Akrami，Garg 2024］
In this seminar we will see：
－3／4－MMS allocations exist．［Ghodsi，Hajiaghayi，Seddighin，Seddighin，Yami 2018］［Garg，Taki 2020］［Akrami，Garg，Taki 2023］

Fairness

Fairness

Are we done?

Are we done?

		0
\mathbf{C}	100	1
$\boldsymbol{\Omega}$	1	100

Are we done?

		0
\mathbf{C}	100	1
$\boldsymbol{\Omega}$	1	100

Is the allocation "fair"?

Are we done？

		0
\mathbf{C}	100	1
$\boldsymbol{\Omega}$	1	100

Is the allocation＂fair＂？

－EF1？

Are we done?

		0
\mathbf{C}	100	1
$\boldsymbol{\Omega}$	1	100

Is the allocation "fair"?

- EF1?
- EFX?

Are we done?

		0
\mathbf{C}	100	1
$\boldsymbol{\Omega}$	1	100

Is the allocation "fair"?

- EF1?
- EFX?
- MMS?

Efficiency

Divide indivisible items among agents in a fair and efficient manner．

Efficiency

Divide indivisible items among agents in a fair and efficient manner.
Definition: Allocation X pareto dominates allocation Y, if and only if

- for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq v_{i}\left(Y_{i}\right)$, and
- there exists an agent a_{j}, such that $v_{j}\left(X_{j}\right)>v_{j}\left(Y_{j}\right)$.

Efficiency

Divide indivisible items among agents in a fair and efficient manner.
Definition: Allocation X pareto dominates allocation Y, if and only if

- for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq v_{i}\left(Y_{i}\right)$, and
- there exists an agent a_{j}, such that $v_{j}\left(X_{j}\right)>v_{j}\left(Y_{j}\right)$.

Definition: Allocation X is pareto optimal or PO if there exists no allocation Y such that Y pareto dominates X.

Efficiency

Divide indivisible items among agents in a fair and efficient manner．
Definition：Allocation X pareto dominates allocation Y ，if and only if
－for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq v_{i}\left(Y_{i}\right)$ ，and
－there exists an agent a_{j} ，such that $v_{j}\left(X_{j}\right)>v_{j}\left(Y_{j}\right)$ ．
Definition：Allocation X is pareto optimal or $\mathbf{P O}$ if there exists no allocation Y such that Y pareto dominates X ．

Is the allocation pareto optimal？

Efficiency

Divide indivisible items among agents in a fair and efficient manner.
Definition: Allocation X pareto dominates allocation Y, if and only if

- for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq v_{i}\left(Y_{i}\right)$, and
- there exists an agent a_{j}, such that $v_{j}\left(X_{j}\right)>v_{j}\left(Y_{j}\right)$.

Definition: Allocation X is pareto optimal or PO if there exists no allocation Y such that Y pareto dominates X.

Is the allocation pareto optimal?

Efficiency

Divide indivisible items among agents in a fair and efficient manner.
Definition: Allocation X pareto dominates allocation Y, if and only if

- for all agents $a_{i}, v_{i}\left(X_{i}\right) \geq v_{i}\left(Y_{i}\right)$, and
- there exists an agent a_{j}, such that $v_{j}\left(X_{j}\right)>v_{j}\left(Y_{j}\right)$.

Definition: Allocation X is pareto optimal or PO if there exists no allocation Y such that Y pareto dominates X.

Is the allocation pareto optimal?

Fairness and Efficiency

		$\boldsymbol{0}$
\mathbf{C}	100	1
$\boldsymbol{\Omega}$	1	100
$\boldsymbol{\checkmark}$ Fair		
XEfficient		

	2	0
?	100	1
Ω	1	100
Fair		
Efficient		

Fairness and Efficiency

		0
\mathbf{C}	100	1
$\mathbf{\Omega}$	1	100
$\boldsymbol{V}^{\text {Fair }}$		
XEfficient		

In this seminar we will see:

- EF1+PO allocations exist an can be computed in pseudopolynomial time.

Nash Soical Welfare

Definition: Nash social welfare of an allocation X is

$$
\operatorname{NSW}(X)=\left(\prod_{a_{i} \in N} v_{i}\left(X_{i}\right)\right)^{1 / n}
$$

Nash Soical Welfare

Definition: Nash social welfare of an allocation X is

$$
\operatorname{NSW}(X)=\left(\prod_{a_{i} \in N} v_{i}\left(X_{i}\right)\right)^{1 / n}
$$

Definition: Allocation X is MNW, if $\operatorname{NSW}(X) \geq \operatorname{NSW}(Y)$ for all allocations Y.

Nash Soical Welfare

Definition：Nash social welfare of an allocation X is

$$
\operatorname{NSW}(X)=\left(\prod_{a_{i} \in N} v_{i}\left(X_{i}\right)\right)^{1 / n}
$$

Definition：Allocation X is $\alpha-\mathrm{MNW}$ ，if $\operatorname{NSW}(X) \geq \alpha \cdot \operatorname{NSW}(Y)$ for all allocations Y and $\alpha \in[0,1]$ ．

Nash Soical Welfare

Definition: Nash social welfare of an allocation X is

$$
\operatorname{NSW}(X)=\left(\prod_{a_{i} \in N} v_{i}\left(X_{i}\right)\right)^{1 / n}
$$

Definition: Allocation X is $\alpha-\mathrm{MNW}$, if $\operatorname{NSW}(X) \geq \alpha \cdot \operatorname{NSW}(Y)$ for all allocations Y and $\alpha \in[0,1]$.

In this seminar we will see:

- MNW $\Longrightarrow E F 1+$ PO [Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

Nash Soical Welfare

Definition: Nash social welfare of an allocation X is

$$
\operatorname{NSW}(X)=\left(\prod_{a_{i} \in N} v_{i}\left(X_{i}\right)\right)^{1 / n}
$$

Definition: Allocation X is $\alpha-\mathrm{MNW}$, if $\operatorname{NSW}(X) \geq \alpha \cdot \operatorname{NSW}(Y)$ for all allocations Y and $\alpha \in[0,1]$.

In this seminar we will see:

- MNW $\Longrightarrow E F 1+$ PO [Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]
- 1.45^{-1} - MNW allocations can be computed in polynomial time.

Recap

Divide items among agents in a fair and efficient manner.
Notions of fairness: envy freeness, EF1, EFX, proportionality, MMS, ... Notions of efficiency: pareto optimality, MNW ...

Seminar Overview

23.04: Introduction on Discrete Fair Division (HA)
30.04: Introduction on Cake Cutting (NR)
07.05: EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number [Akrami, Alon, Chaudhury, Garg, Mehlhorn, Mehta 2023] (HA) - EFX for 3 agents
14.05: Rental Harmony: Sperner's Lemma in Fair Division [Su 1999] (NR)
21.05: no lecture
28.05: Fair and Efficient Cake Division with Connected Pieces [Arunachaleswaran, Barman, Kumar, Rathi 2019] (student talk)

Seminar Overview

04.06: The Unreasonable Fairness of Maximum Nash Welfare [Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016] (student talk)

- MNW $\Longrightarrow E F 1+P O$
11.06: A Little Charity Guarantees Almost Envy-Freeness [Chaudhury, Kavitha, Mehlhorn, Sgouritsa 2020] (student talk)
- "good" partial EFX allocation
18.06: no lecture
25.06: Existence and Computation of Epistemic EFX Allocations [Caragiannis, Sharma, Garg, Rathi, Varricchio 2023] (student talk)
- a relaxation of EFX

Seminar Overview

02．07：Simplification and Improvement of MMS Approximation［Akrami，Garg， Sharma，Taki 2023］（student talk）
－3／4－MMS
09．07：Finding Fair and Efficient Allocations［Barman，Krishnamurthy，Vaish 2018］ （student talk）
$-1.45^{-1}-\mathrm{MNW}+\mathrm{EF} 1+\mathrm{PO}$
16．07：On Approximate Envy－Freeness for Indivisible Chores and Mixed Resources ［Bhaskar，Sricharan，Vaish 2021］（student talk）

23．07：Best of Both Worlds：Ex－Ante and Ex－Post Fairness in Resource Allocation ［Freeman，Shah，Vaish 2020］（student talk）
－randomized allocations

Don't forget!

Send us your preferred list of the student papers by
April 30th.

