

Topics in Computational Social Choice Theory

Lecture 01: Introduction on Discrete Fair Division

Hannaneh Akrami

Organization

Seminar: 2+0, 7 CPS

- **Organized by** Kurt Mehlhorn, Nidhi Rathi, and Hannaneh Akrami
- When?
 Every Tuesday 14:15 15:45
- **Requirements:** Basic algorithms lecture (Introduction to Algorithms and Data Structures)

Your task:

- Present a paper from the list in 60-85 minutes.
 - Write a summary of the paper by August 2nd.
 - The presentation needs to be discussed with us at least one week before your scheduled talk.
 - Send us your preferred order of the papers by April 30th.

Social Choice Theory: Making a collective desicion from individual preferences.

Social Choice Theory: Making a collective desicion from individual preferences.

Voting

Social Choice Theory: Making a collective desicion from individual preferences.

Voting Resource Allocation

Social Choice Theory: Making a collective desicion from individual preferences.

Social Choice Theory: Making a collective desicion from individual preferences.

Economists and Politicians: Does there exists a **social choice** mechanism with the desired economic properties?

Social Choice Theory: Making a collective desicion from individual preferences.

Economists and Politicians: Does there exists a **social choice** mechanism with the desired economic properties?

Computer Scientists: How to efficiently **compute** such a mechanism?

Social Choice Theory: Making a collective desicion from individual preferences.

Economists and Politicians: Does there exists a **social choice** mechanism with the desired economic properties?

Computer Scientists: How to efficiently **compute** such a mechanism?

Fair Division

Divide items among agents in a fair manner.

Fair Division

Divide items among agents in a fair manner.

Applications:

Partnership dissolution

Divorce settlements

Household chores

Air traffic management

Divide indivisible items among agents in a fair manner.

Input: $\mathcal{I} = (N, M, V)$

- N: set of n agents
- M: set of m indivisible goods
- Valuation functions $v_i: 2^M \to \mathbb{R}_{\geq 0}$

Divide indivisible items among agents in a fair manner.

Input: $\mathcal{I} = (N, M, V)$

- N: set of n agents
- M: set of m indivisible goods
- Valuation functions $v_i: 2^M \to \mathbb{R}_{\geq 0}$

Divide indivisible items among agents in a fair manner.

🎽 🍏 Input: $\mathcal{I} = (N, M, V)$ • N: set of n agents • M: set of m indivisible goods • Valuation functions $v_i: 2^M \to \mathbb{R}_{>0}$

Divide indivisible items among agents in a fair manner.

Input: $\mathcal{I} = (N, M, V)$

- N: set of n agents
- M: set of m indivisible goods
- Valuation functions $v_i: 2^M \to \mathbb{R}_{\geq 0}$

Divide indivisible items among agents in a fair manner.

Input: $\mathcal{I} = (N, M, V)$ • N: set of n agents • M: set of m indivisible goods • Valuation functions $v_i : 2^M \to \mathbb{R}_{\geq 0}$ \mathcal{I} \mathcal{I}

Goal: Find a **fair** allocation of the goods to the agents.

Divide indivisible items among agents in a fair manner.

Input: $\mathcal{I} = (N, M, V)$ • N: set of n agents • M: set of m indivisible goods • Valuation functions $v_i : 2^M \to \mathbb{R}_{>0}$

A partition $X = (X_1, X_2, \ldots, X_n, P)$ of M

max planck institut informatik

Goal: Find a **fair** allocation of the goods to the agents.

Divide indivisible items among agents in a fair manner.

Input: $\mathcal{I} = (N, M, V)$ • N: set of n agents • M: set of m indivisible goods • Valuation functions $v_i : 2^M \to \mathbb{R}_{>0}$

Goal: Find a **fair** allocation of the goods to the agents.

• A partition $X = (X_1, X_2, \dots, X_n, P)$ of M

max planck institut informatik

Divide indivisible items among agents in a fair manner.

Input: $\mathcal{I} = (N, M, V)$

- $N = \{a_1, a_2, a_3\}$
- $M = \{g_1, g_2, g_3, g_4, g_5\}$
- $X_1 = \{g_1\}, X_2 = \{g_2, g_5\}, X_3 = \{g_3\}, P = \{g_4\}$
- $v_1(X_1) = 4$, $v_1(X_2) = 3$

	g_1	g_2	g_3	g_4	g_5
a_1	4	1	2	2	2
a_2	1	0	5	1	1
a_3	1	1	5	1	1

Divide indivisible items among agents in a fair manner.

Input: $\mathcal{I} = (N, M, V)$		g_1	g_2	g_3	g_4	g_5
• $N = \{a_1, a_2, a_3\}$	a_1	4	1	2	2	2
• $M = \{g_1, g_2, g_3, g_4, g_5\}$	a_2	1	0	5	1	1
• $X_1 = \{g_1\}, X_2 = \{g_2, g_5\}, X_3 = \{g_3\}, P = \{g_4\}$	a_3	1	1	5	1	1
• $v_1(X_1) = 4$, $v_1(X_2) = 3$						

assuming v_1 is additive: for all $S \subseteq M$, $v_1(S) = \sum_{g \in S} v_i(\{g\})$

Divide indivisible items among agents in a fair manner.

Input: $\mathcal{I} = (N, M, V)$		g_1	g_2	g_3	g_4	g_5
• $N = \{a_1, a_2, a_3\}$	a_1	4	1	2	2	2
• $M = \{g_1, g_2, g_3, g_4, g_5\}$	a_2	1	0	5	1	1
• $X_1 = \{g_1\}, X_2 = \{g_2, g_5\}, X_3 = \{g_3\}, P = \{g_4\}$	a_3	1	1	5	1	1
• $v_1(X_1) = 4$, $v_1(X_2) = 3$		I	I	I		

An allocation is **complete**, if $P = \emptyset$ and **partial** otherwise.

Fairness

Envy Freeness

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j : $v_i(X_i) \ge v_i(X_j)$. [Foley 1967]

Envy Freeness

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j : $v_i(X_i) \ge v_i(X_j)$. [Foley 1967]

Which allocation is envy free?

0.5

1

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j : $v_i(X_i) \ge v_i(X_j)$. [Foley 1967]

Do complete envy free allocations always exist?

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j : $v_i(X_i) \ge v_i(X_j)$. [Foley 1967]

Do complete envy free allocations always exist?

• For divisible goods, YES! (Next weeks)

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j : $v_i(X_i) \ge v_i(X_j)$. [Foley 1967]

Do complete envy free allocations always exist?

- For divisible goods, YES! (Next weeks)
- For indivisible goods, NO!

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j : $v_i(X_i) \ge v_i(X_j)$. [Foley 1967]

Do complete envy free allocations always exist?

- For divisible goods, YES! (Next weeks)
- For indivisible goods, NO!

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_i, a_j , there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \ge v_i(X_j \setminus \{g\})$.

Do complete EF1 allocations always exist?

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_i, a_j , there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \ge v_i(X_j \setminus \{g\})$.

Do complete EF1 allocations always exist?

• YES for monotone valuations!

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_i, a_j , there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \ge v_i(X_j \setminus \{g\})$.

• A complete EF1 allocation can be found in polynomial time.

[Lipton, Markakis, Mossel, Saberi 2004]

Definition: An allocation X is **envy free up to one item** or **EF1**, if and only if for all agents a_i, a_j , there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \ge v_i(X_j \setminus \{g\})$.

• A complete EF1 allocation can be found in polynomial time.

[Lipton, Markakis, Mossel, Saberi 2004]

• Today: A polynomial time algorithm to find a complete EF1 allocation for additive valuations.

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n .
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n .
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n .
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n .
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n .
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n .
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n .
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

$$a_1 \quad a_2 \quad a_3 \quad \ldots \quad a_n$$

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

$$a_1 \quad a_2 \quad a_3 \quad \ldots \quad a_n$$

First round:

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Second round:

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Last round:

.

.

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

.

.

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

.

.

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Last round: ...

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Last round:

. . .

If r preceeds b, by additivity $v_r(X_r) \ge v_r(X_b).$

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Last round: ...

.

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Last round: ...

.

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents (r, b). Analyze envy from r to b.

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j , and for all goods $g \in X_j$: $v_i(X_i) \ge v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j , and for all goods $g \in X_j$: $v_i(X_i) \ge v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

Is the following allocation EFX?

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j , and for all goods $g \in X_j$: $v_i(X_i) \ge v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

• EF \implies EFX \implies EF1

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j , and for all goods $g \in X_j$: $v_i(X_i) \ge v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

• EF \implies EFX \implies EF1

Do complete EFX allocations always exist?

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j , and for all goods $g \in X_j$: $v_i(X_i) \ge v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

• $EF \implies EFX \implies EF1$

Do complete EFX allocations always exist?

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j , and for all goods $g \in X_j$: $v_i(X_i) \ge v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

• $EF \implies EFX \implies EF1$

Do complete EFX allocations always exist?

Fair division's biggest problem!

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j , and for all goods $g \in X_j$: $v_i(X_i) \ge v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

• $EF \implies EFX \implies EF1$

Do complete EFX allocations always exist?

Fair division's biggest problem!

In this seminar we will see:

- Complete EFX allocations exist for 3 agents if at least one has an additive valuation. [Akrami, Alon, Chaudhury, Garg, Mehlhorn, Mehta 2023]
- "Good" partial EFX allocations exists. [Chaudhury, Kavitha, Mehlhorn, Sgouritsa 2020]

Definition: An allocation X is **proportional**, if and only if for all agents a_i : $v_i(X_i) \ge v_i(M)/n$.

Definition: An allocation X is **proportional**, if and only if for all agents a_i : $v_i(X_i) \ge v_i(M)/n$.

Which allocation is proportional?

0.5

1

Definition: An allocation X is **proportional**, if and only if for all agents a_i : $v_i(X_i) \ge v_i(M)/n$.

Do proportional allocations always exist?

Definition: An allocation X is **proportional**, if and only if for all agents a_i : $v_i(X_i) \ge v_i(M)/n$.

Do proportional allocations always exist?

• For divisible goods, YES! (Next week)

Definition: An allocation X is **proportional**, if and only if for all agents a_i : $v_i(X_i) \ge v_i(M)/n$.

Do proportional allocations always exist?

- For divisible goods, YES! (Next week)
- For indivisible goods, NO!

Definition: An allocation X is **proportional**, if and only if for all agents a_i : $v_i(X_i) \ge v_i(M)/n$.

Do proportional allocations always exist?

- For divisible goods, YES! (Next week)
- For indivisible goods, NO!

• What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

• What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

$$\mathsf{MMS}_i = \mathsf{MMS}_{v_i}^n(M) = \max_{(A_1,\dots,A_n)} \min_{j \in [n]} v_i(A_j).$$

• What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

$$\mathsf{MMS}_i = \mathsf{MMS}_{v_i}^n(M) = \max_{(A_1,\dots,A_n)} \min_{j \in [n]} v_i(A_j).$$

• What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

• What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

• What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

$$\mathsf{MMS}_i = \mathsf{MMS}_{v_i}^n(M) = \max_{(A_1,\dots,A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: For all agents a_i , maximin share of agent i is

$$\mathsf{MMS}_i = \mathsf{MMS}_{v_i}^n(M) = \max_{(A_1,\dots,A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i , $v_i(X_i) \ge MMS_i$.

Definition: For all agents a_i , maximin share of agent i is

$$\mathsf{MMS}_i = \mathsf{MMS}_{v_i}^n(M) = \max_{(A_1,\dots,A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i , $v_i(X_i) \ge MMS_i$.

Definition: For all agents a_i , maximin share of agent *i* is

$$\mathsf{MMS}_i = \mathsf{MMS}_{v_i}^n(M) = \max_{(A_1,\dots,A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i , $v_i(X_i) \ge MMS_i$.

Definition: For all agents a_i , maximin share of agent i is

$$\mathsf{MMS}_i = \mathsf{MMS}_{v_i}^n(M) = \max_{(A_1,\dots,A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i , $v_i(X_i) \ge MMS_i$.

Do MMS allocations always exist?

Definition: For all agents a_i , maximin share of agent i is

$$\mathsf{MMS}_i = \mathsf{MMS}_{v_i}^n(M) = \max_{(A_1,\dots,A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i , $v_i(X_i) \ge MMS_i$.

Do MMS allocations always exist? NO! [Procaccia, Wang 2014]

Definition: For all agents a_i , maximin share of agent i is

$$\mathsf{MMS}_i = \mathsf{MMS}_{v_i}^n(M) = \max_{(A_1,\dots,A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i , $v_i(X_i) \ge MMS_i$.

Do MMS allocations always exist? NO! [Procaccia, Wang 2014]

Definition: For all $\alpha \in [0, 1]$, an allocation X is α -MMS, if for all agents a_i , $v_i(X_i) \ge \alpha \cdot MMS_i$.

Definition: For all agents a_i , maximin share of agent i is

$$\mathsf{MMS}_i = \mathsf{MMS}_{v_i}^n(M) = \max_{(A_1,\dots,A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i , $v_i(X_i) \ge MMS_i$.

Do MMS allocations always exist? NO! [Procaccia, Wang 2014]

Definition: For all $\alpha \in [0, 1]$, an allocation X is α -MMS, if for all agents a_i , $v_i(X_i) \ge \alpha \cdot MMS_i$.

• The best known $\alpha:~3/4+3/3836$ [Akrami, Garg 2024]

Definition: For all agents a_i , maximin share of agent i is

$$\mathsf{MMS}_i = \mathsf{MMS}_{v_i}^n(M) = \max_{(A_1,\dots,A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i , $v_i(X_i) \ge MMS_i$.

Do MMS allocations always exist? NO! [Procaccia, Wang 2014]

Definition: For all $\alpha \in [0, 1]$, an allocation X is α -MMS, if for all agents a_i , $v_i(X_i) \ge \alpha \cdot MMS_i$.

- The best known $\alpha : \; 3/4 + 3/3836 \;$ [Akrami, Garg 2024]

In this seminar we will see:

• 3/4-MMS allocations exist. [Ghodsi, Hajiaghayi, Seddighin, Seddighin, Yami 2018] [Garg, Taki 2020] [Akrami, Garg, Taki 2023]

Is the allocation "fair"?

Is the allocation "fair"?

• EF1?

Is the allocation "fair"?

EF1?EFX?

Is the allocation "fair"?

- EF1?
- EFX?
- MMS?

Divide indivisible items among agents in a fair and efficient manner.

Divide indivisible items among agents in a fair and efficient manner.

Definition: Allocation X pareto dominates allocation Y, if and only if

- for all agents a_i , $v_i(X_i) \ge v_i(Y_i)$, and
- there exists an agent a_j , such that $v_j(X_j) > v_j(Y_j)$.

Divide indivisible items among agents in a fair and efficient manner.

Definition: Allocation X pareto dominates allocation Y, if and only if

- for all agents a_i , $v_i(X_i) \ge v_i(Y_i)$, and
- there exists an agent a_j , such that $v_j(X_j) > v_j(Y_j)$.

Divide indivisible items among agents in a fair and efficient manner.

Definition: Allocation X pareto dominates allocation Y, if and only if

- for all agents a_i , $v_i(X_i) \ge v_i(Y_i)$, and
- there exists an agent a_j , such that $v_j(X_j) > v_j(Y_j)$.

Divide indivisible items among agents in a fair and efficient manner.

Definition: Allocation X pareto dominates allocation Y, if and only if

- for all agents a_i , $v_i(X_i) \ge v_i(Y_i)$, and
- there exists an agent a_j , such that $v_j(X_j) > v_j(Y_j)$.

Divide indivisible items among agents in a fair and efficient manner.

Definition: Allocation X pareto dominates allocation Y, if and only if

- for all agents a_i , $v_i(X_i) \ge v_i(Y_i)$, and
- there exists an agent a_j , such that $v_j(X_j) > v_j(Y_j)$.

Fairness and Efficiency

Efficient

Fairness and Efficiency

In this seminar we will see:

• EF1+PO allocations exist an can be computed in pseudopolynomial time.

[Barman, Krishnamurthy, Vaish 2018]

Definition: Nash social welfare of an allocation X is

$$\mathsf{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i)\right)^{1/n}$$

٠

Definition: Nash social welfare of an allocation X is

$$\mathsf{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i)\right)^{1/n}$$

Definition: Allocation X is **MNW**, if $NSW(X) \ge NSW(Y)$ for all allocations Y.

Definition: Nash social welfare of an allocation X is

$$\mathsf{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i)\right)^{1/n}$$

Definition: Allocation X is α -MNW, if NSW $(X) \ge \alpha \cdot NSW(Y)$ for all allocations Y and $\alpha \in [0, 1]$.

Definition: Nash social welfare of an allocation X is

$$\mathsf{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i)\right)^{1/n}$$

Definition: Allocation X is α -MNW, if NSW $(X) \ge \alpha \cdot NSW(Y)$ for all allocations Y and $\alpha \in [0, 1]$.

In this seminar we will see:

• $MNW \implies EF1 + PO$ [Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

Definition: Nash social welfare of an allocation X is

$$\mathsf{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i)\right)^{1/n}$$

Definition: Allocation X is α -MNW, if NSW $(X) \ge \alpha \cdot NSW(Y)$ for all allocations Y and $\alpha \in [0, 1]$.

In this seminar we will see:

- $MNW \implies EF1 + PO$ [Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]
- 1.45^{-1} -MNW allocations can be computed in polynomial time.

[Barman, Krishnamurthy, Vaish 2018]

Recap

Divide items among agents in a fair and efficient manner.

Notions of fairness: envy freeness, EF1, EFX, proportionality, MMS, ... Notions of efficiency: pareto optimality, MNW ...

Seminar Overview

- 23.04: Introduction on Discrete Fair Division (HA)
- 30.04: Introduction on Cake Cutting (NR)
- 07.05: EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number [Akrami, Alon, Chaudhury, Garg, Mehlhorn, Mehta 2023] (HA) - EFX for 3 agents
- 14.05: Rental Harmony: Sperner's Lemma in Fair Division [Su 1999] (NR)
- 21.05: no lecture
- 28.05: Fair and Efficient Cake Division with Connected Pieces [Arunachaleswaran, Barman, Kumar, Rathi 2019] (student talk)

Seminar Overview

- 04.06: The Unreasonable Fairness of Maximum Nash Welfare [Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016] (student talk) - MNW \implies EF1+PO
- 11.06: A Little Charity Guarantees Almost Envy-Freeness [Chaudhury, Kavitha, Mehlhorn, Sgouritsa 2020] (student talk)
 - "good" partial EFX allocation
- 18.06: no lecture
- 25.06: Existence and Computation of Epistemic EFX Allocations [Caragiannis, Sharma, Garg, Rathi, Varricchio 2023] (student talk) - a relaxation of EFX

Seminar Overview

- 02.07: Simplification and Improvement of MMS Approximation [Akrami, Garg, Sharma, Taki 2023] (student talk) - 3/4-MMS
- 09.07: Finding Fair and Efficient Allocations [Barman, Krishnamurthy, Vaish 2018] (student talk)
 - -1.45^{-1} -MNW + EF1 + PO
- 16.07: On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources [Bhaskar, Sricharan, Vaish 2021] (student talk)
- 23.07: Best of Both Worlds: Ex-Ante and Ex-Post Fairness in Resource Allocation [Freeman, Shah, Vaish 2020] (student talk)
 - randomized allocations

Don't forget!

Send us your preferred list of the student papers by April 30th.

