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Every Tuesday 14:15 - 15:45When?

Kurt Mehlhorn, Nidhi Rathi, and Hannaneh Akrami

Requirements: Basic algorithms lecture

(Introduction to Algorithms and Data Structures)

Your task: • Present a paper from the list in 60-85 minutes.

• Write a summary of the paper by August 2nd.

• The presentation needs to be discussed with us at least
one week before your scheduled talk.

• Send us your preferred order of the papers by April 30th.
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Discrete Fair Division

Divide indivisible items among agents in a fair manner.
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g1 g2 g3 g4 g5Input: I = (N,M, V )

• N = {a1, a2, a3}
• M = {g1, g2, g3, g4, g5}
• X1 = {g1}, X2 = {g2, g5},
X3 = {g3}, P = {g4}

• v1(X1) = 4, v1(X2) = 3

An allocation is complete, if P = ∅ and partial otherwise.
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Envy Freeness

Definition: An allocation X is envy free, if and only if for all agents ai, aj :
vi(Xi) ≥ vi(Xj).

Do complete envy free allocations always exist?

• For divisible goods, YES! (Next weeks)

• For indivisible goods, NO!
Others should not get

more than me!

[Foley 1967]
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EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for
all agents ai, aj , there exists a good g ∈ Xj (if Xj 6= ∅): vi(Xi) ≥ vi(Xj \ {g}).

I do not envy him if the
apple is removed!

Do complete EF1 allocations always exist?

• YES for monotone valuations!

for all S ⊆M and g ∈M , v(S ∪ {g}) ≥ v(S)

• A complete EF1 allocation can be found in polynomial time.

• Today: A polynomial time algorithm to find a complete EF1 allocation for
additive valuations.

[Lipton, Markakis, Mossel, Saberi 2004]
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EFX

Definition: An allocation X is envy free up to any item or EFX, if and only if for
all agents ai, aj , and for all goods g ∈ Xj : vi(Xi) ≥ vi(Xj \ {g}).

• EF =⇒ EFX =⇒ EF1

Do complete EFX allocations always exist?

Fair division’s biggest problem!

• Complete EFX allocations exist for 3 agents if at least one has an additive
valuation. [Akrami, Alon, Chaudhury, Garg, Mehlhorn, Mehta 2023]

• “Good” partial EFX allocations exists. [Chaudhury, Kavitha, Mehlhorn, Sgouritsa 2020]

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

In this seminar we will see:
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Proportionality

Do proportional allocations always exist?

• For divisible goods, YES! (Next week)

• For indivisible goods, NO!
I am not getting my
proportional share!

Definition: An allocation X is proportional, if and only if for all agents ai:
vi(Xi) ≥ vi(M)/n.
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Maximin Share

Definition: For all agents ai, maximin share of agent i is

MMSi = MMSn
vi(M) = max

(A1,...,An)
min
j∈[n]

vi(Aj).

Definition: An allocation X is MMS, if for all agents ai, vi(Xi) ≥ MMSi.

Do MMS allocations always exist? NO! [Procaccia, Wang 2014]

Definition: For all α ∈ [0, 1], an allocation X is α-MMS, if for all agents ai,
vi(Xi) ≥ α ·MMSi.

In this seminar we will see:

• 3/4-MMS allocations exist.

[Akrami, Garg 2024]

[Ghodsi, Hajiaghayi, Seddighin, Seddighin, Yami 2018] [Garg, Taki 2020] [Akrami, Garg, Taki 2023]

• The best known α: 3/4 + 3/3836
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Fairness and Efficiency

100 1

1 100

100 1

1 100

100 1

1 100

Fair

Efficient

Fair

Efficient

Fair

Efficient

• EF1+PO allocations exist an can be computed in pseudopolynomial time.

In this seminar we will see:

[Barman, Krishnamurthy, Vaish 2018]
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Nash Soical Welfare

Definition: Nash social welfare of an allocation X is

NSW(X) =

 ∏
ai∈N

vi(Xi)

1/n

.

• MNW =⇒ EF1 + PO

In this seminar we will see:

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

• 1.45−1-MNW allocations can be computed in polynomial time.
[Barman, Krishnamurthy, Vaish 2018]

Definition: Allocation X is α-MNW, if NSW(X) ≥ α · NSW(Y ) for all allocations
Y and α ∈ [0, 1].



Recap

Divide items among agents in a fair and efficient manner.

Notions of fairness: envy freeness, EF1, EFX, proportionality, MMS, . . .

Notions of efficiency: pareto optimality, MNW . . .



Seminar Overview

Introduction on Discrete Fair Division (HA)

Introduction on Cake Cutting (NR)

EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow
Cycle Number [Akrami, Alon, Chaudhury, Garg, Mehlhorn, Mehta 2023] (HA)
- EFX for 3 agents

Rental Harmony: Sperner’s Lemma in Fair Division [Su 1999] (NR)

no lecture

Fair and Efficient Cake Division with Connected Pieces [Arunachaleswaran,
Barman, Kumar, Rathi 2019] (student talk)
-

23.04:

30.04:

07.05:

14.05:

21.05:

28.05:



Seminar Overview

The Unreasonable Fairness of Maximum Nash Welfare [Caragiannis,
Kurokawa, Moulin, Procaccia, Shah, Wang 2016] (student talk)
- MNW =⇒ EF1+PO

A Little Charity Guarantees Almost Envy-Freeness [Chaudhury, Kavitha,
Mehlhorn, Sgouritsa 2020] (student talk)
- “good” partial EFX allocation

no lecture

Existence and Computation of Epistemic EFX Allocations [Caragiannis,
Sharma, Garg, Rathi, Varricchio 2023] (student talk)
- a relaxation of EFX

04.06:

11.06:

18.06:

25.06:



Seminar Overview

Simplification and Improvement of MMS Approximation [Akrami, Garg,
Sharma, Taki 2023] (student talk)
- 3/4-MMS

Finding Fair and Efficient Allocations [Barman, Krishnamurthy, Vaish 2018]
(student talk)
- 1.45−1-MNW + EF1 + PO

On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources
[Bhaskar, Sricharan, Vaish 2021] (student talk)
-

Best of Both Worlds: Ex-Ante and Ex-Post Fairness in Resource Allocation
[Freeman, Shah, Vaish 2020] (student talk)
- randomized allocations

02.07:

09.07:

16.07:

23.07:



Don’t forget!

Send us your preferred list of the student papers by
April 30th.


