Topics in Computational Social Choice Theory

Lecture 01: Introduction on Discrete Fair Division

Hannaneh Akrami
Organization

Seminar: 2+0, 7 CPS

Organized by Kurt Mehlhorn, Nidhi Rathi, and Hannaneh Akrami

When? Every Tuesday 14:15 - 15:45

Requirements: Basic algorithms lecture
(Introduction to Algorithms and Data Structures)

Your task:
• Present a paper from the list in 50-85 minutes.
• Write a summary of the paper by August 2nd.
• The presentation needs to be discussed with us at least one week before your scheduled talk.
• Send us your preferred order of the papers by April 30th.
Social Choice Theory: Making a collective decision from individual preferences.
Computational Social Choice Theory

Social Choice Theory: Making a collective decision from individual preferences.

Voting
Computational Social Choice Theory

Social Choice Theory: Making a collective decision from individual preferences.

Voting

Resource Allocation
Computational Social Choice Theory

Social Choice Theory: Making a collective decision from individual preferences.

Voting

Resource Allocation

Stable Matchings
Computational Social Choice Theory

Social Choice Theory: Making a collective decision from individual preferences.

Economists and Politicians: Does there exist a social choice mechanism with the desired economic properties?
Computational Social Choice Theory

Social Choice Theory: Making a collective decision from individual preferences.

Voting

Resource Allocation

Stable Matchings

Economists and Politicians: Does there exist a social choice mechanism with the desired economic properties?

Computer Scientists: How to efficiently compute such a mechanism?
Computational Social Choice Theory

Social Choice Theory: Making a collective decision from individual preferences.

Economists and Politicians: Does there exist a social choice mechanism with the desired economic properties?

Computer Scientists: How to efficiently compute such a mechanism?
Fair Division

Divide *items* among *agents* in a *fair* manner.
Fair Division

Divide **items** among **agents** in a **fair** manner.

Applications:

- Partnership dissolution
- Divorce settlements
- Household chores
- Air traffic management
Items

Desirable

Divorce settlements

Undesirable

Household chores
Items

Desirable

Divisible goods

Indivisible goods

Undesirable
Items

Desirable

Divisible goods

Indivisible goods

Undesirable

Divisible chores

Indivisible chores
Items

Desirable

Divisible goods

Indivisible goods

Undesirable

Divisible chores

Indivisible chores
Items

Desirable

- Today
 - Divisible goods
- Next week
 - Indivisible goods

Undesirable

- Divisible chores
- Indivisible chores
Discrete Fair Division

Divide *indivisible items* among *agents* in a *fair* manner.

Input: $\mathcal{I} = (N, M, V)$

- N: set of n agents
- M: set of m indivisible goods
- Valuation functions $v_i : 2^M \rightarrow \mathbb{R}_{\geq 0}$
Divide **indivisible items** among **agents** in a **fair** manner.

Input: \(I = (N, M, V) \)

- \(N \): set of \(n \) agents
- \(M \): set of \(m \) indivisible goods
- Valuation functions \(v_i : 2^M \rightarrow \mathbb{R}_{\geq 0} \)
Discrete Fair Division

Divide **indivisible items** among **agents** in a **fair** manner.

Input: $\mathcal{I} = (N, M, V)$

- N: set of n agents
- M: set of m indivisible goods
- Valuation functions $v_i : 2^M \rightarrow \mathbb{R}_{\geq 0}$
Discrete Fair Division

Divide **indivisible items** among **agents** in a **fair** manner.

Input: $\mathcal{I} = (N, M, V)$

- N: set of n agents
- M: set of m indivisible goods
- Valuation functions $v_i: 2^M \rightarrow \mathbb{R}_{\geq 0}$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>[2]</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>[3]</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Discrete Fair Division

Divide **indivisible items** among **agents** in a **fair** manner.

Input: $\mathcal{I} = (N, M, V)$

- N: set of n agents
- M: set of m indivisible goods
- Valuation functions $v_i : 2^M \rightarrow \mathbb{R}_{\geq 0}$

<table>
<thead>
<tr>
<th></th>
<th>Banana</th>
<th>Apple</th>
<th>Strawberry</th>
<th>Orange</th>
<th>Peach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Agent 2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Agent 3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Goal: Find a **fair** allocation of the goods to the agents.
Divide **indivisible items** among **agents** in a **fair** manner.

Input: \(I = (N, M, V) \)

- **\(N \):** set of \(n \) agents
- **\(M \):** set of \(m \) indivisible goods
- **Valuation functions** \(v_i : 2^M \rightarrow \mathbb{R}_{\geq 0} \)

Goal: Find a **fair** allocation of the goods to the agents.

A partition \(X = (X_1, X_2, \ldots, X_n, P) \) of \(M \)
Discrete Fair Division

Divide \textbf{indivisible items} among \textbf{agents} in a \textbf{fair} manner.

\textbf{Input:} \(\mathcal{I} = (N, M, V)\)

- \(N\): set of \(n\) agents
- \(M\): set of \(m\) indivisible goods
- Valuation functions \(v_i : 2^M \to \mathbb{R}_{\geq 0}\)

\textbf{Goal:} Find a \textbf{fair} allocation of the goods to the agents.

\[\begin{array}{ccccc}
\text{banana} & \text{apple} & \text{strawberry} & \text{orange} & \text{peach} \\
4 & 1 & 2 & 2 & 2 \\
\text{apple} & & \text{strawberry} & \text{orange} & \text{peach} \\
1 & 0 & 5 & 1 & 1 \\
\text{strawberry} & \text{orange} & \text{peach} & & \\
1 & 1 & 5 & 1 & 1 \\
\end{array}\]
Discrete Fair Division

Divide \textbf{indivisible items} among \textbf{agents} in a \textbf{fair} manner.

\textbf{Input: } \mathcal{I} = (N, M, V)

\begin{itemize}
 \item $N = \{a_1, a_2, a_3\}$
 \item $M = \{g_1, g_2, g_3, g_4, g_5\}$
 \item $X_1 = \{g_1\}$, $X_2 = \{g_2, g_5\}$, $X_3 = \{g_3\}$, $P = \{g_4\}$
 \item $v_1(X_1) = 4$, $v_1(X_2) = 3$
\end{itemize}

\begin{tabular}{c|ccccc}
 & g_1 & g_2 & g_3 & g_4 & g_5 \\
\hline
a_1 & \textbf{4} & 1 & 2 & 2 & 2 \\
\hline
a_2 & 1 & 0 & \textbf{5} & 1 & 1 \\
\hline
a_3 & 1 & 1 & \textbf{5} & 1 & 1 \\
\end{tabular}
Discrete Fair Division

Divide **indivisible items** among **agents** in a **fair** manner.

Input: \(I = (N, M, V) \)

- \(N = \{a_1, a_2, a_3\} \)
- \(M = \{g_1, g_2, g_3, g_4, g_5\} \)
- \(X_1 = \{g_1\}, \ X_2 = \{g_2, g_5\}, \ X_3 = \{g_3\}, \ P = \{g_4\} \)
- \(v_1(X_1) = 4, \ v_1(X_2) = 3 \)

Assuming \(v_1 \) is additive:

For all \(S \subseteq M \), \(v_1(S) = \sum_{g \in S} v_i(\{g\}) \)
Discrete Fair Division

Divide indivisible items among agents in a fair manner.

Input: \(I = (N, M, V) \)

- \(N = \{a_1, a_2, a_3\} \)
- \(M = \{g_1, g_2, g_3, g_4, g_5\} \)
- \(X_1 = \{g_1\}, \quad X_2 = \{g_2, g_5\}, \quad X_3 = \{g_3\}, \quad P = \{g_4\} \)
- \(v_1(X_1) = 4, \quad v_1(X_2) = 3 \)

<table>
<thead>
<tr>
<th></th>
<th>(g_1)</th>
<th>(g_2)</th>
<th>(g_3)</th>
<th>(g_4)</th>
<th>(g_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(a_2)</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_3)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

An allocation is complete, if \(P = \emptyset \) and partial otherwise.
Which allocation is fair?
Fairness

- Envy Based
- Share Based
Fairness

- Envy Based
 - Envy Freeness
 - EF1
 - EFX
- Share Based
Fairness

- Envy Based
 - Envy Freeness
 - EF1
 - EFX

- Share Based
 - Proportionality
 - MMS
Envy Freeness

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j: $v_i(X_i) \geq v_i(X_j)$. [Foley 1967]
Envy Freeness

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j:

$$v_i(X_i) \geq v_i(X_j).$$ \text{[Foley 1967]}

Which allocation is envy free?
Envy Freeness

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j:

$$v_i(X_i) \geq v_i(X_j).$$ [Foley 1967]

Do complete envy free allocations always exist?
Envy Freeness

Definition: An allocation X is envy free, if and only if for all agents a_i, a_j:

$$v_i(X_i) \geq v_i(X_j).$$ [Foley 1967]

Do complete envy free allocations always exist?

- For divisible goods, YES! (Next weeks)
Envy Freeness

Definition: An allocation X is envy free, if and only if for all agents a_i, a_j:

$$v_i(X_i) \geq v_i(X_j).$$ [Foley 1967]

Do complete envy free allocations always exist?

- For divisible goods, YES! (Next weeks)
- For indivisible goods, NO!
Envy Freeness

Definition: An allocation X is **envy free**, if and only if for all agents a_i, a_j: $v_i(X_i) \geq v_i(X_j)$. [Foley 1967]

Do complete envy free allocations always exist?

- For divisible goods, YES! (Next weeks)
- For indivisible goods, NO!

Others should not get more than me!
Definition: An allocation X is **envy free up to one item** or **EF1**, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.
EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.
EF1

Definition: An allocation X is **envy free up to one item** or EF1, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

I do not envy him if the apple is removed!
EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

Do complete EF1 allocations always exist?

I do not envy him if the apple is removed!
Definition: An allocation X is **envy free up to one item** or EF1, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

Do complete EF1 allocations always exist?

- **YES** for monotone valuations!
EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

Do complete EF1 allocations always exist?

- YES for monotone valuations!

for all $S \subseteq M$ and $g \in M$, $v(S \cup \{g\}) \geq v(S)$
EF1

Definition: An allocation X is envy free up to one item or EF1, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

Do complete EF1 allocations always exist?

- **YES** for monotone valuations!

 for all $S \subseteq M$ and $g \in M$, $v(S \cup \{g\}) \geq v(S)$

- A complete EF1 allocation can be found in polynomial time.

[Lipton, Markakis, Mossel, Saberi 2004]
EF1

Definition: An allocation X is **envy free up to one item** or EF1, if and only if for all agents a_i, a_j, there exists a good $g \in X_j$ (if $X_j \neq \emptyset$): $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

Do complete EF1 allocations always exist?

- **YES** for monotone valuations!

 for all $S \subseteq M$ and $g \in M$, $v(S \cup \{g\}) \geq v(S)$

- A complete EF1 allocation can be found in polynomial time.

 [Lipton, Markakis, Mossel, Saberi 2004]

- Today: A polynomial time algorithm to find a complete EF1 allocation for additive valuations.
Round-Robin Algorithm

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.
Round-Robin Algorithm

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.
Round-Robin Algorithm

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.
Round-Robin Algorithm

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
<th>🍓</th>
<th>🍊</th>
<th>🍷</th>
</tr>
</thead>
<tbody>
<tr>
<td>🧑‍♀️</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>🧑‍🦳</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>🧑‍🦳</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Round-Robin Algorithm

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.
Round-Robin Algorithm

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
<th>🍓</th>
<th>🍊</th>
<th>🍏</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Round-Robin Algorithm

- Fix an ordering of the agents, say a_1, a_2, \ldots, a_n.
- Agents take turns according to the ordering $(a_1, a_2, \ldots, a_n, a_1, a_2, \ldots, a_n, \ldots)$ to pick their favorite items from the set of the remaining items.
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[a_1 \ a_2 \ a_3 \ \ldots \ a_n \]
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[a_1 \quad a_2 \quad a_3 \quad \ldots \quad a_n \]

First round:
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[a_1 \quad a_2 \quad a_3 \quad \ldots \quad a_n \]

First round: \(\bullet \)
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[a_1, a_2, a_3, \ldots, a_n \]

First round:

\[\bigcirc \quad \bigcirc \]
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

First round: a_1 a_2 a_3 ... a_n
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[a_1, a_2, a_3, \ldots, a_n \]

First round:

Second round:
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

\[
\begin{array}{cccccc}
 a_1 & a_2 & a_3 & \ldots & a_n \\
\end{array}
\]

First round: \[\bullet \quad \bullet \quad \bullet \quad \ldots \quad \bullet \]

Second round: \[\bullet \quad \bullet \quad \bullet \quad \ldots \quad \bullet \]

\[\vdots \quad \vdots \quad \vdots \]

Last round:
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

<table>
<thead>
<tr>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>\ldots</th>
<th>a_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
<td>○</td>
<td>●</td>
<td>⋯</td>
<td>●</td>
</tr>
<tr>
<td>○</td>
<td>●</td>
<td>○</td>
<td>⋯</td>
<td>●</td>
</tr>
<tr>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last round:</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).

\[
\begin{array}{c|c|c}
 & r & b \\
\hline
\text{First round:} & \cdots & \bullet & \cdots & \bullet & \cdots \\
\text{Second round:} & \cdots & \bullet & \cdots & \bullet & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\text{Last round:} & \cdots & \bullet \\
\end{array}
\]
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).

```
First round:     \cdots \rightarrow\  \rightarrow\  \cdots
Second round:   \cdots \rightarrow\  \rightarrow\  \cdots
                \cdots \rightarrow\  \rightarrow\  \cdots
Last round:     \cdots \rightarrow\  \rightarrow\  \cdots
```

\(r\) \hspace{2cm} \(b\)
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).

If \(r\) precedes \(b\), by additivity
\[
v_r(X_r) \geq v_r(X_b).
\]
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).

\[
\begin{array}{c}
\text{First round:} & \cdots & \bullet & \cdots & \circ & \cdots \\
\text{Second round:} & \cdots & \bullet & \cdots & \circ & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\text{Last round:} & \cdots & \bullet \\
\end{array}
\]
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).

\[
\begin{array}{cccc}
\text{First round:} & \cdots & g & \cdots & \circ & \cdots \\
\text{Second round:} & \cdots & \circ & \cdots & \circ & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\text{Last round:} & \cdots & \circ \\
\end{array}
\]
Round-Robin Algorithm

Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).

\[
\begin{array}{c}
\text{b} \\
\text{r}
\end{array}
\]

First round: \(\cdots g \cdots r \cdots \cdots\)

Second round: \(\cdots \cdots \cdots \cdots \cdots \cdots\)

\[\cdot \quad \cdot \quad \cdot\]

Last round: \(\cdots b \cdots\)
Theorem: For additive valuations, Round-Robin returns an EF1 allocation in polynomial time.

Fix a pair of agents \((r, b)\). Analyze envy from \(r\) to \(b\).

\[v_r(X_r) \geq v_r(X_b \setminus \{g\}). \]
Definition: An allocation X is **envy free up to any item** or EFX, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]
Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

Is the following allocation EFX?

<table>
<thead>
<tr>
<th></th>
<th>🍊</th>
<th>🍎</th>
<th>🍓</th>
<th>🍊</th>
<th>🍊</th>
</tr>
</thead>
<tbody>
<tr>
<td>🧑‍ﭯ</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>🧑</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>🧑‍녕</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
EFX

Definition: An allocation X is **envy free up to any item** or **EFX**, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

- $\text{EF} \implies \text{EFX} \implies \text{EF1}$
Definition: An allocation X is \textit{envy free up to any item} or EFX, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

- EF \implies EFX \implies EF1

Do complete EFX allocations always exist?
Definition: An allocation X is envy free up to any item or \textbf{EFX}, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

- $\text{EF} \implies \text{EFX} \implies \text{EF1}$

Do complete EFX allocations always exist?

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]
EFX

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

[Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]

- EF \implies EFX \implies EF1

Do complete EFX allocations always exist?

Fair division’s biggest problem!
EFX

Definition: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j, and for all goods $g \in X_j$: $v_i(X_i) \geq v_i(X_j \setminus \{g\})$.

\cdot EF \implies EFX \implies EF1

Do complete EFX allocations always exist? OPEN

Fair division’s biggest problem!

In this seminar we will see:

\bullet Complete EFX allocations exist for 3 agents if at least one has an additive valuation. [Akrami, Alon, Chaudhury, Garg, Mehlhorn, Mehta 2023]

\bullet “Good” partial EFX allocations exists. [Chaudhury, Kavitha, Mehlhorn, Sgouritsa 2020]
Fairness

- Envy Based
 - Envy Freeness
 - EF1
 - EFX
- Share Based
 - Proportionality
 - MMS
Definition: An allocation X is proportional, if and only if for all agents a_i: $v_i(X_i) \geq v_i(M)/n$.
Proportionality

Definition: An allocation X is proportional, if and only if for all agents a_i:

$$v_i(X_i) \geq v_i(M)/n.$$

Which allocation is proportional?
Proportionality

Definition: An allocation X is proportional, if and only if for all agents a_i: $v_i(X_i) \geq v_i(M)/n$.

Do proportional allocations always exist?
Proportionality

Definition: An allocation X is **proportional**, if and only if for all agents a_i:

$$v_i(X_i) \geq v_i(M)/n.$$

Do proportional allocations always exist?

- For divisible goods, YES! (Next week)
Proportionality

Definition: An allocation X is **proportional**, if and only if for all agents a_i:
\[v_i(X_i) \geq v_i(M)/n. \]

Do proportional allocations always exist?

- For divisible goods, YES! (Next week)
- For indivisible goods, NO!
Proportionality

Definition: An allocation X is *proportional*, if and only if for all agents a_i:

$$v_i(X_i) \geq v_i(M)/n.$$

Do proportional allocations always exist?

- For divisible goods, YES! (Next week)
- For indivisible goods, NO!

I am not getting my proportional share!
Maximin Share

- What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?
Maximin Share

What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS_{v_i}(M) = \max_{(A_1, \ldots, A_n) \in [n]} \min_{j \in [n]} v_i(A_j).$$
Maximin Share

- What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS^v_{i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Maximin Share

- What value can I guarantee for myself if I divide the items into n bundles and receive the least valuable bundle?

Definition: For all agents a_i, maximin share of agent i is

$$\text{MMS}_i = \text{MMS}_{v_i}^n(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

<table>
<thead>
<tr>
<th></th>
<th>Banana</th>
<th>Apple</th>
<th>Strawberry</th>
<th>Orange</th>
<th>Peach</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>User 2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>User 3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$\text{MMS}_1 = 3$
Maximin Share

- What value can I guarantee for myself if I divide the items into \(n \) bundles and receive the least valuable bundle?

Definition: For all agents \(a_i \), maximin share of agent \(i \) is

\[
MMS_i = MMS_{v_i}^n(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).
\]

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\(MMS_1 = 3 \)

\(MMS_2 = 1 \)
Maximin Share

- What value can I guarantee for myself if I divide the items into \(n \) bundles and receive the least valuable bundle?

Definition: For all agents \(a_i \), maximin share of agent \(i \) is

\[
MMS_i = \text{MMS}^n_{v_i}(M) = \max_{(A_1,\ldots,A_n)} \min_{j \in [n]} v_i(A_j).
\]

<table>
<thead>
<tr>
<th></th>
<th>Banana</th>
<th>Apple</th>
<th>Strawberry</th>
<th>Orange</th>
<th>Pineapple</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(MMS_1 = 3 \)

\(MMS_2 = 1 \)

\(MMS_3 = 2 \)
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS^n_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$MMS_1 = 3$

$MMS_2 = 1$

$MMS_3 = 2$
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS^n_{v_i}(M) = \max_{(A_1,\ldots,A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is MMS, if for all agents a_i, $v_i(X_i) \geq MMS_i$.

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
<th>🍓</th>
<th>🍊</th>
<th>🍊</th>
<th>MMS$_1$ = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>🧑</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>🧑</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>MMS$_2$ = 1</td>
</tr>
<tr>
<td>🧑</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>MMS$_3$ = 2</td>
</tr>
</tbody>
</table>
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is MMS, if for all agents a_i, $v_i(X_i) \geq MMS_i$.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$MMS_1 = 3$

$MMS_2 = 1$

$MMS_3 = 2$
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS^n_{v_i}(M) = \max_{(A_1,\ldots,A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i, $v_i(X_i) \geq MMS_i$.
Maximin Share

Definition: For all agents a_i, maximin share of agent i is
\[MMS_i = MMS_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j). \]

Definition: An allocation X is MMS, if for all agents a_i, $v_i(X_i) \geq MMS_i$.

Do MMS allocations always exist?
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$\text{MMS}_i = \text{MMS}_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i, $v_i(X_i) \geq \text{MMS}_i$.

Do MMS allocations always exist? NO! [Procaccia, Wang 2014]
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is **MMS**, if for all agents a_i, $v_i(X_i) \geq MMS_i$.

Do MMS allocations always exist? **NO!** [Procaccia, Wang 2014]

Definition: For all $\alpha \in [0, 1]$, an allocation X is α-MMS, if for all agents a_i, $v_i(X_i) \geq \alpha \cdot MMS_i$.
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$\text{MMS}_i = \text{MMS}^n_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is MMS, if for all agents a_i, $v_i(X_i) \geq \text{MMS}_i$.

Do MMS allocations always exist? NO! [Procaccia, Wang 2014]

Definition: For all $\alpha \in [0, 1]$, an allocation X is α-MMS, if for all agents a_i, $v_i(X_i) \geq \alpha \cdot \text{MMS}_i$.

- The best known α: $\frac{3}{4} + \frac{3}{3836}$ [Akrami, Garg 2024]
Maximin Share

Definition: For all agents a_i, maximin share of agent i is

$$MMS_i = MMS_{v_i}(M) = \max_{(A_1, \ldots, A_n)} \min_{j \in [n]} v_i(A_j).$$

Definition: An allocation X is MMS, if for all agents a_i, $v_i(X_i) \geq MMS_i$.

Do MMS allocations always exist? NO! [Procaccia, Wang 2014]

Definition: For all $\alpha \in [0, 1]$, an allocation X is α-MMS, if for all agents a_i, $v_i(X_i) \geq \alpha \cdot MMS_i$.

- The best known α: $3/4 + 3/3836$ [Akrami, Garg 2024]

In this seminar we will see:
- $3/4$-MMS allocations exist. [Ghodsi, Hajiaghayi, Seddighin, Seddighin, Yami 2018] [Garg, Taki 2020] [Akrami, Garg, Taki 2023]
Fairness

- Envy Based
 - Envy Freeness
 - EF1
 - EFX

- Share Based
 - Proportionality
 - MMS

Are we done?
Are we done?

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Are we done?

Is the allocation “fair”?
Are we done?

<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Is the allocation “fair”?

- **EF1?**
<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Are we done?

Is the allocation “fair”?

- EF1?
- EFX?
Are we done?

| 100 | 1 |
| 1 | 100 |

Is the allocation “fair”?

- EF1?
- EFX?
- MMS?
Efficiency

Divide *indivisible items* among *agents* in a *fair* and *efficient* manner.
Efficiency

Divide *indivisible items* among *agents* in a *fair* and *efficient* manner.

Definition: Allocation X *pareto dominates* allocation Y, if and only if
- for all agents a_i, $v_i(X_i) \geq v_i(Y_i)$, and
- there exists an agent a_j, such that $v_j(X_j) > v_j(Y_j)$.
Divide **indivisible items** among **agents** in a **fair** and **efficient** manner.

Definition: Allocation X **pareto dominates** allocation Y, if and only if
- for all agents a_i, $v_i(X_i) \geq v_i(Y_i)$, and
- there exists an agent a_j, such that $v_j(X_j) > v_j(Y_j)$.

Definition: Allocation X is **pareto optimal** or **PO** if there exists no allocation Y such that Y pareto dominates X.
Efficiency

Divide *indivisible items* among *agents* in a *fair* and *efficient* manner.

Definition: Allocation X **pareto dominates** allocation Y, if and only if
- for all agents a_i, $v_i(X_i) \geq v_i(Y_i)$, and
- there exists an agent a_j, such that $v_j(X_j) > v_j(Y_j)$.

Definition: Allocation X is **pareto optimal** or **PO** if there exists no allocation Y such that Y pareto dominates X.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Is the allocation pareto optimal?
Divide **indivisible items** among **agents** in a **fair** and **efficient** manner.

Definition: Allocation X **pareto dominates** allocation Y, if and only if
- for all agents a_i, $v_i(X_i) \geq v_i(Y_i)$, and
- there exists an agent a_j, such that $v_j(X_j) > v_j(Y_j)$.

Definition: Allocation X is **pareto optimal** or **PO** if there exists no allocation Y such that Y pareto dominates X.

![banana]	100	![apple]
![person]	1	
![person]	1	100

Is the allocation pareto optimal?
Efficiency

Divide **indivisible items** among **agents** in a **fair** and **efficient** manner.

Definition: Allocation X **pareto dominates** allocation Y, if and only if
- for all agents a_i, $v_i(X_i) \geq v_i(Y_i)$, and
- there exists an agent a_j, such that $v_j(X_j) > v_j(Y_j)$.

Definition: Allocation X is **pareto optimal** or **PO** if there exists no allocation Y such that Y pareto dominates X.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>![banana]</td>
<td>100</td>
<td>![apple]</td>
</tr>
<tr>
<td>![person]</td>
<td>1</td>
<td>![person]</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Is the allocation pareto optimal?
Fairness and Efficiency

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Fair**: ✔️
- **Efficient**: ✗

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Fair**: ✗
- **Efficient**: ✔️

<table>
<thead>
<tr>
<th></th>
<th>🍌</th>
<th>🍎</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

- **Fair**: ✔️
- **Efficient**: ✔️
In this seminar we will see:

- EF1+PO allocations exist and can be computed in pseudopolynomial time.

[Barman, Krishnamurthy, Vaish 2018]
Nash Social Welfare

Definition: Nash social welfare of an allocation X is

$$
\text{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i) \right)^{1/n}.
$$
Nash Social Welfare

Definition: Nash social welfare of an allocation X is

$$NSW(X) = \left(\prod_{a_i \in N} v_i(X_i) \right)^{1/n}.$$

Definition: Allocation X is MNW, if $NSW(X) \geq NSW(Y)$ for all allocations Y.

Nash Social Welfare

Definition: Nash social welfare of an allocation X is

$$\text{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i) \right)^{1/n}.$$

Definition: Allocation X is α-MNW, if $\text{NSW}(X) \geq \alpha \cdot \text{NSW}(Y)$ for all allocations Y and $\alpha \in [0, 1]$.
Nash Social Welfare

Definition: Nash social welfare of an allocation X is

$$\text{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i) \right)^{1/n}.$$

Definition: Allocation X is α-MNW, if $\text{NSW}(X) \geq \alpha \cdot \text{NSW}(Y)$ for all allocations Y and $\alpha \in [0, 1]$.

In this seminar we will see:

- MNW \implies EF1 + PO
 [Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016]
Nash Social Welfare

Definition: Nash social welfare of an allocation X is

$$\text{NSW}(X) = \left(\prod_{a_i \in N} v_i(X_i) \right)^{1/n}. $$

Definition: Allocation X is α-MNW, if $\text{NSW}(X) \geq \alpha \cdot \text{NSW}(Y)$ for all allocations Y and $\alpha \in [0,1]$.

In this seminar we will see:

- MNW \implies EF1 + PO \cite{Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016}

- 1.45^{-1}-MNW allocations can be computed in polynomial time. \cite{Barman, Krishnamurthy, Vaish 2018}
Recap

Divide **items** among **agents** in a **fair** and **efficient** manner.

Notions of fairness: envy freeness, EF1, EFX, proportionality, MMS, . . .

Notions of efficiency: pareto optimality, MNW . . .
Seminar Overview

23.04: Introduction on Discrete Fair Division (HA)

30.04: Introduction on Cake Cutting (NR)

07.05: EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number [Akrami, Alon, Chaudhury, Garg, Mehlhorn, Mehta 2023] (HA)
- EFX for 3 agents

14.05: Rental Harmony: Sperner’s Lemma in Fair Division [Su 1999] (NR)
- Existence of EF for cake

21.05: no lecture

28.05: Fair and Efficient Cake Division with Connected Pieces [Arunachaleswaran, Barman, Kumar, Rathi 2019] (student talk)
- 1/2-EF in polytime for cake
Seminar Overview

04.06: The Unreasonable Fairness of Maximum Nash Welfare [Caragiannis, Kurokawa, Moulin, Procaccia, Shah, Wang 2016] (student talk)
- MNW \implies EF1+PO

11.06: A Little Charity Guarantees Almost Envy-Freeness [Chaudhury, Kavitha, Mehlhorn, Sgouritsa 2020] (student talk)
- “good” partial EFX allocation

18.06: no lecture

25.06: Existence and Computation of Epistemic EFX Allocations [Caragiannis, Sharma, Garg, Rathi, Varricchio 2023] (student talk)
- a relaxation of EFX
Seminar Overview

02.07: Simplification and Improvement of MMS Approximation [Akrami, Garg, Sharma, Taki 2023] (student talk)
- $3/4$-MMS

09.07: Finding Fair and Efficient Allocations [Barman, Krishnamurthy, Vaish 2018] (student talk)
- 1.45^{-1}-MNW + EF1 + PO

16.07: On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources [Bhaskar, Sricharan, Vaish 2021] (student talk)
- EF1 for chores

- randomized allocations
Don’t forget!

Send us your preferred list of the student papers by April 30th.