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Fair Division

What is fairness as a concept?  How to compute a fair allocation?

Goal: To divide the resource among the agents in a fair manner

• Mathematical study of fairly allocating resources among agents with 
distinct preferences, but equal entitlements. 

• Focus on provable guarantees. 

• Computational Perspective: work towards algorithms & hardness results 
                                                       and approximation algorithms
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Goal: To divide the resource among the agents in a fair manner

€



Cake-Cutting

How to fairly cut the cake?



Cake-Cutting

How to fairly divide a cake 
among agents with differing preferences?
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Why is this problem interesting?

I only like 
vanilla

I like chocolate 
and vanilla

I love fruits

Is this division fair?



Why is this problem interesting?

Preferences matter!
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• First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot 

Resource: A piece of land

1. Abraham cuts the land into two pieces:  
             the left & the right part 

2. Lot chooses between the two. 

Lot Abraham
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Cut-and-choose Protocol

v1(A1) = v1(A2) = 1/2

v2(A2) ≥ v2(A1) and v2(A2) ≥ 1/2

We have: 

Proportionality Envy-freeness

1. Abraham (agent 1) cuts the cake  into two pieces of equal value to him. 
2. Lot (agent 2) selects of the two pieces  the one of higher value to him.

[0,1]
[0,x] or [x,1]

v1(A1) ≥ 1/2
v2(A2) ≥ 1/2

v1(A1) ≥ v1(A2)
v2(A2) ≥ v2(A1)

0 1xA2 A1
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The Model

•  The resource: Cake [0,1]    (heterogeneous and divisible) 

•   Set of agents: {1,2, …, n} 

•   Piece of a cake: finite union of subintervals of [0,1]

0 1
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Preferences of Agents

•  (Cardinal) preferences are expressed via valuation function  

                                   vi : 2[0,1] → ℝ+ ∪ {0}
that assigns a non-negative value  to any piece  of the cakevi(X) X ⊆ [0,1]

vi(X) = ∫x∈X
fi(x) dx

fi

0 1

X

density function
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Preferences of Agents

•  Valuation function   :vi Agent  values piece  at i X vi(X) ≥ 0

Additive:  
For disjoint , we have  X, Y ⊂ [0,1] vi(X ∪ Y ) = vi(X) + vi(Y )

vi (cake) = 1Normalized:

(non-negative)
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Preferences of Agents

•  Valuation function   :vi Agent  values piece  at i X vi(X) ≥ 0

Additive:  
For disjoint , we have  

Divisible: 
For any  and , there exists a  s.t.  

X, Y ⊂ [0,1] vi(X ∪ Y ) = vi(X) + vi(Y )

X ⊆ [0,1] λ ∈ [0,1] Y ⊆ X vi(Y ) = λvi(X)

0 1

αλα

vi (cake) = 1Normalized:

(non-negative)

0 1
α β

α + β

X
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Preferences of Agents

•  Valuation function   :vi Agent  values piece  at i X vi(X) ≥ 0 (non-negative)

vi(X) = ∫x∈X
fi(x) dx

fi

0 1

X

density function

 is a probability distribution over vi [0,1]

Normalized 
Additive 
Divisible
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Robertson-Webb Query Model

Two types of queries to access the valuations:

0 1yx
α = vi(x, y)

cuti (x, α) = y such that vi ([x, y]) = α

(1) 

(2)

evali ([x, y]) = vi ([x, y])
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Fairness Notions

    Allocation:  
    A partition  of the cake  where piece  belongs to agent  

• Proportionality: for each agent , we have    
    [Steinhaus, 1948] 

• Envy-freeness: for every pair  of agents, we have  
    [Foley 1967]

A = (A1, A2, …, An) [0,1] Ai i

i ∈ [n] vi(Ai) ≥ 1/n

i, j ∈ [n] vi(Ai) ≥ vi(Aj)

0 1
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1. Abraham (agent 1) cuts the cake  into two pieces of equal value to him. 
2. Lot (agent 2) selects of the two pieces  the one of higher value to him.
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We have: 
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v2(A2) ≥ v2(A1) and v2(A2) ≥ 1/2A1A2 A2

The cut-and-choose outcome is EF and Prop

EF and Prop are equivalent for two agents

0 1xA2 A1
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Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake  into two pieces of equal value to him. 
2. Lot (agent 2) selects of the two pieces  the one of higher value to him.

[0,1]
[0,x] or [x,1]

Can cut-and-choose be implemented in RW model? Yes!

cut1(0,1/2) = x
eval2(0,x)

0 1xA2 A1

The cut-and-choose outcome is EF and Prop



Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake  into two pieces of equal value to him. 
2. Lot (agent 2) selects of the two pieces  the one of higher value to him.

[0,1]
[0,x] or [x,1]

For two agents, an EF/Prop cake division can be computed using two queries

0 1xA2 A1

The cut-and-choose outcome is EF and Prop
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A proportional cake division always exists and can be computed efficiently

(i) Moving-knife Protocol - Dubins and Spanier [1961] 
(ii) Even-Paz Protocol [1984]

Reference: Handbook of Computational Social Choice, see Chapter 13 by Ariel Procaccia.
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0 1x1 = x2x3 x4
i* = 3

ℓ =
W = {1,2,3,4}

1. Initialize   
2. While 

ℓ = 0 and W = [n]
|W | > 1,
• Each agent  marks  such that  

• Set  
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i* = min
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xiarg
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• Each agent  marks  such that  

• Set  

• Set 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
arg

0 1x1 = x2x3 x4ℓ =

1. Initialize   
2. While 

ℓ = 0 and W = [n]
|W | > 1,

i* = 3
W = {1,2,3,4}
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0 1x1 = x2x3 x4

A3 i* = 3
W = {1,2,3,4}

1. Initialize   
2. While 

ℓ = 0 and W = [n]
|W | > 1,
• Each agent  marks  such that  

• Set  

• Set 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
arg
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• Each agent  marks  such that  

• Set  

• Set  
• Update 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg
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A3

1. Initialize   
2. While 

ℓ = 0 and W = [n]
|W | > 1,

W = {1,2,4}

v3(A3) = 1/4



Moving-Knife Protocol   (Dubins-Spanier)

0 1ℓ

A3

x1 = x4 x2 W = {1,2,4}

v3(A3) = 1/4

1. Initialize   
2. While 

ℓ = 0 and W = [n]
|W | > 1,
• Each agent  marks  such that  

• Set  

• Set  
• Update 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg
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0 1ℓ

A3

x1 = x4 x2x1

A1 i* = 1
W = {1,2,4}

1. Initialize   
2. While 

ℓ = 0 and W = [n]
|W | > 1,
• Each agent  marks  such that  

• Set  

• Set  
• Update 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

v3(A3) = 1/4
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0 1

A3

ℓ

A1

W = {2,4}

1. Initialize   
2. While 

ℓ = 0 and W = [n]
|W | > 1,
• Each agent  marks  such that  

• Set  

• Set  
• Update 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

v1(A1) = 1/4
v3(A3) = 1/4



Moving-Knife Protocol   (Dubins-Spanier)

0 1

A3

ℓ

A1

x4 x2

1. Initialize   
2. While 

ℓ = 0 and W = [n]
|W | > 1,
• Each agent  marks  such that  

• Set  

• Set  
• Update 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

v1(A1) = 1/4
v3(A3) = 1/4

W = {2,4}
i* = 4
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A3 A1

0 1ℓ

v1(A1) = 1/4
v3(A3) = 1/4

W = {2}

A4

1. Initialize   
2. While 

ℓ = 0 and W = [n]
|W | > 1,
• Each agent  marks  such that  

• Set  

• Set  
• Update 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

v4(A4) = 1/4



Moving-Knife Protocol   (Dubins-Spanier)

1. Initialize   
2. While  

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
• Each agent  marks  such that  

• Set  

• Set  
• Update 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

A3 A1

0 1ℓ

A4

W = {2}

v1(A1) = 1/4
v3(A3) = 1/4

v4(A4) = 1/4



Moving-Knife Protocol   (Dubins-Spanier)

0 1

A3 A1 A4 A2

1. Initialize   
2. While  

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
• Each agent  marks  such that  

• Set  

• Set  
• Update 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

W = ∅

v1(A1) = 1/4
v3(A3) = 1/4

v4(A4) = 1/4



Moving-Knife Protocol   (Dubins-Spanier)

0 1

A3 A1 A4 A2

1. Initialize   
2. While  

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
• Each agent  marks  such that  

• Set  

• Set  
• Update 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

W = ∅

v1(A1) = 1/4
v3(A3) = 1/4

v4(A4) = 1/4
v2(A2) ≥ 1/4



Moving-Knife Protocol   (Dubins-Spanier)

0 1

A3 A1 A4 A2 vi(Ai) = 1/n for all agents
vi(Ai) ≥ 1/n for the last agent

1. Initialize   
2. While  

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
• Each agent  marks  such that  

• Set  

• Set  
• Update 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

In general,



Moving-Knife Protocol   (Dubins-Spanier)

0 1

A3 A1 A4 A2 Prop

1. Initialize   
2. While  

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
• Each agent  marks  such that  

• Set  

• Set  
• Update 

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg



Moving-Knife Protocol   (Dubins-Spanier)

1. Initialize  
2. While  

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
•  to each agent   

• Set  

• Set  
• Update 

cuti([ℓ,1], 1/n) i ∈ W
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

Prop
0 1

A3 A1 A4 A2



Moving-Knife Protocol   (Dubins-Spanier)

1. Initialize  
2. While  

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
•  to each agent   

• Set  

• Set  
• Update 

cuti([ℓ,1], 1/n) i ∈ W
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

A total of 𝒪(n2) queriesProp
0 1

A3 A1 A4 A2
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2 queries for n = 2 Cut-and-choose

𝒪(n2) Dubins-Spanier, Amer. Math. Mon. 1961
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𝒪(n2) Dubins-Spanier, Amer. Math. Mon. 1961

𝒪(n log n)  Even-Paz [1984]  (via recursion)
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envy-free

envy-free

Selfridge-Conway protocol finds an EF cake division 
among three agents using  queries𝒪(1)

Envy-free Protocol for 3 agents
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Open

Source: Lecture slides of Rohit Vaish, IIT Delhi
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No finite-query protocol exists for connected EF cake division 
Stromquist, J. of Combinatorics 2008 even for three agents!

An efficient algorithm: 1/2-EF + 1/3-NSW allocation for connected EF cake division 
[ABKR] WINE 2019 (Fair and Efficient Cake Division with Connected Pieces)

Envy-free cake division exists for any number of agents
connected piecesStromquist [1980], Su [1999]
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