' ' I I I max planck institut
informatik

Topics in Computational Social Choice Theory

Lecture 02: Introduction on Fair Cake Division

Nidhi Rathi

SI Saarland Informatics
Campus

Last Lecture: Discrete Fair Division

What is fairness as a concept? How to compute a fair allocation?

Agents with valuations

over items Indivisible items

Goal: To divide the items among the agents in a fair manner

Fair Division

What is fairness as a concept? How to compute a fair allocation?

Goal: To divide the resource among the agents in a fair manner

Fair Division

What is fairness as a concept? How to compute a fair allocation?

e Mathematical study of fairly allocating resources among agents with
distinct preferences, but equal entitlements.

Goal: To divide the resource among the agents in a fair manner

Fair Division

What is fairness as a concept? How to compute a fair allocation?

e Mathematical study of fairly allocating resources among agents with
distinct preferences, but equal entitlements.

e Focus on provable guarantees.

Goal: To divide the resource among the agents in a fair manner

Fair Division

What is fairness as a concept? How to compute a fair allocation?

e Mathematical study of fairly allocating resources among agents with
distinct preferences, but equal entitlements.

e Focus on provable guarantees.

e Computational Perspective: work towards algorithms & hardness results
and approximation algorithms

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Cake-Cutting

How to fairly cut the cake?

Cake-Cutting

How to fairly divide a cake
among agents with differing preferences?

Why is this problem interesting?

Why is this problem interesting?

Why is this problem interesting?

Why is this problem interesting?

| only like
vanilla

| like chocolate
and vanilla

| love fruits

Why is this problem interesting?

| only like
vanilla

| like chocolate
and vanilla

| love fruits

SR

Is this division fair?

Why is this problem interesting?

| only like
vanilla

| like chocolate
and vanilla

| love fruits

SR

Is this division fair?

)
N\

Why is this problem interesting?

| only like
vanilla

| like chocolate
and vanilla

| love fruits

Why is this problem interesting?

| only like
vanilla

| like chocolate
and vanilla

| love fruits

Is this division fair?

\—/

Why is this problem interesting?

Preferences matter!

Cut-and-choose Protocol

Cut-and-choose Protocol

e First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Cut-and-choose Protocol

e First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot

Resource: A piece of land

Cut-and-choose Protocol

e First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot

Resource: A piece of land

1. Abraham cuts the land into two pieces:
the left & the right part

Cut-and-choose Protocol

e First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot

Resource: A piece of land

1. Abraham cuts the land into two pieces:
the left & the right part

2. Lot chooses between the two.

Cut-and-choose Protocol

e First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot

Resource: A piece of land

1. Abraham cuts the land into two pieces:
the left & the right part

2. Lot chooses between the two.

Cut-and-choose Protocol

e First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot

Resource: A piece of land

1. Abraham cuts the land into two pieces:
the left & the right part

2. Lot chooses between the two.

Cut-and-choose Protocol

1. Abraham cuts the land into two pieces: the left & the right part
2. Lot chooses between the two.

Cut-and-choose Protocol

1. Abraham cuts the land into two pieces: the left & the right part
2. Lot chooses between the two.

0 A, X A, 1

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

0 A, X A, 1

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.
0 A, X A, 1

We have:

vi(A) =vA,) =1/2

Vy(Ay) = vy(Ay) and vy(Ay) = 1/2

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

0 A, X A, 1

We have:

vi(A) =vi(Ay) = 1/2 vi(A) > 1/2
V,(A,) > 1/2

Vy(Ay) = vy(Ap) and vy(Ay) = 1/2

Proportionality

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

0 A, x A 1

We have:

Vi(A) = vi(Ay) = 172 vi(A) > 1/2 vi(A) > v(A,)
Vy(Ay) = 172 V(Ay) 2 vy(Ay)

Proportionality

Vy(Ay) = vy(Ap) and vy(Ay) = 1/2

The Model

The Model

e The resource: Cake [0,1] (heterogeneous and divisible)

The Model

e The resource: Cake [0,1] (heterogeneous and divisible)

e Set of agents: {1,2, ..., n}

The Model

e The resource: Cake [0,1] (heterogeneous and divisible)
e Set of agents: {1,2, ..., n}

e Pijece of a cake: finite union of subintervals of [0,1]

Preferences of Agents

Preferences of Agents

e (Cardinal) preferences are expressed via valuation function

v, 200.11 5 R+ U {0}

Preferences of Agents

e (Cardinal) preferences are expressed via valuation function
y,: 200 5 RT U {0}

that assigns a non-negative value v,(X) to any piece X C [0,1] of the cake

Preferences of Agents

e (Cardinal) preferences are expressed via valuation function
y,: 200 5 RT U {0}

that assigns a non-negative value v,(X) to any piece X C [0,1] of the cake

density function

Vi(X) = J fi(x) dx

xeX

e
%
0 \ / 1

|
X

Preferences of Agents

e Valuation function v, : Agent i values piece X at v(X) > 0 (non-negative)

Preferences of Agents

e Valuation function v, : Agent i values piece X at v(X) > 0 (non-negative)

Normalized: v; (cake) = 1

Preferences of Agents

e Valuation function v, : Agent i values piece X at v(X) > 0 (non-negative)

Normalized: v; (cake) = 1

Additive:
For disjoint X, Y C [0,1], we have v(X U Y) = v.(X) + v,(Y)
a p
o . 1

a+f

Preferences of Agents

e Valuation function v, : Agent i values piece X at v(X) > 0 (non-negative)
Normalized: v; (cake) = 1

Additive:
For disjoint X, Y C [0,1], we have v(X U Y) = v.(X) + v,(Y)

a p

0 A 1

a+f

Divisible:
Forany X C [0,1]and A € [0,1], there existsa Y C Xs.t. vi(Y) = Av,(X)

Aa a

Preferences of Agents

e Valuation function v, : Agent i values piece X at v(X) > 0 (non-negative)

Normalized
Additive
Divisible

Preferences of Agents

e Valuation function v, : Agent i values piece X at v(X) > 0 (non-negative)
Normalized density function J; P
Additive vi(X) = [. Ji(x) dx
Divisible / A

0 \X/l

v; is a probability distribution over [0,1]

Robertson-Webb Query Model

Robertson-Webb Query Model

Two types of queries to access the valuations:

Robertson-Webb Query Model

Two types of queries to access the valuations:

(1) |eval; ([x,y]) = v; ([x,y])

Robertson-Webb Query Model

Two types of queries to access the valuations:

(1) |eval; ([x,y]) = v; ([x,y])

al = Vi(x’ y)

Robertson-Webb Query Model

Two types of queries to access the valuations:

(1) eval; ([x,yD =v; ([x,yD

(2) |cut; (x,a) =y such that v; ([x,y]) =«

Robertson-Webb Query Model

Two types of queries to access the valuations:

(1) eval; ([x,yD =v; ([x,yD

(2) |cut; (x,a) =y such that v; ([x,y]) =«

a =v(x,y)
_—

0 X y 1

Fairness Notions

Fairness Notions

Allocation:
A partition A = (A, A,, ..., A,) of the cake [0,1] where piece A; belongs to agent i

Fairness Notions

Allocation:
A partition A = (A, A,, ..., A,) of the cake [0,1] where piece A; belongs to agent i

e Proportionality: for each agenti € [n], we have v,(A,) > 1/n
[Steinhaus, 1948]

Fairness Notions

Allocation:
A partition A = (A, A,, ..., A,) of the cake [0,1] where piece A; belongs to agent i

e Proportionality: for each agenti € [n], we have v,(A,) > 1/n
[Steinhaus, 1948]

o Envy-freeness: for every pair i, j € [n] of agents, we have v;(A,) > vl-(Aj)
[Foley 1967]

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

0 A, X A, 1

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.
0 A, X A, 1

We have:
Vi(A) = vi(Ar) = 1/2 The cut-and-choose outcome is EF and Prop

Vy(Ay) 2 vy(Ay) and vy(Ay) = 1/2

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

0 A, X A, 1

We have:
Vi(A) = vi(Ar) = 1/2 The cut-and-choose outcome is EF and Prop

V5(A,) > v5(A;) and v,(A,) > 1/2 EF and Prop are equivalent for two agents

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

0 A, X A, 1

The cut-and-choose outcome is EF and Prop

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

0 A, X A, 1

The cut-and-choose outcome is EF and Prop

Can cut-and-choose be implemented in RW model?

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

0 A, X A, 1

The cut-and-choose outcome is EF and Prop

Can cut-and-choose be implemented in RW model? Yes!

cuty(0,1/2) = x
eval,(0,x)

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

0 A, x oA 1

The cut-and-choose outcome is EF and Prop

For two agents, an EF/Prop cake division can be computed using two queries

Fairness Notions

e Proportionality: for each agenti € [n], we have v.(A,) > 1/n

o Envy-freeness: for every pair i, j € [n] of agents, we have v;(A,) > vl-(AJ-)

All allocations

Fairness Notions

e Proportionality: for each agenti € [n], we have v;(A,) > 1/n

o Envy-freeness: for every pair i, j € [n] of agents, we have v;(A,) > vi(Aj)

— for any number of agents

All allocations

Fairness Notions

e Proportionality: for each agenti € [n], we have v;(A,) > 1/n

o Envy-freeness: for every pair i, j € [n] of agents, we have v;(A,) > vi(Aj)

— for any number of agents
— for two agents

All allocations

Fairness Notions

e Proportionality: for each agenti € [n], we have v;(A,) > 1/n

o Envy-freeness: for every pair i, j € [n] of agents, we have v;(A,) > vi(Aj)

— for any number of agents
—

for two agents (but no more)

All allocations

Fairness Notions

e Proportionality: for each agenti € [n], we have v;(A,) > 1/n

o Envy-freeness: for every pair i, j € [n] of agents, we have v;(A,) > vi(Aj)

— for any number of agents
—

for two agents (but no more)

All allocations

A proportional cake division always exists and can be computed efficiently

A proportional cake division always exists and can be computed efficiently

(i) Moving-knife Protocol - Dubins and Spanier [1961]
(ii) Even-Paz Protocol [1984]

Reference: Handbook of Computational Social Choice, see Chapter 13 by Ariel Procaccia.

Moving-Knife Protocol (Dubins-Spanier)

An efficient proportional cake division protocol for any number of agents

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]

W=1{1,2,3,4}

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

0 X3 X4 X| =X,

N
|

W=1{1,2,3,4}

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set ™ =argmin x;
ieW

L
=0 X3 X4 X=X, W= {1234]

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,
e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set ™ =argmin x;
ieW

X X —

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
ieW

X X —

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,
e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
ieW

O .X3 X4 xl — x2 1
W=1{1,2,3,4}

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
ieW

e Update £ = x; and W = W\ {i*}

vi(Ay) = 1/4

A3
ﬁ

0
1 W= {12.4)

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,
e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
ieW

e Update £ = x; and W = W\ {i*}

vi(Ay) = 1/4

W=1{1,2,4}

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
ieW

e Update £ = x; and W = W\ {i*}

vi(Ay) = 1/4

AS Al

| S W= {1,24)

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
ieW

e Update £ = x; and W = W\ {i*}

vi(Ay) = 1/4
vi(A) = 1/4

W= {2.4)

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
ieW

e Update £ = x; and W = W\ {i*}

vi(Ay) = 1/4

A, A vi(A) = 1/4

0 £ X xpl
W={24}

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
ieW

e Update £ = x; and W = W\ {i*}

n(A3) = 1/4
A A A, vi(A,) = 1/4
4

W= {2)

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
iew
e Set Ai* = [7, xi*]
e Update £ = x; and W = W\ {i*}

3. Give the remaining piece to the agent left in W

n(A3) = 1/4
A A A, vi(A,) = 1/4
4

W= {2)

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
iew
e Set Ai* = [7, xi*]
e Update £ = x; and W = W\ {i*}

3. Give the remaining piece to the agent left in W

Vy(As) = 1/4
A A A, vi(A,) = 1/4

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
iew
e Set Ai* = [7, xi*]
e Update £ = x; and W = W\ {i*}

3. Give the remaining piece to the agent left in W

Vy(As) = 1/4
A A A, vi(A,) = 1/4

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
icw
e Update Z = x; and W = W\ {i*}
3. Give the remaining piece to the agent left in W
A, A A, In general,

—]] - vi{(4;) = 1/n for all agents
0 1 vi(4;) > 1/n for the last agent

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,
e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
iew
e Set Ai* = [7, xi*]
e Update £ = x; and W = W\ {i*}

3. Give the remaining piece to the agent left in W

A A A
O 3 1 4 :

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e cut,([Z,1], 1/n) to each agenti € W
o Set ™ =argmin Jx;
iew
e Set Ai* — [f, xi*]
e Update Z = x; and W = W\ {i*}

3. Give the remaining piece to the agent left in W

A A A
O 3 1 4 : O

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W| > 1,

e cut;([£,1], 1/n) to each agenti € W

o Seti* =argmin x;
ieW
e Set Ai* — [f, xi*]

e Update £ = x; and W = W\ {i*}

3. Give the remaining piece to the agent left in W

Ay A Ay

S N T A W — A total of O(n?) queries

0 1

Query Complexity of Proportionality

A

Query Complexity of Proportionality

+ G
for > two agents

Set of all Allocations

A

Query Complexity of Proportionality

#
for > two agents

Set of all Allocations

@(nz) l Dubins-Spanier, Amer. Math. Mon. 1961

2 queries forn =2 -l- Cut-and-choose

Query Complexity of Proportionality

@(nz) l Dubins-Spanier, Amer. Math. Mon. 1961
Prop Ry EF

for > two agents

Set of all Allocations

Onlogn) Even-Paz [1984] (via recursion)

2 queries forn =2 -l- Cut-and-choose

Query Complexity of Proportionality

@(nz) l Dubins-Spanier, Amer. Math. Mon. 1961
prop P EF

for > two agents

Set of all Allocations
O(nlogn) «m Even-Paz [1984] (via recursion)
Q(nlogn) Edmonds & Pruhs, TALG 2011]

2 queries forn =2 -l- Cut-and-choose

Envy-free Protocol

Envy-free Protocol for 3 agents

Envy-free Protocol for 3 agents

make three
equal pieces

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two
pieces equal

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two
pieces equal

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two

pieces equal _ _
Trimmings

— =
> 9

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two
pieces equal

| pick first

]

Trimmings

— =
> 9

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two
pieces equal

| pick first

| pick second
(one of the trimmed
pieces)

ﬁl

Trimmings

— =
> 9

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two
pieces equal

| pick first

| pick last

| pick second
(one of the trimmed
pieces)

Trimmings

— =
> 9

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two
pieces equal

| pick first

| pick last
(untrimmed piece)

| pick second
(one of the trimmed
pieces)

> envy-free

Trimmings

— =
> 9

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two
pieces equal

| pick first
hence EF

| pick last
(untrimmed piece)

| pick second
(one of the trimmed
pieces)

> envy-free

Trimmings

Envy-free Protocol for 3 agents

|—|—> envy-free

Trimmings

(T)

Envy-free Protocol for 3 agents

|ﬁl_> envy-free

Trimmings

(T)

equi-divide T
& pick last

Envy-free Protocol for 3 agents

| pick second

| pick first

equi-divide T
& pick last

|_i_> envy-free

Trimmings

(T)

Envy-free Protocol for 3 agents

| pick second

| pick first,
hence EF

equi-divide T
& pick last

|_i_> envy-free

Trimmings

(T)

Envy-free Protocol for 3 agents

9)
9)

> | pick second Advantage from first
round, hence EF
d b
|_i' > envy-free
| pick first,
hence EF] | Trimmings
(T)

= equi-divide T

& pick last

Envy-free Protocol for 3 agents

9)
9)

3 | pick second Advantage from first
round, hence EF
d b
|_i' > envy-free
| pick first,
hence EF =;| Trimmings

(T)

= equi-divide T | equi-divided
& pick last hence EF

Envy-free Protocol for 3 agents

9)
9)

3 | pick second Advantage from first
round, hence EF
=¥ =N
|_i' > envy-free
| pick first,
hence EF envy-free <=;| Trimmings

(T)

= equi-divide T | equi-divided
& pick last hence EF

Envy-free Protocol for 3 agents

|_i_> envy-free

envy-free <=H Trim(r_lr_w)ings

Hence, we find an envy-free cake division

Envy-free Protocol for 3 agents

:*> e nvy_f ree

envy-free <-|'|j Trim(m)ings
T

Selfridge-Conway protocol finds an EF cake division

- among three agents using O(1) queries

Existence of Envy-free Cake Divisions

Existence of Envy-free Cake Divisions

All allocations

Stromquist [1980], Su [1999]

Envy-free cake division exist for any number of agents (Lecture 04)

Existence of Envy-free Cake Divisions

All allocations

Stromquist [1980], Su [1999]

Envy-free cake division exist for any number of agents (Lecture 04)

Query Complexity of Envy-freeness

oA

Query Complexity of Envy-freeness

oA

2 queries for n = 2 == Cut-and-choose

Query Complexity of Envy-freeness

oA

Cut-and-choose

O(1) queries for n = 3 Selfridge-Conway
2 queriesfor n =2 1

Query Complexity of Envy-freeness

A finite but unbounded protocol l Brams & Taylor, Amer. Math. Mon. 1995

Cut-and-choose

O(1) queries for n = 3 Selfridge-Conway
2 queriesfor n =2 1

Query Complexity of Envy-freeness

A finite but unbounded protocol Brams & Taylor, Amer. Math. Mon. 1995
) Aziz & Mackenzie, FOCS 2016

O(1) queries for n = 3 1 Selfridge-Conway

2 queries for n = 2 Cut-and-choose

Query Complexity of Envy-freeness

A finite but unbounded protocol Brams & Taylor, Amer. Math. Mon. 1995
O™) Aziz & Mackenzie, FOCS 2016

Q(n*) == Procaccia, IJCAI 2009

O(1) queries for n = 3 1 Selfridge-Conway

2 queries for n = 2 Cut-and-choose

Query Complexity of Envy-freeness

A finite but unbounded protocol Brams & Taylor, Amer. Math. Mon. 1995
) Aziz & Mackenzie, FOCS 2016

Open

Q(n*) == Procaccia, IJCAI 2009

O(1) queries for n = 3 1 Selfridge-Conway

2 queries for n = 2 Cut-and-choose

Source: Lecture slides of Rohit Vaish, IIT Delhi

Query Complexity of Envy-freeness

What happens when every agent wishes to have a contiguous piece of the cake?

0 | 1

Query Complexity of Envy-freeness

What happens when every agent wishes to have a contiguous piece of the cake?

Stromquist [1980], Su [1999]

Envy-free cake division exists for any number of agents (4th Lecture)

Query Complexity of Envy-freeness

What happens when every agent wishes to have a contiguous piece of the cake?

0 1
Stromquist [1980], Su [1999] connected pieces

Envy-free cake division exists for any number of agents (4th Lecture)

Query Complexity of Envy-freeness

Stromquist [1980], Su [1999] connected pieces

Envy-free cake division exists for any number of agents

Query Complexity of Envy-freeness

Stromquist [1980], Su [1999] connected pieces

Envy-free cake division exists for any number of agents

Stromquist, J. of Combinatorics 2008 even for three agents!

No finite-query protocol exists for connected EF cake division

Query Complexity of Envy-freeness

Stromquist [1980], Su [1999] connected pieces

Envy-free cake division exists for any number of agents (30 April)

Stromquist, J. of Combinatorics 2008 even for three agents!

No finite-query protocol exists for connected EF cake division

ABKR] WINE 2019 (Fair and Efficient Cake Division with Connected Pieces)

An efficient algorithm: 1/2-EF + 1/3-NSW allocation for connected EF cake division

(28 May)

Don't forget!

Send us your preferred list of the student papers by
April 30th.

' l I I I max planck institut
informatik

