
Topics in Computational Social Choice Theory

Nidhi Rathi

Lecture 02: Introduction on Fair Cake Division

Last Lecture: Discrete Fair Division

What is fairness as a concept? How to compute a fair allocation?

Agents with valuations
over items Indivisible items

Goal: To divide the items among the agents in a fair manner

Fair Division

What is fairness as a concept? How to compute a fair allocation?

Goal: To divide the resource among the agents in a fair manner

Fair Division

What is fairness as a concept? How to compute a fair allocation?

Goal: To divide the resource among the agents in a fair manner

• Mathematical study of fairly allocating resources among agents with
distinct preferences, but equal entitlements.

Fair Division

What is fairness as a concept? How to compute a fair allocation?

Goal: To divide the resource among the agents in a fair manner

• Mathematical study of fairly allocating resources among agents with
distinct preferences, but equal entitlements.

• Focus on provable guarantees.

Fair Division

What is fairness as a concept? How to compute a fair allocation?

Goal: To divide the resource among the agents in a fair manner

• Mathematical study of fairly allocating resources among agents with
distinct preferences, but equal entitlements.

• Focus on provable guarantees.

• Computational Perspective: work towards algorithms & hardness results
 and approximation algorithms

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

€

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

€

Cake-Cutting

How to fairly cut the cake?

Cake-Cutting

How to fairly divide a cake
among agents with differing preferences?

Why is this problem interesting?

Why is this problem interesting?

Why is this problem interesting?

Fair

Why is this problem interesting?

I only like
vanilla

I like chocolate
and vanilla

I love fruits

Why is this problem interesting?

I only like
vanilla

I like chocolate
and vanilla

I love fruits

Is this division fair?

Why is this problem interesting?

I only like
vanilla

I like chocolate
and vanilla

I love fruits

Is this division fair?

Why is this problem interesting?

I only like
vanilla

I like chocolate
and vanilla

I love fruits

Why is this problem interesting?

I only like
vanilla

I like chocolate
and vanilla

I love fruits

Is this division fair?

Why is this problem interesting?

Preferences matter!

Cut-and-choose Protocol

Cut-and-choose Protocol

• First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Cut-and-choose Protocol

• First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot

Resource: A piece of land

Cut-and-choose Protocol

• First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot

Resource: A piece of land

1. Abraham cuts the land into two pieces:
 the left & the right part

Cut-and-choose Protocol

• First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot

Resource: A piece of land

1. Abraham cuts the land into two pieces:
 the left & the right part

2. Lot chooses between the two.

Cut-and-choose Protocol

• First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot

Resource: A piece of land

1. Abraham cuts the land into two pieces:
 the left & the right part

2. Lot chooses between the two.

Lot

Cut-and-choose Protocol

• First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot

Resource: A piece of land

1. Abraham cuts the land into two pieces:
 the left & the right part

2. Lot chooses between the two.

Lot Abraham

Cut-and-choose Protocol

1. Abraham cuts the land into two pieces: the left & the right part
2. Lot chooses between the two.

0 1

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces the one of higher value to him.

[0,1]
[0,x] or [x,1]

1. Abraham cuts the land into two pieces: the left & the right part
2. Lot chooses between the two.

0 1xA2 A1

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces the one of higher value to him.

[0,1]
[0,x] or [x,1]

0 1xA2 A1

Cut-and-choose Protocol

v1(A1) = v1(A2) = 1/2

v2(A2) ≥ v2(A1) and v2(A2) ≥ 1/2

We have:

1. Abraham (agent 1) cuts the cake into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces the one of higher value to him.

[0,1]
[0,x] or [x,1]

0 1xA2 A1

Cut-and-choose Protocol

v1(A1) = v1(A2) = 1/2

v2(A2) ≥ v2(A1) and v2(A2) ≥ 1/2

We have:

Proportionality

1. Abraham (agent 1) cuts the cake into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces the one of higher value to him.

[0,1]
[0,x] or [x,1]

v1(A1) ≥ 1/2
v2(A2) ≥ 1/2

0 1xA2 A1

Cut-and-choose Protocol

v1(A1) = v1(A2) = 1/2

v2(A2) ≥ v2(A1) and v2(A2) ≥ 1/2

We have:

Proportionality Envy-freeness

1. Abraham (agent 1) cuts the cake into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces the one of higher value to him.

[0,1]
[0,x] or [x,1]

v1(A1) ≥ 1/2
v2(A2) ≥ 1/2

v1(A1) ≥ v1(A2)
v2(A2) ≥ v2(A1)

0 1xA2 A1

The Model

The Model

0 1

• The resource: Cake [0,1] (heterogeneous and divisible)

The Model

0 1

• The resource: Cake [0,1] (heterogeneous and divisible)

• Set of agents: {1,2, …, n}

The Model

• The resource: Cake [0,1] (heterogeneous and divisible)

• Set of agents: {1,2, …, n}

• Piece of a cake: finite union of subintervals of [0,1]

0 1

Preferences of Agents

Preferences of Agents

• (Cardinal) preferences are expressed via valuation function

 vi : 2[0,1] → ℝ+ ∪ {0}

Preferences of Agents

• (Cardinal) preferences are expressed via valuation function

 vi : 2[0,1] → ℝ+ ∪ {0}
that assigns a non-negative value to any piece of the cakevi(X) X ⊆ [0,1]

Preferences of Agents

• (Cardinal) preferences are expressed via valuation function

 vi : 2[0,1] → ℝ+ ∪ {0}
that assigns a non-negative value to any piece of the cakevi(X) X ⊆ [0,1]

vi(X) = ∫x∈X
fi(x) dx

fi

0 1

X

density function

Preferences of Agents

• Valuation function :vi Agent values piece at i X vi(X) ≥ 0 (non-negative)

Preferences of Agents

• Valuation function :vi Agent values piece at i X vi(X) ≥ 0

vi (cake) = 1Normalized:

(non-negative)

Preferences of Agents

• Valuation function :vi Agent values piece at i X vi(X) ≥ 0

Additive:
For disjoint , we have X, Y ⊂ [0,1] vi(X ∪ Y) = vi(X) + vi(Y)

vi (cake) = 1Normalized:

(non-negative)

0 1
α β

α + β

Preferences of Agents

• Valuation function :vi Agent values piece at i X vi(X) ≥ 0

Additive:
For disjoint , we have

Divisible:
For any and , there exists a s.t.

X, Y ⊂ [0,1] vi(X ∪ Y) = vi(X) + vi(Y)

X ⊆ [0,1] λ ∈ [0,1] Y ⊆ X vi(Y) = λvi(X)

0 1

αλα

vi (cake) = 1Normalized:

(non-negative)

0 1
α β

α + β

X

Preferences of Agents

• Valuation function :vi Agent values piece at i X vi(X) ≥ 0 (non-negative)

Normalized
Additive
Divisible

Preferences of Agents

• Valuation function :vi Agent values piece at i X vi(X) ≥ 0 (non-negative)

vi(X) = ∫x∈X
fi(x) dx

fi

0 1

X

density function

 is a probability distribution over vi [0,1]

Normalized
Additive
Divisible

Robertson-Webb Query Model

Robertson-Webb Query Model

Two types of queries to access the valuations:

Robertson-Webb Query Model

Two types of queries to access the valuations:

evali ([x, y]) = vi ([x, y])(1)

Robertson-Webb Query Model

Two types of queries to access the valuations:

0 1yx
α = vi(x, y)

(1) evali ([x, y]) = vi ([x, y])

Robertson-Webb Query Model

Two types of queries to access the valuations:

evali ([x, y]) = vi ([x, y])

cuti (x, α) = y such that vi ([x, y]) = α

(1)

(2)

Robertson-Webb Query Model

Two types of queries to access the valuations:

0 1yx
α = vi(x, y)

cuti (x, α) = y such that vi ([x, y]) = α

(1)

(2)

evali ([x, y]) = vi ([x, y])

Fairness Notions

Fairness Notions

 Allocation:
 A partition of the cake where piece belongs to agent A = (A1, A2, …, An) [0,1] Ai i

0 1

Fairness Notions

 Allocation:
 A partition of the cake where piece belongs to agent

• Proportionality: for each agent , we have
 [Steinhaus, 1948]

A = (A1, A2, …, An) [0,1] Ai i

i ∈ [n] vi(Ai) ≥ 1/n

0 1

Fairness Notions

 Allocation:
 A partition of the cake where piece belongs to agent

• Proportionality: for each agent , we have
 [Steinhaus, 1948]

• Envy-freeness: for every pair of agents, we have
 [Foley 1967]

A = (A1, A2, …, An) [0,1] Ai i

i ∈ [n] vi(Ai) ≥ 1/n

i, j ∈ [n] vi(Ai) ≥ vi(Aj)

0 1

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces the one of higher value to him.

[0,1]
[0,x] or [x,1]

0 1xA2 A1

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces the one of higher value to him.

[0,1]
[0,x] or [x,1]

We have:

v1(A1) = v1(A2) = 1/2A2A1

v2(A2) ≥ v2(A1) and v2(A2) ≥ 1/2A1A2 A2

The cut-and-choose outcome is EF and Prop

0 1xA2 A1

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces the one of higher value to him.

[0,1]
[0,x] or [x,1]

We have:

v1(A1) = v1(A2) = 1/2A2A1

v2(A2) ≥ v2(A1) and v2(A2) ≥ 1/2A1A2 A2

The cut-and-choose outcome is EF and Prop

EF and Prop are equivalent for two agents

0 1xA2 A1

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces the one of higher value to him.

[0,1]
[0,x] or [x,1]

The cut-and-choose outcome is EF and Prop

0 1xA2 A1

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces the one of higher value to him.

[0,1]
[0,x] or [x,1]

Can cut-and-choose be implemented in RW model?

0 1xA2 A1

The cut-and-choose outcome is EF and Prop

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces the one of higher value to him.

[0,1]
[0,x] or [x,1]

Can cut-and-choose be implemented in RW model? Yes!

cut1(0,1/2) = x
eval2(0,x)

0 1xA2 A1

The cut-and-choose outcome is EF and Prop

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces the one of higher value to him.

[0,1]
[0,x] or [x,1]

For two agents, an EF/Prop cake division can be computed using two queries

0 1xA2 A1

The cut-and-choose outcome is EF and Prop

Fairness Notions

• Proportionality: for each agent , we have

• Envy-freeness: for every pair of agents, we have

i ∈ [n] vi(Ai) ≥ 1/n
i, j ∈ [n] vi(Ai) ≥ vi(Aj)

All allocations

Fairness Notions

• Proportionality: for each agent , we have

• Envy-freeness: for every pair of agents, we have

i ∈ [n] vi(Ai) ≥ 1/n
i, j ∈ [n] vi(Ai) ≥ vi(Aj)

EF Prop⟹ for any number of agents

All allocations

Fairness Notions

• Proportionality: for each agent , we have

• Envy-freeness: for every pair of agents, we have

i ∈ [n] vi(Ai) ≥ 1/n
i, j ∈ [n] vi(Ai) ≥ vi(Aj)

EF Prop⟹ for any number of agents

EF⟹Prop for two agents

All allocations

Fairness Notions

• Proportionality: for each agent , we have

• Envy-freeness: for every pair of agents, we have

i ∈ [n] vi(Ai) ≥ 1/n
i, j ∈ [n] vi(Ai) ≥ vi(Aj)

EF Prop⟹ for any number of agents

EF⟹Prop for two agents (but no more)

All allocations

Fairness Notions

• Proportionality: for each agent , we have

• Envy-freeness: for every pair of agents, we have

i ∈ [n] vi(Ai) ≥ 1/n
i, j ∈ [n] vi(Ai) ≥ vi(Aj)

EF Prop⟹ for any number of agents

EF⟹Prop for two agents (but no more)

All allocations

A proportional cake division always exists and can be computed efficiently

A proportional cake division always exists and can be computed efficiently

(i) Moving-knife Protocol - Dubins and Spanier [1961]
(ii) Even-Paz Protocol [1984]

Reference: Handbook of Computational Social Choice, see Chapter 13 by Ariel Procaccia.

Moving-Knife Protocol (Dubins-Spanier)

An efficient proportional cake division protocol for any number of agents

Moving-Knife Protocol (Dubins-Spanier)

0 1ℓ =
W = {1,2,3,4}

1. Initialize ℓ = 0 and W = [n]

Moving-Knife Protocol (Dubins-Spanier)

• Each agent marks such that i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n

0 1x1 = x2x3 x4ℓ =
W = {1,2,3,4}

1. Initialize
2. While

ℓ = 0 and W = [n]
|W | > 1,

Moving-Knife Protocol (Dubins-Spanier)

• Each agent marks such that

• Set
i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n

i* = min
i∈W

xiarg

0 1x1 = x2x3 x4ℓ =
W = {1,2,3,4}

1. Initialize
2. While

ℓ = 0 and W = [n]
|W | > 1,

Moving-Knife Protocol (Dubins-Spanier)

0 1x1 = x2x3 x4
i* = 3

ℓ =
W = {1,2,3,4}

1. Initialize
2. While

ℓ = 0 and W = [n]
|W | > 1,
• Each agent marks such that

• Set
i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n

i* = min
i∈W

xiarg

Moving-Knife Protocol (Dubins-Spanier)

• Each agent marks such that

• Set

• Set

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
arg

0 1x1 = x2x3 x4ℓ =

1. Initialize
2. While

ℓ = 0 and W = [n]
|W | > 1,

i* = 3
W = {1,2,3,4}

Moving-Knife Protocol (Dubins-Spanier)

0 1x1 = x2x3 x4

A3 i* = 3
W = {1,2,3,4}

1. Initialize
2. While

ℓ = 0 and W = [n]
|W | > 1,
• Each agent marks such that

• Set

• Set

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
arg

Moving-Knife Protocol (Dubins-Spanier)

• Each agent marks such that

• Set

• Set
• Update

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

0 1ℓ

A3

1. Initialize
2. While

ℓ = 0 and W = [n]
|W | > 1,

W = {1,2,4}

v3(A3) = 1/4

Moving-Knife Protocol (Dubins-Spanier)

0 1ℓ

A3

x1 = x4 x2 W = {1,2,4}

v3(A3) = 1/4

1. Initialize
2. While

ℓ = 0 and W = [n]
|W | > 1,
• Each agent marks such that

• Set

• Set
• Update

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

Moving-Knife Protocol (Dubins-Spanier)

0 1ℓ

A3

x1 = x4 x2x1

A1 i* = 1
W = {1,2,4}

1. Initialize
2. While

ℓ = 0 and W = [n]
|W | > 1,
• Each agent marks such that

• Set

• Set
• Update

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

v3(A3) = 1/4

Moving-Knife Protocol (Dubins-Spanier)

0 1

A3

ℓ

A1

W = {2,4}

1. Initialize
2. While

ℓ = 0 and W = [n]
|W | > 1,
• Each agent marks such that

• Set

• Set
• Update

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

v1(A1) = 1/4
v3(A3) = 1/4

Moving-Knife Protocol (Dubins-Spanier)

0 1

A3

ℓ

A1

x4 x2

1. Initialize
2. While

ℓ = 0 and W = [n]
|W | > 1,
• Each agent marks such that

• Set

• Set
• Update

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

v1(A1) = 1/4
v3(A3) = 1/4

W = {2,4}
i* = 4

Moving-Knife Protocol (Dubins-Spanier)

A3 A1

0 1ℓ

v1(A1) = 1/4
v3(A3) = 1/4

W = {2}

A4

1. Initialize
2. While

ℓ = 0 and W = [n]
|W | > 1,
• Each agent marks such that

• Set

• Set
• Update

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

v4(A4) = 1/4

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize
2. While

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
• Each agent marks such that

• Set

• Set
• Update

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

A3 A1

0 1ℓ

A4

W = {2}

v1(A1) = 1/4
v3(A3) = 1/4

v4(A4) = 1/4

Moving-Knife Protocol (Dubins-Spanier)

0 1

A3 A1 A4 A2

1. Initialize
2. While

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
• Each agent marks such that

• Set

• Set
• Update

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

W = ∅

v1(A1) = 1/4
v3(A3) = 1/4

v4(A4) = 1/4

Moving-Knife Protocol (Dubins-Spanier)

0 1

A3 A1 A4 A2

1. Initialize
2. While

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
• Each agent marks such that

• Set

• Set
• Update

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

W = ∅

v1(A1) = 1/4
v3(A3) = 1/4

v4(A4) = 1/4
v2(A2) ≥ 1/4

Moving-Knife Protocol (Dubins-Spanier)

0 1

A3 A1 A4 A2 vi(Ai) = 1/n for all agents
vi(Ai) ≥ 1/n for the last agent

1. Initialize
2. While

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
• Each agent marks such that

• Set

• Set
• Update

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

In general,

Moving-Knife Protocol (Dubins-Spanier)

0 1

A3 A1 A4 A2 Prop

1. Initialize
2. While

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
• Each agent marks such that

• Set

• Set
• Update

i ∈ W xi ∈ [ℓ,1] vi([ℓ, xi]) = 1/n
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize
2. While

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
• to each agent

• Set

• Set
• Update

cuti([ℓ,1], 1/n) i ∈ W
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

Prop
0 1

A3 A1 A4 A2

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize
2. While

3. Give the remaining piece to the agent left in W

ℓ = 0 and W = [n]
|W | > 1,
• to each agent

• Set

• Set
• Update

cuti([ℓ,1], 1/n) i ∈ W
i* = min

i∈W
xi

Ai* = [ℓ, xi*]
ℓ = xi and W = W∖{i*}

arg

A total of 𝒪(n2) queriesProp
0 1

A3 A1 A4 A2

Query Complexity of Proportionality

Query Complexity of Proportionality

2 queries for n = 2 Cut-and-choose

𝒪(n2) Dubins-Spanier, Amer. Math. Mon. 1961

Query Complexity of Proportionality

2 queries for n = 2 Cut-and-choose

𝒪(n2) Dubins-Spanier, Amer. Math. Mon. 1961

𝒪(n log n) Even-Paz [1984] (via recursion)

Query Complexity of Proportionality

2 queries for n = 2 Cut-and-choose

𝒪(n2) Dubins-Spanier, Amer. Math. Mon. 1961

𝒪(n log n)
Edmonds & Pruhs, TALG 2011]Ω(n log n)
 Even-Paz [1984] (via recursion)

Query Complexity of Proportionality

Envy-free Protocol

Envy-free Protocol for 3 agents

Envy-free Protocol for 3 agents

make three
equal pieces

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two
pieces equal

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two
pieces equal

Envy-free Protocol for 3 agents

Trimmings

make three
equal pieces

make my
top two
pieces equal

Envy-free Protocol for 3 agents

I pick first

Trimmings

make three
equal pieces

make my
top two
pieces equal

Envy-free Protocol for 3 agents

I pick first

Trimmings

make three
equal pieces

make my
top two
pieces equal

I pick second
(one of the trimmed
pieces)

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two
pieces equal

I pick first

I pick last

Trimmings

I pick second
(one of the trimmed
pieces)

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two
pieces equal

I pick first

I pick second
(one of the trimmed
pieces)

I pick last
(untrimmed piece)

envy-free

Trimmings

Envy-free Protocol for 3 agents

make three
equal pieces

make my
top two
pieces equal

I pick first
hence EF

I pick second
(one of the trimmed
pieces)

I pick last
(untrimmed piece)

envy-free

Trimmings

Envy-free Protocol for 3 agents

envy-free

Trimmings
 (T)

Envy-free Protocol for 3 agents

equi-divide T
& pick last

envy-free

Trimmings
 (T)

Envy-free Protocol for 3 agents

equi-divide T
& pick last

I pick first

I pick second

envy-free

Trimmings
 (T)

Envy-free Protocol for 3 agents

equi-divide T
& pick last

I pick second

envy-free

I pick first,
hence EF Trimmings

 (T)

Envy-free Protocol for 3 agents

equi-divide T
& pick last

I pick second

envy-free

I pick first,
hence EF

Advantage from first
round, hence EF

Trimmings
 (T)

Envy-free Protocol for 3 agents

equi-divide T
& pick last

I pick first,
hence EF

I pick second Advantage from first
round, hence EF

I equi-divided
hence EF

envy-free

Trimmings
 (T)

Envy-free Protocol for 3 agents

equi-divide T
& pick last

I pick first,
hence EF

I pick second Advantage from first
round, hence EF

I equi-divided
hence EF

Trimmings
 (T)

envy-free

envy-free

Envy-free Protocol for 3 agents

Trimmings
 (T)

envy-free

envy-free

Hence, we find an envy-free cake division

Trimmings
 (T)

envy-free

envy-free

Selfridge-Conway protocol finds an EF cake division
among three agents using queries𝒪(1)

Envy-free Protocol for 3 agents

Existence of Envy-free Cake Divisions

Existence of Envy-free Cake Divisions

All allocations

EF Prop⟹⟹

Envy-free cake division exist for any number of agents (Lecture 04)
Stromquist [1980], Su [1999]

Existence of Envy-free Cake Divisions

All allocations

EF Prop⟹⟹

Envy-free cake division exist for any number of agents (Lecture 04)
Stromquist [1980], Su [1999]

Query Complexity of Envy-freeness

Query Complexity of Envy-freeness

2 queries for n = 2 Cut-and-choose

Query Complexity of Envy-freeness

2 queries for n = 2
𝒪(1) queries for n = 3

Cut-and-choose
Selfridge-Conway

Query Complexity of Envy-freeness

2 queries for n = 2
𝒪(1) queries for n = 3

Cut-and-choose
Selfridge-Conway

A finite but unbounded protocol Brams & Taylor, Amer. Math. Mon. 1995

Query Complexity of Envy-freeness

𝒪(nnnnnn

)

2 queries for n = 2
𝒪(1) queries for n = 3

Cut-and-choose
Selfridge-Conway

A finite but unbounded protocol Brams & Taylor, Amer. Math. Mon. 1995

Aziz & Mackenzie, FOCS 2016

Query Complexity of Envy-freeness

Ω(n2)

𝒪(nnnnnn

)

2 queries for n = 2
𝒪(1) queries for n = 3

Cut-and-choose
Selfridge-Conway

Procaccia, IJCAI 2009

A finite but unbounded protocol Brams & Taylor, Amer. Math. Mon. 1995

Aziz & Mackenzie, FOCS 2016

Query Complexity of Envy-freeness

Ω(n2)

𝒪(nnnnnn

)

2 queries for n = 2
𝒪(1) queries for n = 3

Cut-and-choose
Selfridge-Conway

Procaccia, IJCAI 2009

A finite but unbounded protocol Brams & Taylor, Amer. Math. Mon. 1995

Aziz & Mackenzie, FOCS 2016

Open

Source: Lecture slides of Rohit Vaish, IIT Delhi

Query Complexity of Envy-freeness

What happens when every agent wishes to have a contiguous piece of the cake?

0 1

Query Complexity of Envy-freeness

What happens when every agent wishes to have a contiguous piece of the cake?

0 1

Envy-free cake division exists for any number of agents
Stromquist [1980], Su [1999]

(4th Lecture)

Query Complexity of Envy-freeness

What happens when every agent wishes to have a contiguous piece of the cake?

0 1

Envy-free cake division exists for any number of agents
connected piecesStromquist [1980], Su [1999]

(4th Lecture)

Query Complexity of Envy-freeness

Envy-free cake division exists for any number of agents
connected piecesStromquist [1980], Su [1999]

Query Complexity of Envy-freeness

No finite-query protocol exists for connected EF cake division
Stromquist, J. of Combinatorics 2008 even for three agents!

Envy-free cake division exists for any number of agents
connected piecesStromquist [1980], Su [1999]

Query Complexity of Envy-freeness

No finite-query protocol exists for connected EF cake division
Stromquist, J. of Combinatorics 2008 even for three agents!

An efficient algorithm: 1/2-EF + 1/3-NSW allocation for connected EF cake division
[ABKR] WINE 2019 (Fair and Efficient Cake Division with Connected Pieces)

Envy-free cake division exists for any number of agents
connected piecesStromquist [1980], Su [1999]

(30 April)

(28 May)

Don’t forget!

Send us your preferred list of the student papers by

April 30th.

