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Fair Division

What is fairness as a concept? How to compute a fair allocation?

e Mathematical study of fairly allocating resources among agents with
distinct preferences, but equal entitlements.

e Focus on provable guarantees.

e Computational Perspective: work towards algorithms & hardness results
and approximation algorithms

Goal: To divide the resource among the agents in a fair manner
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Goal: To divide the resource among the agents in a fair manner
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Cake-Cutting

How to fairly divide a cake
among agents with differing preferences?
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Why is this problem interesting?

| only like
vanilla
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Is this division fair?
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Why is this problem interesting?

Preferences matter!
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Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

0 A, x A 1

We have:

Vi(A) = vi(Ay) = 172 vi(A) > 1/2 vi(A) > v(A,)
Vy(Ay) = 172 V(Ay) 2 vy(Ay)

Proportionality

Vy(Ay) = vy(Ap) and vy(Ay) = 1/2
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The Model

e The resource: Cake [0,1] (heterogeneous and divisible)
e Set of agents: {1,2, ..., n}

e Pijece of a cake: finite union of subintervals of [0,1]



Preferences of Agents



Preferences of Agents

e (Cardinal) preferences are expressed via valuation function

v, 200.11 5 R+ U {0}



Preferences of Agents

e (Cardinal) preferences are expressed via valuation function
y,: 200 5 RT U {0}

that assigns a non-negative value v,(X) to any piece X C [0,1] of the cake



Preferences of Agents

e (Cardinal) preferences are expressed via valuation function
y,: 200 5 RT U {0}

that assigns a non-negative value v,(X) to any piece X C [0,1] of the cake

density function

Vi(X) = J fi(x) dx
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Preferences of Agents

e Valuation function v, : Agent i values piece X at v(X) > 0 (non-negative)
Normalized: v; (cake) = 1

Additive:
For disjoint X, Y C [0,1], we have v(X U Y) = v.(X) + v,(Y)

a p

0 A 1

a+f

Divisible:
Forany X C [0,1]and A € [0,1], there existsa Y C Xs.t. vi(Y) = Av,(X)

Aa a
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Preferences of Agents

e Valuation function v, : Agent i values piece X at v(X) > 0 (non-negative)
Normalized density function J; P
Additive vi(X) = [ . Ji(x) dx
Divisible / A

0 \X/l

v; is a probability distribution over [0,1]
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Robertson-Webb Query Model

Two types of queries to access the valuations:

(1) eval; ([x,yD =v; ([x,yD

(2) |cut; (x,a) =y such that v; ([x,y]) =«

a =v(x,y)
_—

0 X y 1
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Fairness Notions

Allocation:
A partition A = (A, A,, ..., A,) of the cake [0,1] where piece A; belongs to agent i

e Proportionality: for each agenti € [n], we have v,(A,) > 1/n
[Steinhaus, 1948]

o Envy-freeness: for every pair i, j € [n] of agents, we have v;(A,) > vl-(Aj)
[Foley 1967]
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Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

0 A, X A, 1

The cut-and-choose outcome is EF and Prop

Can cut-and-choose be implemented in RW model? Yes!

cuty(0,1/2) = x
eval,(0,x)



Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake [0,1] into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces [0,x] or [x,1] the one of higher value to him.

0 A, x oA 1

The cut-and-choose outcome is EF and Prop

For two agents, an EF/Prop cake division can be computed using two queries
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A proportional cake division always exists and can be computed efficiently

(i) Moving-knife Protocol - Dubins and Spanier [1961]
(ii) Even-Paz Protocol [1984]

Reference: Handbook of Computational Social Choice, see Chapter 13 by Ariel Procaccia.



Moving-Knife Protocol (Dubins-Spanier)

An efficient proportional cake division protocol for any number of agents
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1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
icw
e Update Z = x; and W = W\ {i*}
3. Give the remaining piece to the agent left in W
A, A A, In general,
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0 1 vi(4;) > 1/n for the last agent




Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,
e Each agenti € Wmarksx; € [£,1] such that v([Z,x;]) = 1/n

o Set i =argmin x;
iew
e Set Ai* = [7, xi*]
e Update £ = x; and W = W\ {i*}

3. Give the remaining piece to the agent left in W

A A A
O 3 1 4 :
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1. Initialize £ = 0 and W = [n]
2. While |W]| > 1,

e cut,([Z,1], 1/n) to each agenti € W
o Set ™ =argmin Jx;
iew
e Set Ai* — [f, xi*]
e Update Z = x; and W = W\ {i*}

3. Give the remaining piece to the agent left in W
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Moving-Knife Protocol (Dubins-Spanier)

1. Initialize £ = 0 and W = [n]
2. While |W| > 1,

e cut;([£,1], 1/n) to each agenti € W

o Seti* =argmin x;
ieW
e Set Ai* — [f, xi*]

e Update £ = x; and W = W\ {i*}

3. Give the remaining piece to the agent left in W

Ay A Ay

S N T A W — A total of O(n?) queries

0 1



Query Complexity of Proportionality

A




Query Complexity of Proportionality

+ G
for > two agents

Set of all Allocations

A




Query Complexity of Proportionality

#
for > two agents

Set of all Allocations

@(nz) l Dubins-Spanier, Amer. Math. Mon. 1961

2 queries forn =2 -l- Cut-and-choose



Query Complexity of Proportionality

@(nz) l Dubins-Spanier, Amer. Math. Mon. 1961
Prop Ry EF

for > two agents

Set of all Allocations

Onlogn) Even-Paz [1984] (via recursion)

2 queries forn =2 -l- Cut-and-choose



Query Complexity of Proportionality

@(nz) l Dubins-Spanier, Amer. Math. Mon. 1961
prop P EF

for > two agents

Set of all Allocations
O(nlogn) «m Even-Paz [1984] (via recursion)
Q(nlogn) Edmonds & Pruhs, TALG 2011]

2 queries forn =2 -l- Cut-and-choose
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9)
9)

3 | pick second Advantage from first
round, hence EF
=¥ =N
|_i' > envy-free
| pick first,
hence EF envy-free <=;| Trimmings

(T)

= equi-divide T | equi-divided
& pick last hence EF



Envy-free Protocol for 3 agents

|_i_> envy-free

envy-free <=H Trim(r_lr_w)ings

Hence, we find an envy-free cake division



Envy-free Protocol for 3 agents

:*> e nvy_f ree

envy-free <-|'|j Trim(m)ings
T

Selfridge-Conway protocol finds an EF cake division

- among three agents using O(1) queries
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A finite but unbounded protocol Brams & Taylor, Amer. Math. Mon. 1995
) Aziz & Mackenzie, FOCS 2016

Open

Q(n*) == Procaccia, IJCAI 2009

O(1) queries for n = 3 1 Selfridge-Conway

2 queries for n = 2 Cut-and-choose

Source: Lecture slides of Rohit Vaish, IIT Delhi
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Stromquist [1980], Su [1999] connected pieces

Envy-free cake division exists for any number of agents (30 April)

Stromquist, J. of Combinatorics 2008 even for three agents!

No finite-query protocol exists for connected EF cake division

ABKR] WINE 2019 (Fair and Efficient Cake Division with Connected Pieces)

An efficient algorithm: 1/2-EF + 1/3-NSW allocation for connected EF cake division

(28 May)
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