

Topics in Computational Social Choice Theory

Lecture 02: Introduction on Fair Cake Division

Nidhi Rathi

Last Lecture: Discrete Fair Division

What is fairness as a concept?

How to compute a fair allocation?

Indivisible items

Goal: To divide the items among the agents in a fair manner

Fair Division

What is fairness as a concept?
How to compute a fair allocation?

Goal: To divide the resource among the agents in a fair manner

Fair Division

What is fairness as a concept? How to compute a fair allocation?

- Mathematical study of fairly allocating resources among agents with distinct preferences, but equal entitlements.

Goal: To divide the resource among the agents in a fair manner

Fair Division

What is fairness as a concept? How to compute a fair allocation?

- Mathematical study of fairly allocating resources among agents with distinct preferences, but equal entitlements.
- Focus on provable guarantees.

Goal: To divide the resource among the agents in a fair manner

Fair Division

What is fairness as a concept? How to compute a fair allocation?

- Mathematical study of fairly allocating resources among agents with distinct preferences, but equal entitlements.
- Focus on provable guarantees.
- Computational Perspective: work towards algorithms \& hardness results and approximation algorithms

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Divisible Resource

Goal: To divide the resource among the agents in a fair manner

Cake-Cutting

How to fairly cut the cake?

Cake-Cutting

How to fairly divide a cake among agents with differing preferences?

Why is this problem interesting?

Why is this problem interesting?

Why is this problem interesting?

Fair

Why is this problem interesting?

Why is this problem interesting?

Preferences matter!

Cut-and-choose Protocol

Cut-and-choose Protocol

- First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Cut-and-choose Protocol

- First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot
Resource: A piece of land

Cut-and-choose Protocol

- First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot
Resource: A piece of land

1. Abraham cuts the land into two pieces: the left \& the right part

Cut-and-choose Protocol

- First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot
Resource: A piece of land

1. Abraham cuts the land into two pieces: the left \& the right part
2. Lot chooses between the two.

Cut-and-choose Protocol

- First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot
Resource: A piece of land

1. Abraham cuts the land into two pieces: the left \& the right part
2. Lot chooses between the two.

Lot

Cut-and-choose Protocol

- First known to have appeared in an epic Greek poem of Theogony and then in the Bible.

Two agents: Abraham and Lot
Resource: A piece of land

1. Abraham cuts the land into two pieces: the left \& the right part

Lot
2. Lot chooses between the two.

Cut-and-choose Protocol

1. Abraham cuts the land into two pieces: the left \& the right part
2. Lot chooses between the two.

$$
\begin{array}{ll}
0 & 1
\end{array}
$$

Cut-and-choose Protocol

1. Abraham cuts the land into two pieces: the left \& the right part
2. Lot chooses between the two.

3. Abraham (agent 1) cuts the cake $[0,1]$ into two pieces of equal value to him.
4. Lot (agent 2) selects of the two pieces $[0, x]$ or $[x, 1]$ the one of higher value to him.

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake $[0,1]$ into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces $[0, x]$ or $[x, 1]$ the one of higher value to him.

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake $[0,1]$ into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces $[0, x]$ or $[x, 1]$ the one of higher value to him.

We have:

$$
\begin{aligned}
& v_{1}\left(A_{1}\right)=v_{1}\left(A_{2}\right)=1 / 2 \\
& v_{2}\left(A_{2}\right) \geq v_{2}\left(A_{1}\right) \text { and } v_{2}\left(A_{2}\right) \geq 1 / 2
\end{aligned}
$$

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake $[0,1]$ into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces $[0, x]$ or $[x, 1]$ the one of higher value to him.

We have:

$$
\begin{aligned}
& v_{1}\left(A_{1}\right)=v_{1}\left(A_{2}\right)=1 / 2 \\
& v_{2}\left(A_{2}\right) \geq v_{2}\left(A_{1}\right) \text { and } v_{2}\left(A_{2}\right) \geq 1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}\left(A_{1}\right) \geq 1 / 2 \\
& v_{2}\left(A_{2}\right) \geq 1 / 2
\end{aligned}
$$

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake $[0,1]$ into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces $[0, x]$ or $[x, 1]$ the one of higher value to him.

We have:

$$
\begin{aligned}
& v_{1}\left(A_{1}\right)=v_{1}\left(A_{2}\right)=1 / 2 \\
& v_{2}\left(A_{2}\right) \geq v_{2}\left(A_{1}\right) \text { and } v_{2}\left(A_{2}\right) \geq 1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}\left(A_{1}\right) \geq 1 / 2 \\
& v_{2}\left(A_{2}\right) \geq 1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}\left(A_{1}\right) \geq v_{1}\left(A_{2}\right) \\
& v_{2}\left(A_{2}\right) \geq v_{2}\left(A_{1}\right)
\end{aligned}
$$

The Model

The Model

- The resource: Cake [0,1] (heterogeneous and divisible)

The Model

- The resource: Cake [0,1] (heterogeneous and divisible)
- Set of agents: $\{1,2, \ldots, n\}$

The Model

- The resource: Cake [0,1] (heterogeneous and divisible)
- Set of agents: $\{1,2, \ldots, n\}$
- Piece of a cake: finite union of subintervals of $[0,1]$

Preferences of Agents

Preferences of Agents

- (Cardinal) preferences are expressed via valuation function

$$
v_{i}: 2^{[0,1]} \rightarrow \mathbb{R}^{+} \cup\{0\}
$$

Preferences of Agents

- (Cardinal) preferences are expressed via valuation function

$$
v_{i}: 2^{[0,1]} \rightarrow \mathbb{R}^{+} \cup\{0\}
$$

that assigns a non-negative value $v_{i}(X)$ to any piece $X \subseteq[0,1]$ of the cake

Preferences of Agents

- (Cardinal) preferences are expressed via valuation function

$$
v_{i}: 2^{[0,1]} \rightarrow \mathbb{R}^{+} \cup\{0\}
$$

that assigns a non-negative value $v_{i}(X)$ to any piece $X \subseteq[0,1]$ of the cake

Preferences of Agents

- Valuation function v_{i} : Agent i values piece X at $v_{i}(X) \geq 0 \quad$ (non-negative)

Preferences of Agents

- Valuation function v_{i} : Agent i values piece X at $v_{i}(X) \geq 0 \quad$ (non-negative)

Normalized: $v_{i}($ cake $)=1$

Preferences of Agents

- Valuation function v_{i} : Agent i values piece X at $v_{i}(X) \geq 0 \quad$ (non-negative)

Normalized: $v_{i}($ cake $)=1$
Additive:
For disjoint $X, Y \subset[0,1]$, we have $v_{i}(X \cup Y)=v_{i}(X)+v_{i}(Y)$

Preferences of Agents

- Valuation function v_{i} : Agent i values piece X at $v_{i}(X) \geq 0 \quad$ (non-negative)

Normalized: $v_{i}($ cake $)=1$

Additive:

For disjoint $X, Y \subset[0,1]$, we have $v_{i}(X \cup Y)=v_{i}(X)+v_{i}(Y)$

Divisible:
For any $X \subseteq[0,1]$ and $\lambda \in[0,1]$, there exists a $Y \subseteq X$ s.t. $v_{i}(Y)=\lambda v_{i}(X)$

Preferences of Agents

- Valuation function v_{i} : Agent i values piece X at $v_{i}(X) \geq 0 \quad$ (non-negative)

Normalized
Additive
Divisible

Preferences of Agents

- Valuation function v_{i} : Agent i values piece X at $v_{i}(X) \geq 0 \quad$ (non-negative)

v_{i} is a probability distribution over [0,1]

Robertson-Webb Query Model

Robertson-Webb Query Model

Two types of queries to access the valuations:

Robertson-Webb Query Model

Two types of queries to access the valuations:
(1) $\operatorname{eval}_{i}([x, y])=v_{i}([x, y])$

Robertson-Webb Query Model

Two types of queries to access the valuations:
(1) $\operatorname{eval}_{i}([x, y])=v_{i}([x, y])$

Robertson-Webb Query Model

Two types of queries to access the valuations:
(1) $\operatorname{eval}_{i}([x, y])=v_{i}([x, y])$
(2) $\operatorname{cut}_{i}(x, \alpha)=y$ such that $v_{i}([x, y])=\alpha$

Robertson-Webb Query Model

Two types of queries to access the valuations:
(1) $\operatorname{eval}_{i}([x, y])=v_{i}([x, y])$
(2) $\operatorname{cut}_{i}(x, \alpha)=y$ such that $v_{i}([x, y])=\alpha$

Fairness Notions

Fairness Notions

Allocation:

A partition $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ of the cake $[0,1]$ where piece A_{i} belongs to agent i

Fairness Notions

Allocation:

A partition $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ of the cake $[0,1]$ where piece A_{i} belongs to agent i

- Proportionality: for each agent $i \in[n]$, we have $v_{i}\left(A_{i}\right) \geq 1 / n$ [Steinhaus, 1948]

Fairness Notions

Allocation:

A partition $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ of the cake $[0,1]$ where piece A_{i} belongs to agent i

- Proportionality: for each agent $i \in[n]$, we have $v_{i}\left(A_{i}\right) \geq 1 / n$ [Steinhaus, 1948]
- Envy-freeness: for every pair $\boldsymbol{i}, \boldsymbol{j} \in[n]$ of agents, we have $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)$ [Foley 1967]

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake $[0,1]$ into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces $[0, x]$ or $[x, 1]$ the one of higher value to him.

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake $[0,1]$ into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces $[0, x]$ or $[x, 1]$ the one of higher value to him.

We have:

$$
\begin{aligned}
& v_{1}\left(A_{1}\right)=v_{1}\left(A_{2}\right)=1 / 2 \\
& v_{2}\left(A_{2}\right) \geq v_{2}\left(A_{1}\right) \text { and } v_{2}\left(A_{2}\right) \geq 1 / 2
\end{aligned}
$$

The cut-and-choose outcome is EF and Prop

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake $[0,1]$ into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces $[0, x]$ or $[x, 1]$ the one of higher value to him.

We have:

$$
\begin{aligned}
& v_{1}\left(A_{1}\right)=v_{1}\left(A_{2}\right)=1 / 2 \\
& v_{2}\left(A_{2}\right) \geq v_{2}\left(A_{1}\right) \text { and } v_{2}\left(A_{2}\right) \geq 1 / 2
\end{aligned}
$$

The cut-and-choose outcome is EF and Prop
EF and Prop are equivalent for two agents

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake $[0,1]$ into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces $[0, x]$ or $[x, 1]$ the one of higher value to him.

The cut-and-choose outcome is EF and Prop

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake $[0,1]$ into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces $[0, x]$ or $[x, 1]$ the one of higher value to him.

The cut-and-choose outcome is EF and Prop

Can cut-and-choose be implemented in RW model?

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake $[0,1]$ into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces $[0, x]$ or $[x, 1]$ the one of higher value to him.

The cut-and-choose outcome is EF and Prop

Can cut-and-choose be implemented in RW model? Yes!

$$
\begin{gathered}
\operatorname{cut}_{1}(0,1 / 2)=x \\
\operatorname{eval}_{2}(0, x)
\end{gathered}
$$

Cut-and-choose Protocol

1. Abraham (agent 1) cuts the cake $[0,1]$ into two pieces of equal value to him.
2. Lot (agent 2) selects of the two pieces $[0, x]$ or $[x, 1]$ the one of higher value to him.

The cut-and-choose outcome is EF and Prop

Fairness Notions

- Proportionality: for each agent $i \in[n]$, we have $v_{i}\left(A_{i}\right) \geq 1 / n$
- Envy-freeness: for every pair $i, j \in[n]$ of agents, we have $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)$

Fairness Notions

- Proportionality: for each agent $i \in[n]$, we have $v_{i}\left(A_{i}\right) \geq 1 / n$
- Envy-freeness: for every pair $i, j \in[n]$ of agents, we have $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)$

EF $\quad \Longrightarrow$ Prop \quad for any number of agents

Fairness Notions

- Proportionality: for each agent $i \in[n]$, we have $v_{i}\left(A_{i}\right) \geq 1 / n$
- Envy-freeness: for every pair $i, j \in[n]$ of agents, we have $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)$

Fairness Notions

- Proportionality: for each agent $i \in[n]$, we have $v_{i}\left(A_{i}\right) \geq 1 / n$
- Envy-freeness: for every pair $i, j \in[n]$ of agents, we have $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)$

Fairness Notions

- Proportionality: for each agent $i \in[n]$, we have $v_{i}\left(A_{i}\right) \geq 1 / n$
- Envy-freeness: for every pair $i, j \in[n]$ of agents, we have $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)$

A proportional cake division always exists and can be computed efficiently

A proportional cake division always exists and can be computed efficiently

(i) Moving-knife Protocol - Dubins and Spanier [1961]
 (ii) Even-Paz Protocol [1984]

Reference: Handbook of Computational Social Choice, see Chapter 13 by Ariel Procaccia.

Moving-Knife Protocol (Dubins-Spanier)

An efficient proportional cake division protocol for any number of agents

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$

$$
W=\{1,2,3,4\}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$

$$
W=\{1,2,3,4\}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$

$$
W=\{1,2,3,4\}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$

$$
\begin{gathered}
i^{*}=3 \\
W=\{1,2,3,4\}
\end{gathered}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$

$$
\ell=0 \quad x_{3} \quad x_{4} \quad x_{1}=x_{2} \quad 1
$$

$$
\begin{gathered}
i^{*}=3 \\
W=\{1,2,3,4\}
\end{gathered}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$

$$
\begin{gathered}
i^{*}=3 \\
W=\{1,2,3,4\}
\end{gathered}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$
$v_{3}\left(A_{3}\right)=1 / 4$

$$
W=\{1,2,4\}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$
$v_{3}\left(A_{3}\right)=1 / 4$

$$
W=\{1,2,4\}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$
$v_{3}\left(A_{3}\right)=1 / 4$

$$
\begin{gathered}
i^{*}=1 \\
W=\{1,2,4\}
\end{gathered}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$

$v_{3}\left(A_{3}\right)=1 / 4$
$v_{1}\left(A_{1}\right)=1 / 4$

$$
W=\{2,4\}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$

$$
\begin{array}{cc}
& v_{3}\left(A_{3}\right)=1 / 4 \\
& v_{1}\left(A_{1}\right)=1 / 4 \\
i^{*}=4 & \\
W=\{2,4\} &
\end{array}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$

$$
\begin{aligned}
& v_{3}\left(A_{3}\right)=1 / 4 \\
& v_{1}\left(A_{1}\right)=1 / 4 \\
& v_{4}\left(A_{4}\right)=1 / 4
\end{aligned}
$$

$$
W=\{2\}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$

3. Give the remaining piece to the agent left in W

$$
\begin{aligned}
& v_{3}\left(A_{3}\right)=1 / 4 \\
& v_{1}\left(A_{1}\right)=1 / 4 \\
& v_{4}\left(A_{4}\right)=1 / 4
\end{aligned}
$$

$$
W=\{2\}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$

3. Give the remaining piece to the agent left in W

$$
\begin{aligned}
& v_{3}\left(A_{3}\right)=1 / 4 \\
& v_{1}\left(A_{1}\right)=1 / 4 \\
& v_{4}\left(A_{4}\right)=1 / 4
\end{aligned}
$$

$$
W=\varnothing
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$

3. Give the remaining piece to the agent left in W

$$
\begin{aligned}
& v_{3}\left(A_{3}\right)=1 / 4 \\
& \\
& v_{1}\left(A_{1}\right)=1 / 4 \\
& \\
& v_{4}\left(A_{4}\right)=1 / 4 \\
& \\
& v_{2}\left(A_{2}\right) \geq 1 / 4
\end{aligned}
$$

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$

3. Give the remaining piece to the agent left in W

In general,
$v_{i}\left(A_{i}\right)=1 / n$ for all agents
$v_{i}\left(A_{i}\right) \geq 1 / n$ for the last agent

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- Each agent $i \in W$ marks $x_{i} \in[\ell, 1]$ such that $v_{i}\left(\left[\ell, x_{i}\right]\right)=1 / n$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$

3. Give the remaining piece to the agent left in W

Prop

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- $\operatorname{cut}_{i}([\ell, 1], 1 / n)$ to each agent $i \in W$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$

3. Give the remaining piece to the agent left in W

Prop

Moving-Knife Protocol (Dubins-Spanier)

1. Initialize $\ell=0$ and $W=[n]$
2. While $|W|>1$,

- $\operatorname{cut}_{i}([\ell, 1], 1 / n)$ to each agent $i \in W$
- Set $i^{*}=\underset{i \in W}{\operatorname{argmin}} x_{i}$
- Set $A_{i^{*}}=\left[\ell, x_{i^{*}}\right]$
- Update $\ell=x_{i}$ and $W=W \backslash\left\{i^{*}\right\}$

3. Give the remaining piece to the agent left in W

Prop A total of $\mathcal{O}\left(n^{2}\right)$ queries

Query Complexity of Proportionality

Query Complexity of Proportionality

```
Prop = EF
```

for > two agents

Set of all Allocations

Query Complexity of Proportionality

Prop \neq EF

for > two agents

Set of all Allocations

Query Complexity of Proportionality

Prop \neq EF

for > two agents

Set of all Allocations

Query Complexity of Proportionality

Prop \neq EF

for > two agents

Set of all Allocations

Envy-free Protocol

Envy-free Protocol for 3 agents

Trimmings

Envy-free Protocol for 3 agents

Trimmings

Envy-free Protocol for 3 agents

Envy-free Protocol for 3 agents

Trimmings

Envy-free Protocol for 3 agents

Envy-free Protocol for 3 agents

Trimmings

Envy-free Protocol for 3 agents

(T)
equi-divide T
\& pick last

Envy-free Protocol for 3 agents

(T)

Envy-free Protocol for 3 agents

I pick second

I pick first, hence EF

equi-divide T
\& pick last

Envy-free Protocol for 3 agents

I pick second Advantage from first round, hence EF
I pick first, hence EF

equi-divide T
\& pick last

Envy-free Protocol for 3 agents

I pick second Advantage from first
round, hence EF
I pick first, hence EF

equi-divide T I equi-divided
\& pick last
hence EF
(T)

Envy-free Protocol for 3 agents

I pick second Advantage from first
round, hence EF
I pick first, hence EF

envy-free (H Trimmings
equi-divide T I equi-divided
\& pick last hence EF

Envy-free Protocol for 3 agents

Hence, we find an envy-free cake division

Envy-free Protocol for 3 agents

envy-free $<\mathrm{H}_{(\mathrm{T})}^{\text {Trimmings }}$

Selfridge-Conway protocol finds an EF cake division

 among three agents using $\mathcal{O}(1)$ queries
Existence of Envy-free Cake Divisions

Existence of Envy-free Cake Divisions

Stromquist [1980], Su [1999]

Existence of Envy-free Cake Divisions

Stromquist [1980], Su [1999]

Query Complexity of Envy-freeness

Query Complexity of Envy-freeness

Query Complexity of Envy-freeness

O(1) queries for $n=3$ Selfridge-Conway
2 queries for $n=2$ Cut-and-choose

Query Complexity of Envy-freeness

A finite but unbounded protocol	Brams \& Taylor, Amer. Math. Mon. 1995

Query Complexity of Envy-freeness

Query Complexity of Envy-freeness

Query Complexity of Envy-freeness

Query Complexity of Envy-freeness

What happens when every agent wishes to have a contiguous piece of the cake?

Query Complexity of Envy-freeness

What happens when every agent wishes to have a contiguous piece of the cake?

Stromquist [1980], Su [1999]

Query Complexity of Envy-freeness

What happens when every agent wishes to have a contiguous piece of the cake?

Stromquist [1980], Su [1999] connected pieces

Query Complexity of Envy-freeness

Stromquist [1980], Su [1999]

connected pieces

Envy-free cake division exists for any number of agents

Query Complexity of Envy-freeness

Stromquist [1980], Su [1999]
 connected pieces
 Envy-free cake division exists for any number of agents

Stromquist, J. of Combinatorics 2008
even for three agents!
No finite-query protocol exists for connected EF cake division

Query Complexity of Envy-freeness

Stromquist [1980], Su [1999]
 connected pieces
 Envy-free cake division exists for any number of agents

Stromquist, J. of Combinatorics 2008 even for three agents! No finite-query protocol exists for connected EF cake division

[ABKR] WINE 2019 (Fair and Efficient Cake Division with Connected Pieces) An efficient algorithm: 1/2-EF + 1/3-NSW allocation for connected EF cake division

Don't forget!

Send us your preferred list of the student papers by
April 30th.

