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Problem Definition

Goal: Find a fair allocation of the goods to the agents.

Given:

• N : set of n agents
• M : set of m indivisible goods
• Monotone valuation functions vi : 2

M → R≥0

A partition X = 〈X1, X2, . . . , Xn〉 of M

vi(S ∪ {g}) ≥ vi(S) for all S ⊂M and g ∈M \S
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Fairness

Envy-freeness:

• vi(Xi) ≥ vi(Xj) for all agents i, j.

• Does not always exist.

Envy-freeness up to any good (EFX):

• vi(Xi) ≥ vi(Xj \ {g}) for all
agents i, j and all goods g ∈ Xj .

Do EFX allocations always exist?

Others should not get
more than me!

Others should not get
much more than me!

Fair division’s biggest problem!
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1. Assume n is small.

2. EFX with charity: Allow a small subset of goods to remain unallocated.

3. α-EFX: vi(Xi) ≥ α · vi(Xj \ {g}) for all agents i, j and all g ∈ Xj .

4. Special valuations

5. ...

• Identical [Plaut, Roughgarden’18]
• Binary [Barman, Krishnamurthy, Vaish’18]
• Bi-valued [Amanatidis, Birmpas, Filos-Ratsika, Hollender, Voudouris’21]
• . . .
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Small n

• n = 2 with general monotone valuations

• n = 3 with additive valuations

• n = 3 with nice-cancelable valuations
additive

nice-cancelable

general monotone

EFX allocations exists for n = 3 when

• one agent has nice-cancelable valuation function, and

• two agents have general monotone valuation functions.

Theorem 1 [A., Alon, Chaudhury, Garg, Mehlhorn, Mehta]

[Plaut, Roughgarden’18]

[Chaudhury, Garg, Mehlhorn’20]

[Berger, Cohen, Feldman, Fiat’21]
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Previous Approaches: Drawbacks

1. Fails even if one agent has general monotone valuations.

2. Fails when n ≥ 4.

• Start with the empty allocation.

• Move in the space of partial EFX allocations. Some goods might be unallocated.

• Improve a certain potential function.

• Terminate when reaching a complete allocation. All goods are allocated.

[Chaudhury, Garg, Mehlhorn’20]



Hannaneh Akrami EFX: A Simpler Approach

New Approach
complete

EFX

• Move in the space of partial EFX allocations.

• Improve a certain potential function.

• Terminate when reaching a complete allocation.



Hannaneh Akrami EFX: A Simpler Approach

New Approach

1. Works even if two agent have general monotone valuations.

2. n ≥ 4?

3. Add-on: Simpler analysis.

complete

EFX

• Move in the space of partial EFX allocations.

• Improve a certain potential function.

• Terminate when reaching a complete allocation.
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Algorithm Sketch

X ′1 X ′2 X ′3

1 2 3

Alter the partition but maintain the
following invariants:

• X ′
1 and X ′

2 satisfy agent 1.

• X ′
3 satisfies agent 2 or 3.

Terminate when reaching an EFX allocation.

Initialization: Let agent 1 divide goods
fairly according to v1.

Why does the algorithm terminate? Potential argument.
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Preliminaries

EFX-feasibility: Given partition X of the goods, Xj is EFX-feasible to agent i, if
upon receiving Xj , i does not strongly envy anyone.

I.e., Xj ≥i Xj′ \ {g} for all j′ and all g ∈ Xj′ .

• Assume agent 3 has additive valuation.

Strong envy: Given allocation A, agent i strongly envies agent j, if there exists a
good g ∈ Aj s.t. Aj \ {g} >i Ai.

• X >i Y means vi(X) > vi(Y ).

• Non-degeneracy: For all bundles A 6= B, vi(A) 6= vi(B) for all agents i.
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PRi

Y1 Y2 Yk...

• Y1, Y2, . . . , Yk are EFX-feasible for agent i.
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PR Algorithm

X1 X2 Xk...

PRi

Y1 Y2 Yk...

• Y1, Y2, . . . , Yk are EFX-feasible for agent i.

• minj vi(Yj) > minj vi(Xj) if Y 6= X.

• (Y1, . . . , Yk) = PRi(X1, . . . , Xk)
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Algorithm

X1 X2 X3

1 2 3

Invariants:

• X1 and X2 are EFX-feasible to agent 1.

• X3 is EFX-feasible to agent 2 or 3.

How to proceed?

Make X3 less desirable by moving goods from X3 to X1 and X2.

Φ(X) = min(v1(X1), v1(X2))

Potential function:
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Case Analysis

X2

1 2 3

X ′
1

• X ′
1 := smallest subset of X1 ∪ {g2}

s.t. X ′
1 >1 X1.

Case 1:

X2 <2 X3 \ {g2} >2 X1 ∪ {g2} X ′
3
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• 1
2

-NSW

• n− 1 unallocated goods + 1
2

-NSW

• n− 2 unallocated goods + 1
2

-NSW

vi(Xi) ≥ (1− ε) · vi(Xj \ {g}) for all
agents i, j and all goods g ∈ Xj .

• (1− ε)-EFX allocation with O((n/ε)
4
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Our Results

1. Assume n is small.

2. EFX with charity: Allow a small subset of goods to remain unallocated.

EFX allocations exists for n = 3 when

• one agent has nice-cancelable valuation function, and

• two agents have general monotone valuation functions.

Theorem 1 [A., Alon, Chaudhury, Garg, Mehlhorn, Mehta]

(1− ε)-EFX allocations exist with Õ((n/ε)
1
2 ) unallocated goods.

Theorem 2 [A., Alon, Chaudhury, Garg, Mehlhorn, Mehta]
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