

Topics in Computational Social Choice Theory

Lecture 03:

"EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number"

Hannaneh Akrami

This Talk

EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number. EC'23

Hannaneh AKrami MPII

Princeton University

UIUC

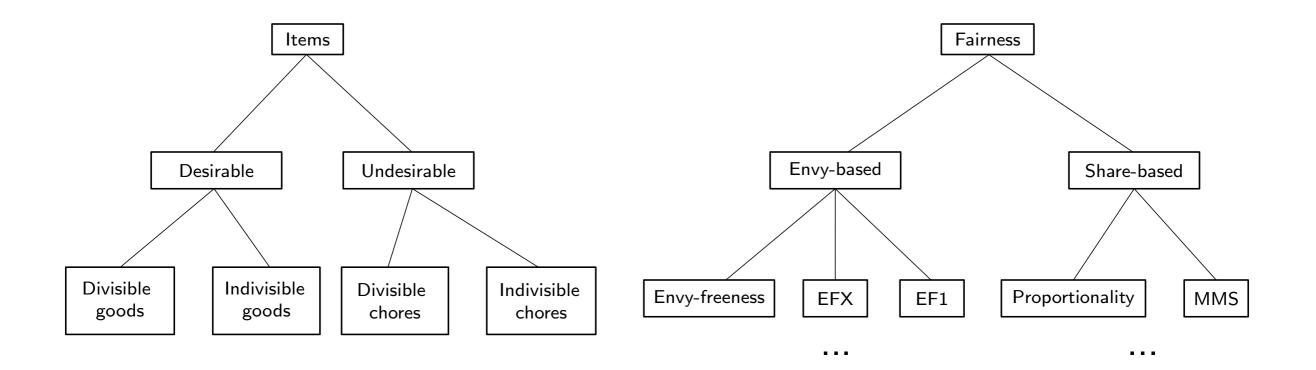
Jugal Garg

urt Mehlho MPII Ruta Mehta UIUC

Hannaneh Akrami

Spectrum of the Problems

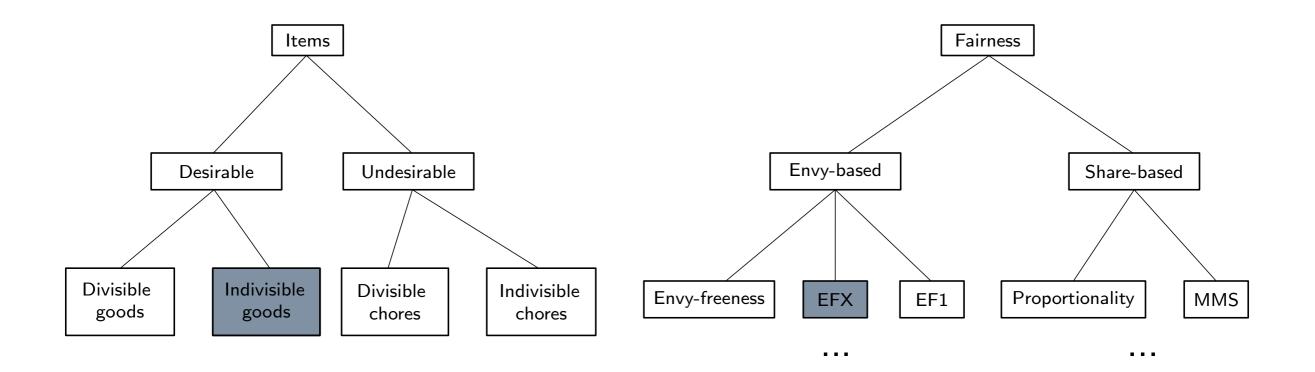
Divide items among agents in a fair manner.



Hannaneh Akrami

Spectrum of the Problems

Divide items among agents in a fair manner.



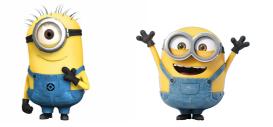
Hannaneh Akrami

Given:

- N: set of n agents
- M: set of m indivisible goods
- Monotone valuation functions $v_i: 2^M \to \mathbb{R}_{\geq 0}$

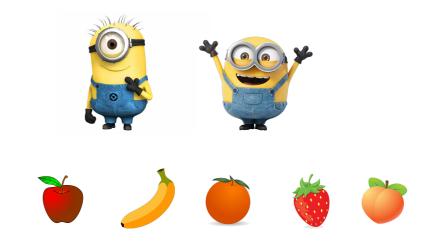
Given:

- N: set of n agents
- M: set of m indivisible goods
- Monotone valuation functions $v_i: 2^M \to \mathbb{R}_{\geq 0}$



Given:

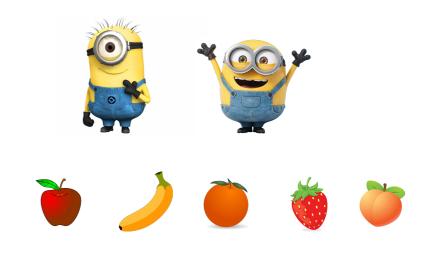
- N: set of n agents
- M: set of m indivisible goods
- Monotone valuation functions $v_i: 2^M \to \mathbb{R}_{\geq 0}$ $\stackrel{\frown}{\bullet}$ $\stackrel{\frown}{\bullet}$ $\stackrel{\frown}{\bullet}$



Given:

- N: set of n agents
- M: set of m indivisible goods
- <u>Monotone</u> valuation functions $v_i : 2^M \to \mathbb{R}_{\geq 0}$ \biguplus \swarrow

 $v_i(S \cup \{g\}) \ge v_i(S)$ for all $S \subset M$ and $g \in M \setminus S$

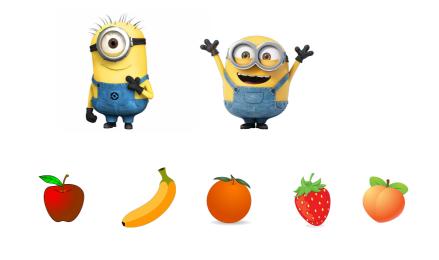


Given:

- N: set of n agents
- M: set of m indivisible goods
- Monotone valuation functions $v_i: 2^M \to \mathbb{R}_{\geq 0}$ $\biguplus \bigcirc$

 $v_i(S \cup \{g\}) \ge v_i(S)$ for all $S \subset M$ and $g \in M \setminus S$

Goal: Find a **fair** allocation of the goods to the agents.



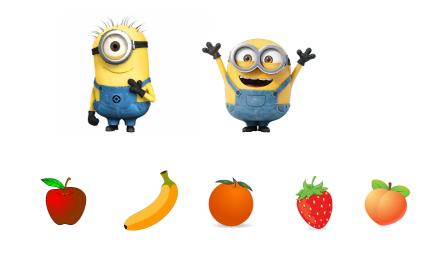
Given:

- N: set of n agents
- M: set of m indivisible goods
- Monotone valuation functions $v_i: 2^M \to \mathbb{R}_{\geq 0}$ $\biguplus \$

 $v_i(S \cup \{g\}) \ge v_i(S)$ for all $S \subset M$ and $g \in M \setminus S$

Goal: Find a fair allocation of the goods to the agents.

A partition $X = \langle X_1, X_2, \dots, X_n \rangle$ of M



Envy-freeness:

- $v_i(X_i) \ge v_i(X_j)$ for all agents i, j.
- Does not always exist.

Envy-freeness:

- $v_i(X_i) \ge v_i(X_j)$ for all agents i, j.
- Does not always exist.

Envy-freeness:

- $v_i(X_i) \ge v_i(X_j)$ for all agents i, j.
- Does not always exist.

Others should not get more than me!

Envy-freeness up to any good (EFX):

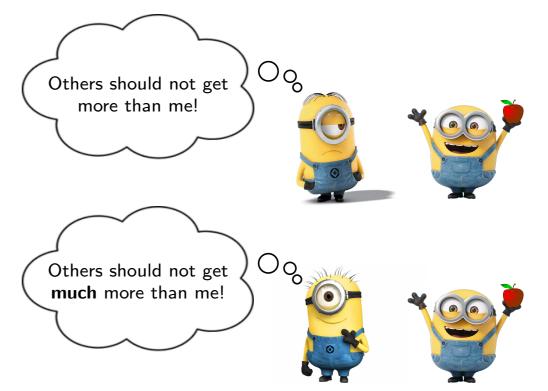
• $v_i(X_i) \ge v_i(X_j \setminus \{g\})$ for all agents i, j and all goods $g \in X_j$.

Envy-freeness:

- $v_i(X_i) \ge v_i(X_j)$ for all agents i, j.
- Does not always exist.

Envy-freeness up to any good (EFX):

• $v_i(X_i) \ge v_i(X_j \setminus \{g\})$ for all agents i, j and all goods $g \in X_j$.



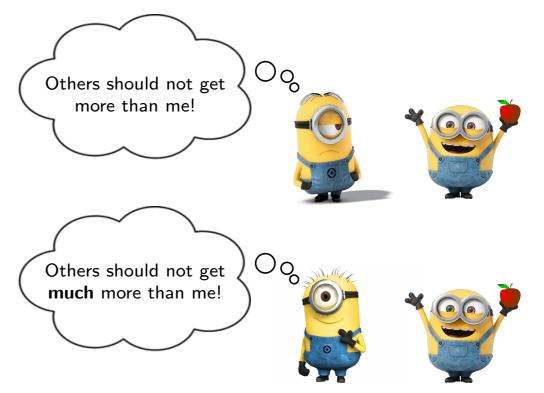
Envy-freeness:

- $v_i(X_i) \ge v_i(X_j)$ for all agents i, j.
- Does not always exist.

Envy-freeness up to any good (EFX):

• $v_i(X_i) \ge v_i(X_j \setminus \{g\})$ for all agents i, j and all goods $g \in X_j$.

Do EFX allocations always exist?



Envy-freeness:

- $v_i(X_i) \ge v_i(X_j)$ for all agents i, j.
- Does not always exist.

Envy-freeness up to any good (EFX):

• $v_i(X_i) \ge v_i(X_j \setminus \{g\})$ for all agents i, j and all goods $g \in X_j$.

Others should not get more than me!

Do EFX allocations always exist?

Fair division's biggest problem!

Hannaneh Akrami

1. Assume n is small.

Hannaneh Akrami

- 1. Assume n is small.
- 2. EFX with charity: Allow a small subset of goods to remain unallocated.

- 1. Assume n is small.
- 2. EFX with charity: Allow a small subset of goods to remain unallocated.
- 3. α -EFX: $v_i(X_i) \ge \alpha \cdot v_i(X_j \setminus \{g\})$ for all agents i, j and all $g \in X_j$.
- 0.618-EFX [Amanatidis, Markakis, Ntokos'20] [Farhadi, Hajiaghayi, Latifian, Seddighin, Yami'21]

- 1. Assume n is small.
- 2. EFX with charity: Allow a small subset of goods to remain unallocated.
- 3. α -EFX: $v_i(X_i) \ge \alpha \cdot v_i(X_j \setminus \{g\})$ for all agents i, j and all $g \in X_j$.
 - 0.618-EFX [Amanatidis,Markakis,Ntokos'20][Farhadi, Hajiaghayi, Latifian, Seddighin, Yami'21]

4. Special valuations

- Identical [Plaut, Roughgarden'18]
- Binary [Barman, Krishnamurthy, Vaish'18]
- Bi-valued [Amanatidis, Birmpas, Filos-Ratsika, Hollender, Voudouris'21]
- ...

- 1. Assume n is small.
- 2. EFX with charity: Allow a small subset of goods to remain unallocated.
- 3. α -EFX: $v_i(X_i) \ge \alpha \cdot v_i(X_j \setminus \{g\})$ for all agents i, j and all $g \in X_j$.
 - 0.618-EFX [Amanatidis,Markakis,Ntokos'20][Farhadi, Hajiaghayi, Latifian, Seddighin, Yami'21]

4. Special valuations

- Identical [Plaut, Roughgarden'18]
- Binary [Barman, Krishnamurthy, Vaish'18]
- Bi-valued [Amanatidis, Birmpas, Filos-Ratsika, Hollender, Voudouris'21]
- ...

Hannaneh Akrami

• n = 2 with general monotone valuations [Plaut, Roughgarden'18]

- n=2 with general monotone valuations [Plaut, Roughgarden'18]
- n = 3 with **additive** valuations [Chaudhury, Garg, Mehlhorn'20]

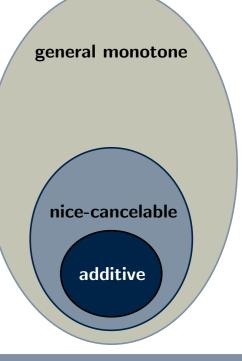
 $v_i(S) = \sum_{g \in S} v_i(\{g\})$

- n=2 with general monotone valuations [Plaut, Roughgarden'18]
- n = 3 with additive valuations [Chaudhury, Garg, Mehlhorn'20]
- n = 3 with **nice-cancelable** valuations [Berger, Cohen, Feldman, Fiat'21]

- n=2 with general monotone valuations [Plaut, Roughgarden'18]
- n = 3 with additive valuations [Chaudhury, Garg, Mehlhorn'20]
- n = 3 with **nice-cancelable** valuations [Berger, Cohen, Feldman, Fiat'21]

EFX allocations exists for n = 3 when

- one agent has **nice-cancelable** valuation function, and
- two agents have general monotone valuation functions.



• Start with the empty allocation.

- Start with the empty allocation.
- Move in the space of **partial EFX** allocations.

- Start with the empty allocation.
- Move in the space of partial EFX allocations. Some goods might be unallocated.

- Start with the empty allocation.
- Move in the space of partial EFX allocations. Some goods might be unallocated.

• Improve a certain potential function.

- Start with the empty allocation.
- Move in the space of partial EFX allocations. Some goods might be unallocated.

- Improve a certain potential function.
- Terminate when reaching a **complete** allocation.

- Start with the empty allocation.
- Move in the space of partial EFX allocations. Some goods might be unallocated.

- Improve a certain potential function.
- Terminate when reaching a **complete** allocation.

All goods are allocated.

Previous Approaches: Drawbacks

- Start with the empty allocation.
- Move in the space of partial EFX allocations. Some goods might be unallocated.

- Improve a certain potential function.
- Terminate when reaching a **complete** allocation. All goods are allocated.
- 1. Fails even if one agent has general monotone valuations.
- 2. Fails when $n \geq 4$. [Chaudhury, Garg, Mehlhorn'20]

New Approach

complete

- Move in the space of **partial EFX** allocations.
- Improve a certain potential function.
- Terminate when reaching a complete allocation.
 EFX

New Approach

complete

- Move in the space of **partial EFX** allocations.
- Improve a certain potential function.
- Terminate when reaching a complete allocation.
 EFX

- 1. Works even if two agent have general monotone valuations.
- 2. $n \ge 4$?
- 3. Add-on: Simpler analysis.

High Level Idea

Hannaneh Akrami

Cake Cutting

envy-freeness

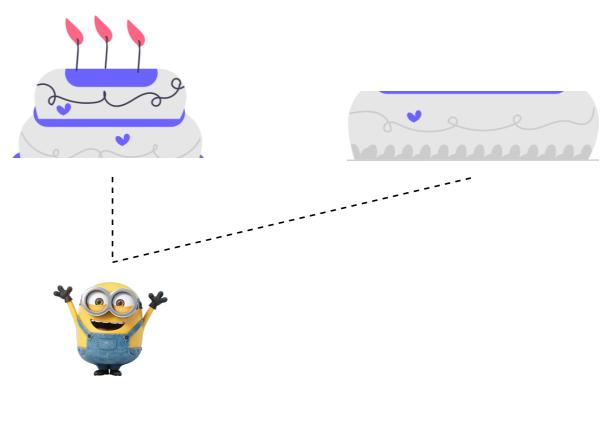
How to divide a cake among two agents fairly?

Hannaneh Akrami

How to divide a cake among two agents fairly? envy-freeness

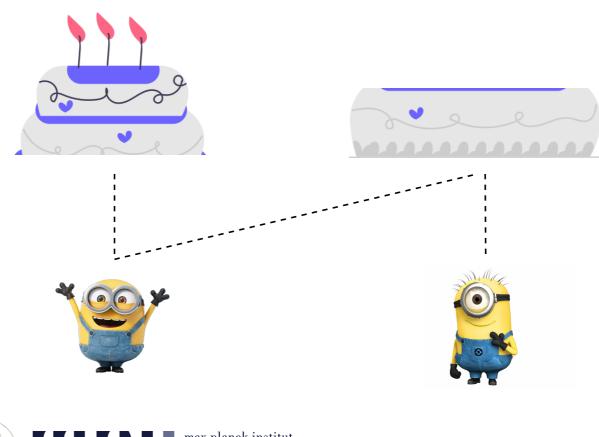
• Agent 1 cuts.

Hannaneh Akrami



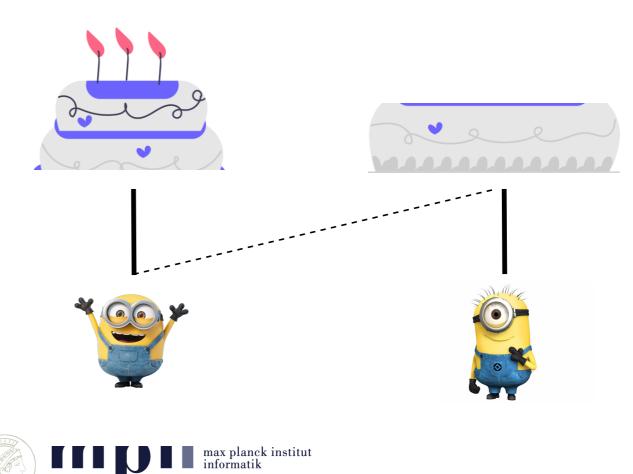
How to divide a cake among two agents fairly? envy-freeness

- Agent 1 cuts.
- Agent 2 chooses.



How to divide a cake among two agents fairly? envy-freeness

- Agent 1 cuts.
- Agent 2 chooses.

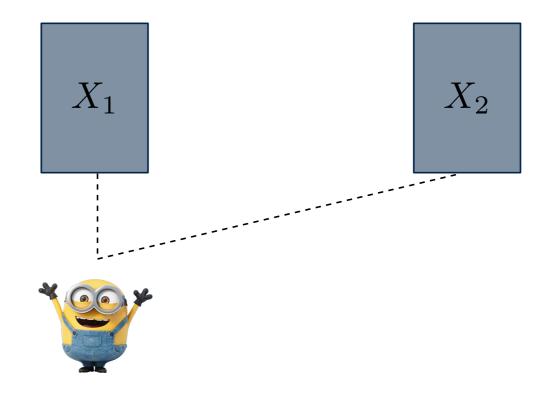


Hannaneh Akrami

How to divide a set of indivisible goods among two agents fairly?

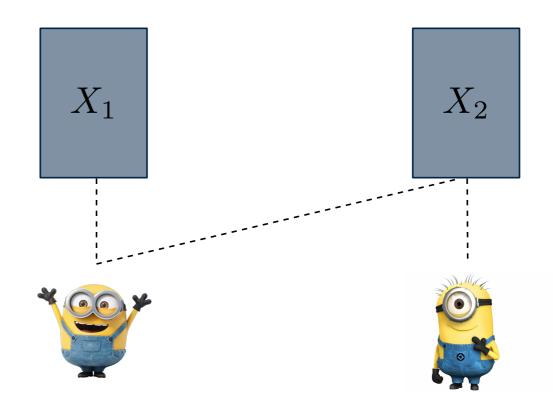
How to divide a set of indivisible goods among two agents fairly? EFX

• Agent 1 cuts. [Plaut, Roughgarden'18]



How to divide a set of indivisible goods among two agents fairly?

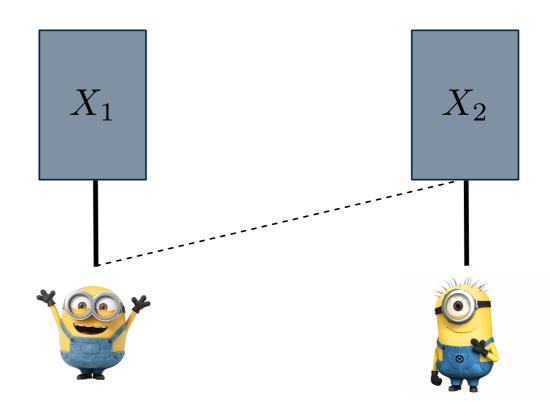
- Agent 1 cuts. [Plaut, Roughgarden'18]
- Agent 2 chooses.



Hannaneh Akrami

How to divide a set of indivisible goods among two agents fairly?

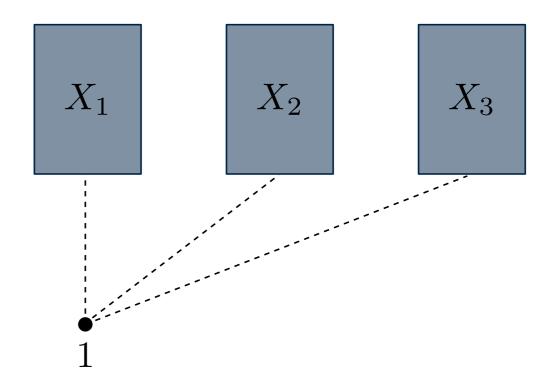
- Agent 1 cuts. [Plaut, Roughgarden'18]
- Agent 2 chooses.



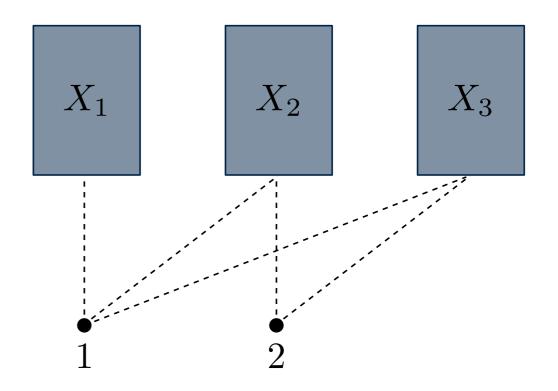
Hannaneh Akrami

How to divide a set of indivisible goods among 3 agents fairly?

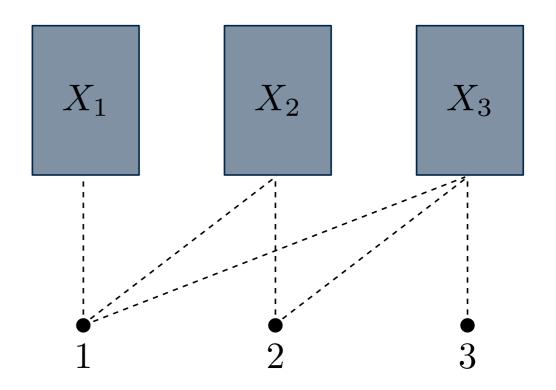
How to divide a set of indivisible goods among 3 agents fairly?



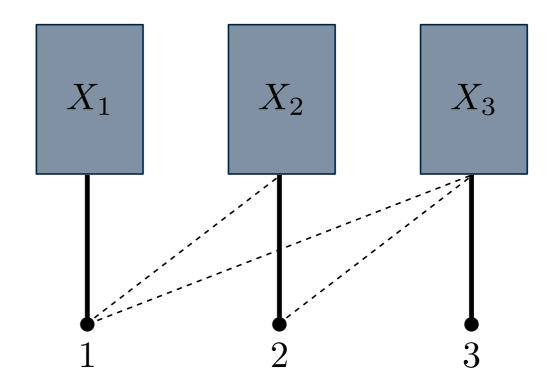
How to divide a set of indivisible goods among 3 agents fairly?



How to divide a set of indivisible goods among 3 agents fairly?

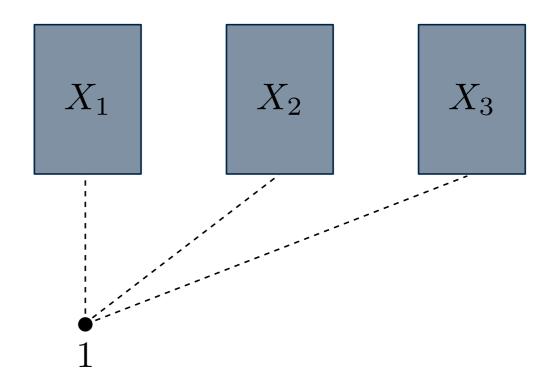


How to divide a set of indivisible goods among 3 agents fairly?



Bad Case

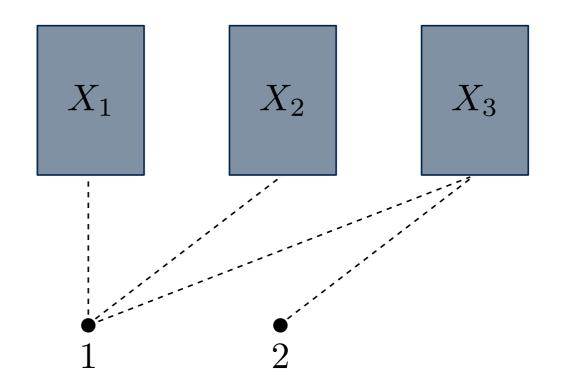
How to divide a set of indivisible goods among 3 agents fairly?



Hannaneh Akrami

Bad Case

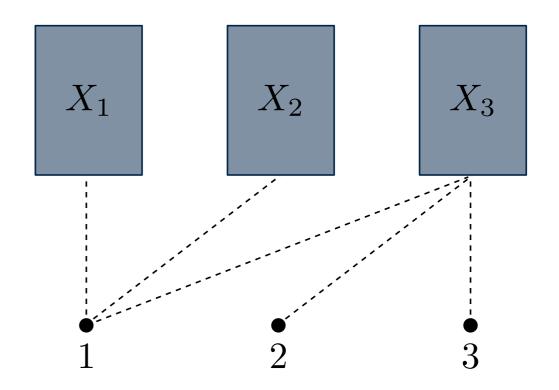
How to divide a set of indivisible goods among 3 agents fairly?



Hannaneh Akrami

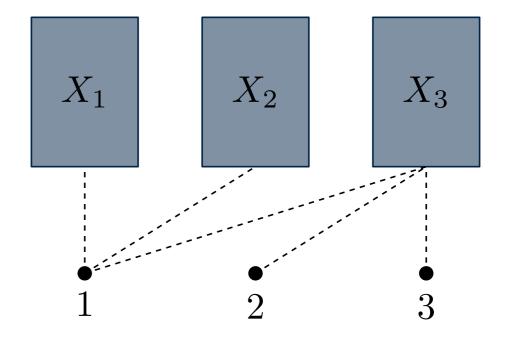
Bad Case

How to divide a set of indivisible goods among 3 agents fairly?



Hannaneh Akrami

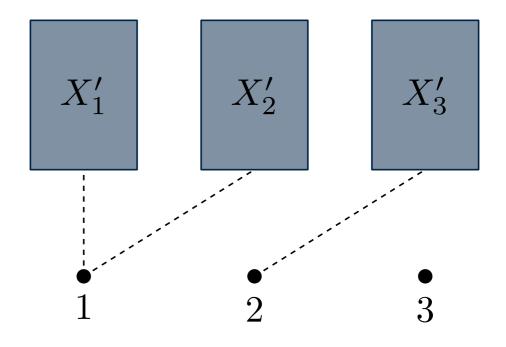
Initialization: Let agent 1 divide goods fairly according to v_1 .



Initialization: Let agent 1 divide goods fairly according to v_1 .

Alter the partition but maintain the following invariants:

- X'_1 and X'_2 satisfy agent 1.
- X'_3 satisfies agent 2 or 3.

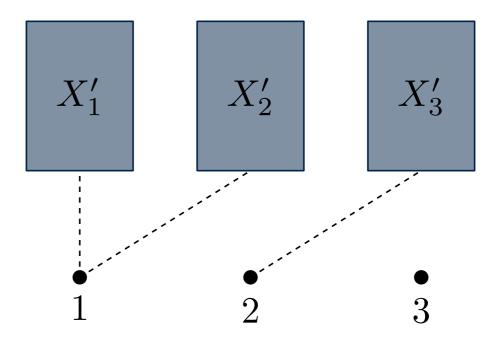


Initialization: Let agent 1 divide goods fairly according to v_1 .

Alter the partition but maintain the following invariants:

- X'_1 and X'_2 satisfy agent 1.
- X'_3 satisfies agent 2 or 3.

Terminate when reaching an **EFX** allocation.



Hannaneh Akrami

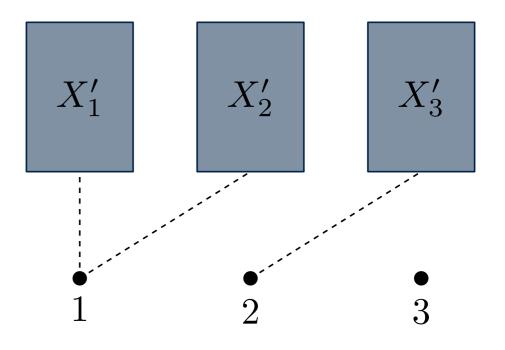
Initialization: Let agent 1 divide goods fairly according to v_1 .

Alter the partition but maintain the following invariants:

- X'_1 and X'_2 satisfy agent 1.
- X'_3 satisfies agent 2 or 3.

Terminate when reaching an **EFX** allocation.

Why does the algorithm terminate?



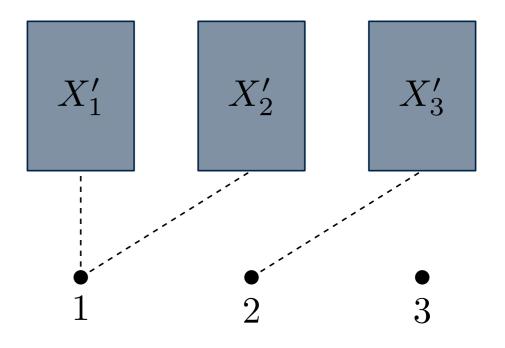
Initialization: Let agent 1 divide goods fairly according to v_1 .

Alter the partition but maintain the following invariants:

- X'_1 and X'_2 satisfy agent 1.
- X'_3 satisfies agent 2 or 3.

Terminate when reaching an **EFX** allocation.

Why does the algorithm terminate? Potential argument.



Algorithm

Hannaneh Akrami

• $X >_i Y$ means $v_i(X) > v_i(Y)$.

Hannaneh Akrami

• $X >_i Y$ means $v_i(X) > v_i(Y)$.

Strong envy: Given allocation A, agent i strongly envies agent j, if there exists a good $g \in A_j$ s.t. $A_j \setminus \{g\} >_i A_i$.

• $X >_i Y$ means $v_i(X) > v_i(Y)$.

Strong envy: Given allocation A, agent i strongly envies agent j, if there exists a good $g \in A_j$ s.t. $A_j \setminus \{g\} >_i A_i$.

EFX-feasibility: Given partition X of the goods, X_j is EFX-feasible to agent *i*, if upon receiving X_j , *i* does not strongly envy anyone.

• $X >_i Y$ means $v_i(X) > v_i(Y)$.

Strong envy: Given allocation A, agent i strongly envies agent j, if there exists a good $g \in A_j$ s.t. $A_j \setminus \{g\} >_i A_i$.

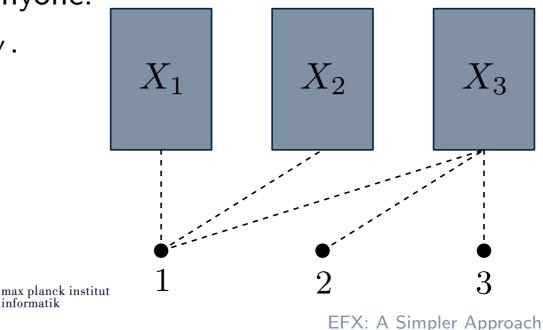
EFX-feasibility: Given partition X of the goods, X_j is EFX-feasible to agent *i*, if upon receiving X_j , *i* does not strongly envy anyone. I.e., $X_j \ge_i X_{j'} \setminus \{g\}$ for all j' and all $g \in X_{j'}$.

• $X >_i Y$ means $v_i(X) > v_i(Y)$.

Strong envy: Given allocation A, agent i strongly envies agent j, if there exists a good $g \in A_j$ s.t. $A_j \setminus \{g\} >_i A_i$.

EFX-feasibility: Given partition X of the goods, X_j is EFX-feasible to agent *i*, if upon receiving X_j , *i* does not strongly envy anyone.

I.e., $X_j \ge_i X_{j'} \setminus \{g\}$ for all j' and all $g \in X_{j'}$.



• $X >_i Y$ means $v_i(X) > v_i(Y)$.

Strong envy: Given allocation A, agent i strongly envies agent j, if there exists a good $g \in A_j$ s.t. $A_j \setminus \{g\} >_i A_i$.

EFX-feasibility: Given partition X of the goods, X_j is EFX-feasible to agent *i*, if upon receiving X_j , *i* does not strongly envy anyone. I.e., $X_j \ge_i X_{j'} \setminus \{g\}$ for all j' and all $g \in X_{j'}$.

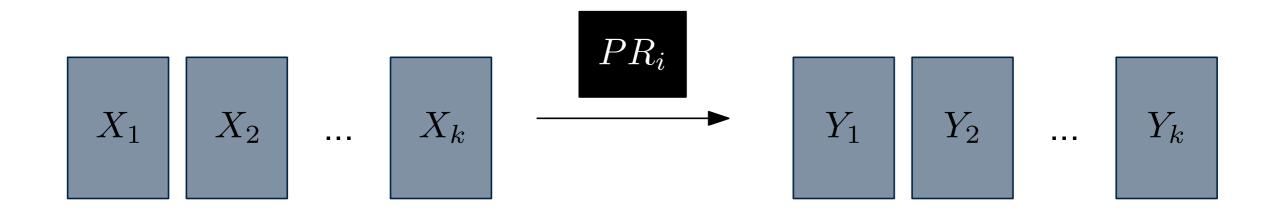
• Assume agent 3 has additive valuation.

• $X >_i Y$ means $v_i(X) > v_i(Y)$.

Strong envy: Given allocation A, agent i strongly envies agent j, if there exists a good $g \in A_j$ s.t. $A_j \setminus \{g\} >_i A_i$.

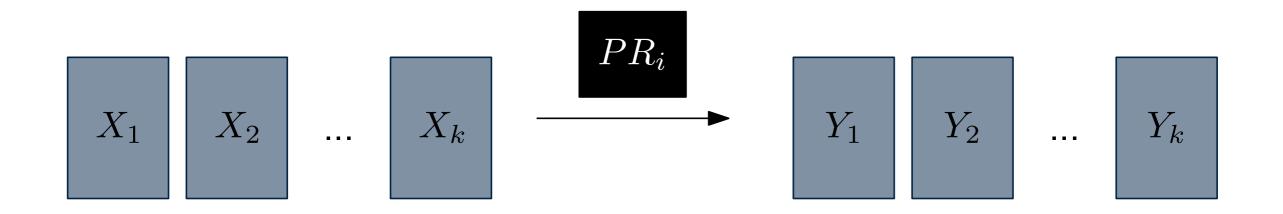
EFX-feasibility: Given partition X of the goods, X_j is EFX-feasible to agent *i*, if upon receiving X_j , *i* does not strongly envy anyone. I.e., $X_j \ge_i X_{j'} \setminus \{g\}$ for all j' and all $g \in X_{j'}$.

- Assume agent 3 has additive valuation.
- Non-degeneracy: For all bundles $A \neq B$, $v_i(A) \neq v_i(B)$ for all agents *i*.



•
$$(Y_1,\ldots,Y_k) = PR_i(X_1,\ldots,X_k)$$

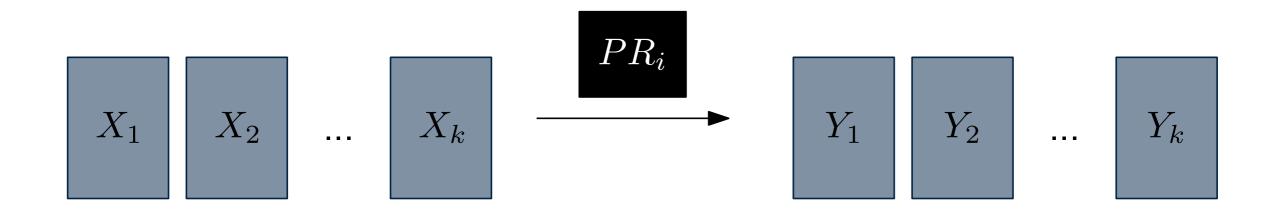
Hannaneh Akrami



•
$$(Y_1,\ldots,Y_k) = PR_i(X_1,\ldots,X_k)$$

• Y_1, Y_2, \ldots, Y_k are EFX-feasible for agent *i*.

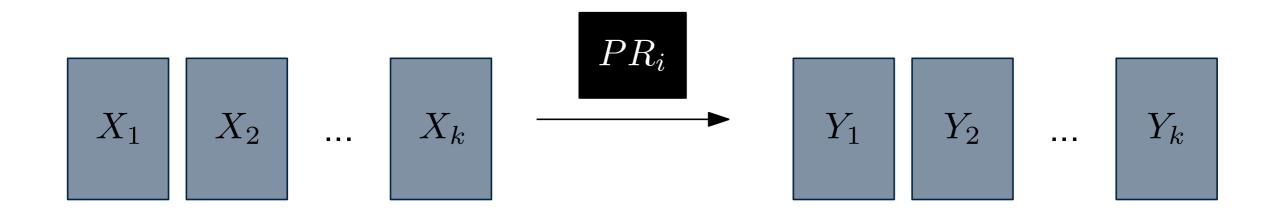
Hannaneh Akrami



•
$$(Y_1,\ldots,Y_k) = PR_i(X_1,\ldots,X_k)$$

- Y_1, Y_2, \ldots, Y_k are EFX-feasible for agent *i*.
- $\min_j v_i(Y_j) \ge \min_j v_i(X_j).$

Hannaneh Akrami



•
$$(Y_1,\ldots,Y_k) = PR_i(X_1,\ldots,X_k)$$

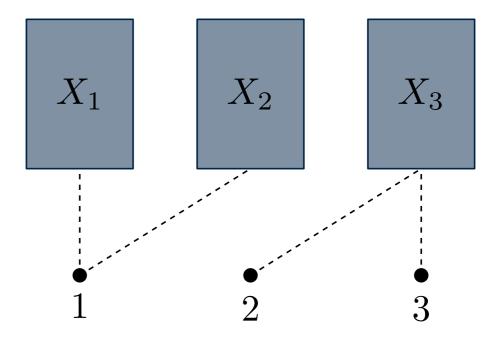
- Y_1, Y_2, \ldots, Y_k are EFX-feasible for agent *i*.
- $\min_j v_i(Y_j) > \min_j v_i(X_j)$ if $Y \neq X$.

Hannaneh Akrami

Algorithm

Invariants:

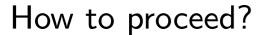
- X_1 and X_2 are **EFX-feasible** to agent 1.
- X_3 is **EFX-feasible** to agent 2 or 3.

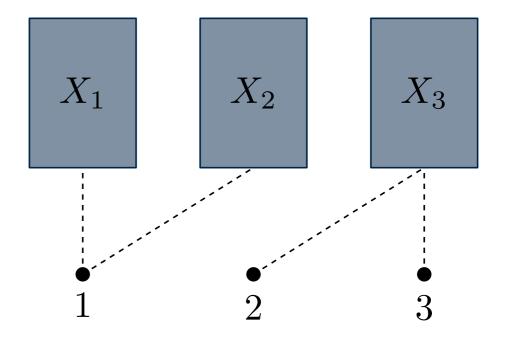


Algorithm

Invariants:

- X_1 and X_2 are **EFX-feasible** to agent 1.
- X_3 is **EFX-feasible** to agent 2 or 3.

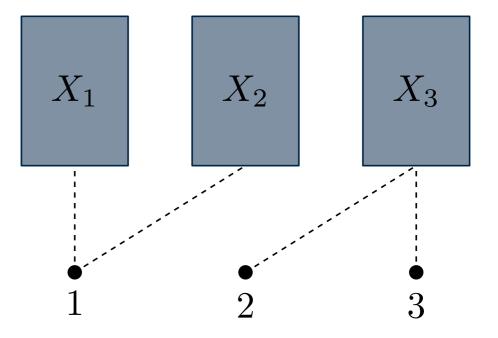




Hannaneh Akrami

Invariants:

- X_1 and X_2 are **EFX-feasible** to agent 1.
- X_3 is **EFX-feasible** to agent 2 or 3.

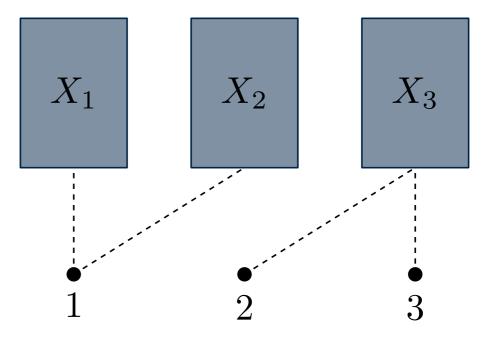


How to proceed?

Make X_3 less desirable by moving goods from X_3 to X_1 and X_2 .

Invariants:

- X_1 and X_2 are **EFX-feasible** to agent 1.
- X_3 is **EFX-feasible** to agent 2 or 3.



How to proceed?

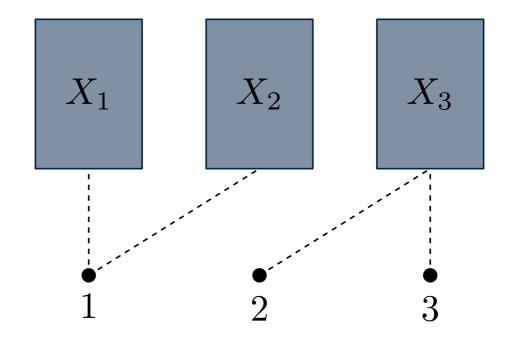
Make X_3 less desirable by moving goods from X_3 to X_1 and X_2 .

Potential function:

$$\Phi(X) = \min(v_1(X_1), v_1(X_2))$$

Hannaneh Akrami

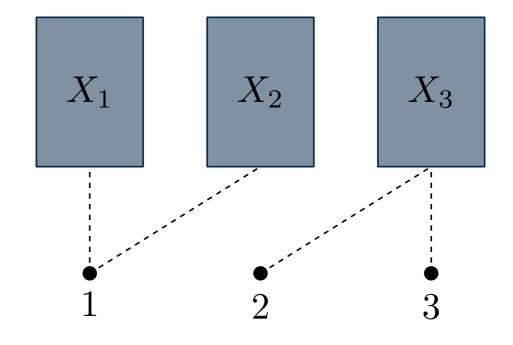
 X_3 is the only EFX-feasible bundle for agent 2.



Hannaneh Akrami

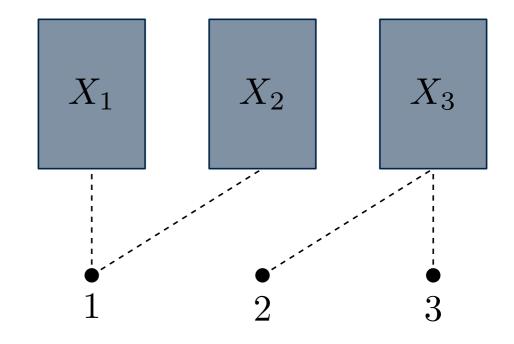
 X_3 is the only EFX-feasible bundle for agent 2.

• $X_3 >_2 X_1$ and $X_3 >_2 X_2$



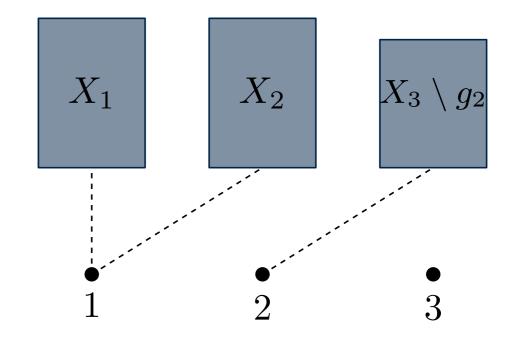
 X_3 is the only EFX-feasible bundle for agent 2.

- $X_3 >_2 X_1$ and $X_3 >_2 X_2$
- For some $g_2 \in X_3$, $X_3 \setminus \{g_2\} >_2 X_1$ and $X_3 \setminus \{g_2\} >_2 X_2$



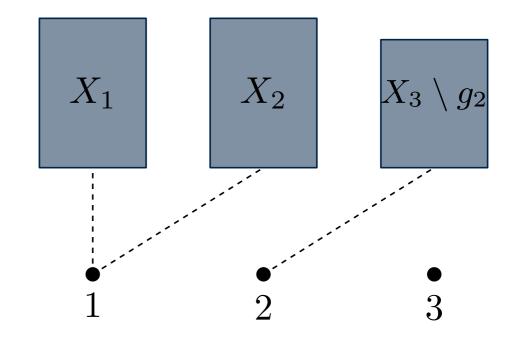
 X_3 is the only EFX-feasible bundle for agent 2.

- $X_3 >_2 X_1$ and $X_3 >_2 X_2$
- For some $g_2 \in X_3$, $X_3 \setminus \{g_2\} >_2 X_1$ and $X_3 \setminus \{g_2\} >_2 X_2$



 X_3 is the only EFX-feasible bundle for agent 2.

- $X_3 >_2 X_1$ and $X_3 >_2 X_2$
- For some $g_2 \in X_3$, $X_3 \setminus \{g_2\} >_2 X_1$ and $X_3 \setminus \{g_2\} >_2 X_2$

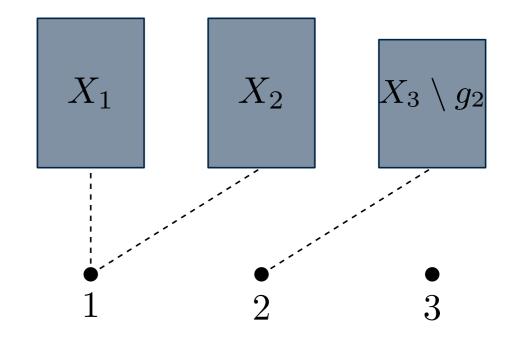


Assume $X_1 <_1 X_2$: $\Phi(X) = v_1(X_1)$

Hannaneh Akrami

 X_3 is the only EFX-feasible bundle for agent 2.

- $X_3 >_2 X_1$ and $X_3 >_2 X_2$
- For some $g_2 \in X_3$, $X_3 \setminus \{g_2\} >_2 X_1$ and $X_3 \setminus \{g_2\} >_2 X_2$



Assume $X_1 <_1 X_2$: $\Phi(X) = v_1(X_1)$

• Move g_2 to X_1

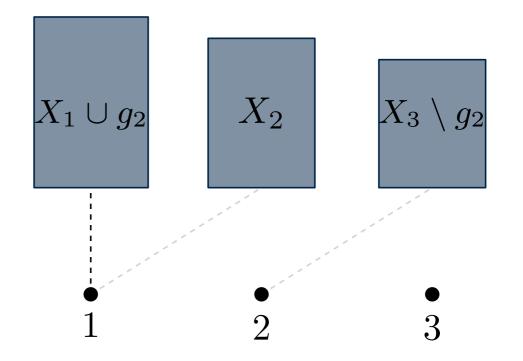
Hannaneh Akrami

 X_3 is the only EFX-feasible bundle for agent 2.

- $X_3 >_2 X_1$ and $X_3 >_2 X_2$
- For some $g_2 \in X_3$, $X_3 \setminus \{g_2\} >_2 X_1$ and $X_3 \setminus \{g_2\} >_2 X_2$

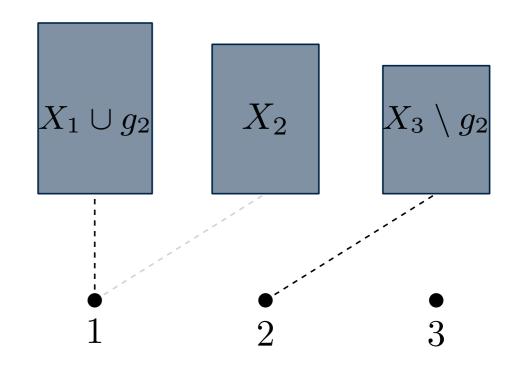
Assume $X_1 <_1 X_2$: $\Phi(X) = v_1(X_1)$

• Move g_2 to X_1



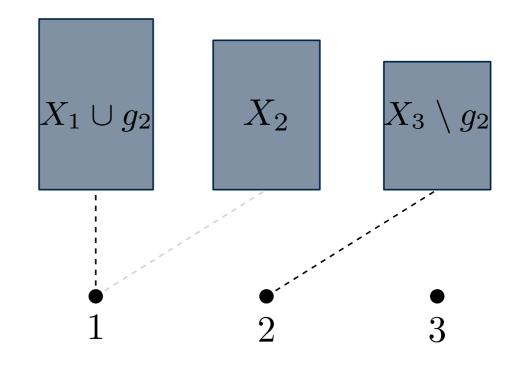
Case 1:

 $X_3\setminus\{g_2\}>_2 X_1\cup\{g_2\}$



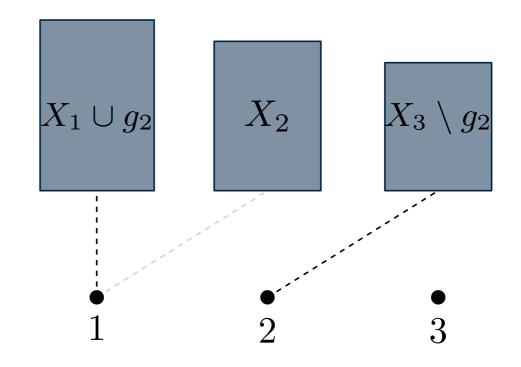
Hannaneh Akrami

Case 1: $X_2 <_2 X_3 \setminus \{g_2\} >_2 X_1 \cup \{g_2\}$



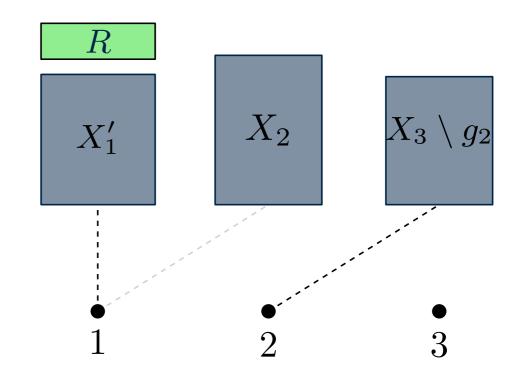
Case 1:

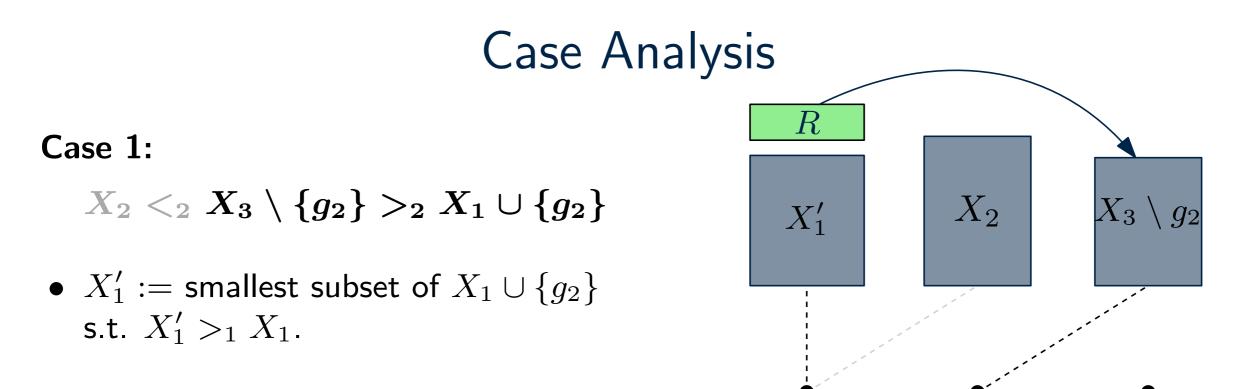
- $X_2 <_2 X_3 \setminus \{g_2\} >_2 X_1 \cup \{g_2\}$
- $X'_1 :=$ smallest subset of $X_1 \cup \{g_2\}$ s.t. $X'_1 >_1 X_1$.



Case 1: $X_2 <_2 X_3 \setminus \{g_2\} >_2 X_1 \cup \{g_2\}$

• $X'_1 :=$ smallest subset of $X_1 \cup \{g_2\}$ s.t. $X'_1 >_1 X_1$.





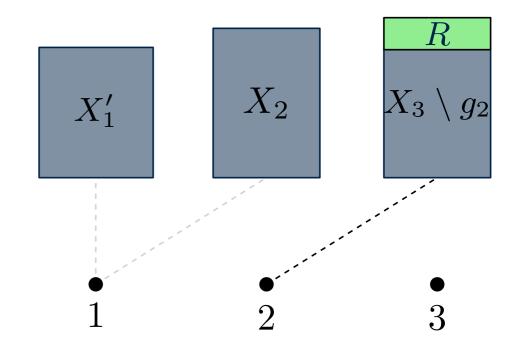
EFX: A Simpler Approach

3

 $\mathbf{2}$

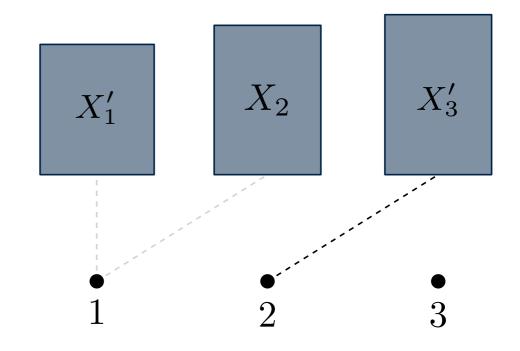
Case 1: $X_2 <_2 X_3 \setminus \{g_2\} >_2 X_1 \cup \{g_2\}$

• $X'_1 :=$ smallest subset of $X_1 \cup \{g_2\}$ s.t. $X'_1 >_1 X_1$.



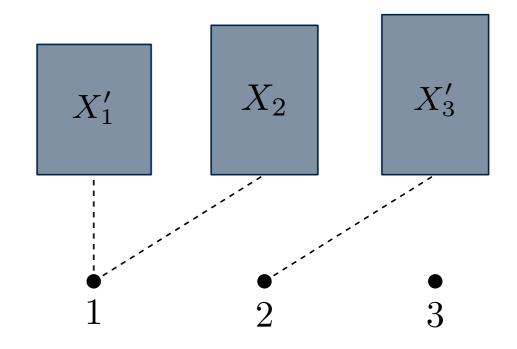
Case 1: $X_2 <_2 X_3 \setminus \{g_2\} >_2 X_1 \cup \{g_2\}$

• $X'_1 :=$ smallest subset of $X_1 \cup \{g_2\}$ s.t. $X'_1 >_1 X_1$.



Case 1: $X_2 <_2 X_3 \setminus \{g_2\} >_2 X_1 \cup \{g_2\}$

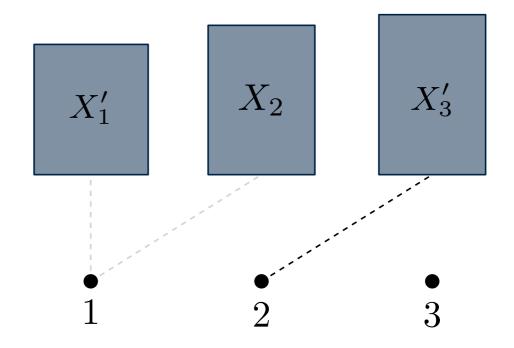
• $X'_1 :=$ smallest subset of $X_1 \cup \{g_2\}$ s.t. $X'_1 >_1 X_1$.



• If X'_1 and X_2 are EFX-feasible for agent 1, DONE!

Case 1: $X_2 <_2 X_3 \setminus \{g_2\} >_2 X_1 \cup \{g_2\}$

• $X'_1 :=$ smallest subset of $X_1 \cup \{g_2\}$ s.t. $X'_1 >_1 X_1$.

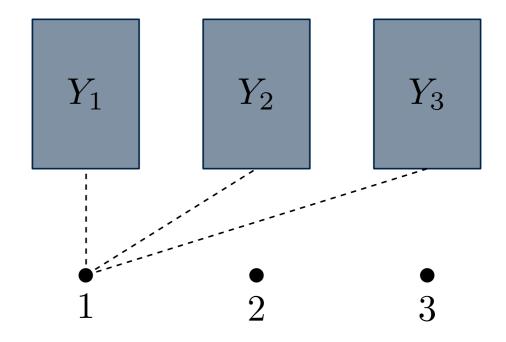


- If X'_1 and X_2 are EFX-feasible for agent 1, DONE!
- Otherwise ... $(Y_1, Y_2, Y_3) \leftarrow PR_1(X'_1, X_2, X'_3).$

Hannaneh Akrami

Case 1:

- $X_2 <_2 X_3 \setminus \{g_2\} >_2 X_1 \cup \{g_2\}$
- $X'_1 :=$ smallest subset of $X_1 \cup \{g_2\}$ s.t. $X'_1 >_1 X_1$.

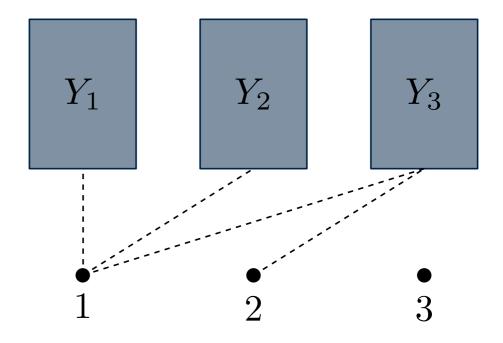


- If X'_1 and X_2 are EFX-feasible for agent 1, DONE!
- Otherwise ... $(Y_1, Y_2, Y_3) \leftarrow PR_1(X'_1, X_2, X'_3).$

Hannaneh Akrami

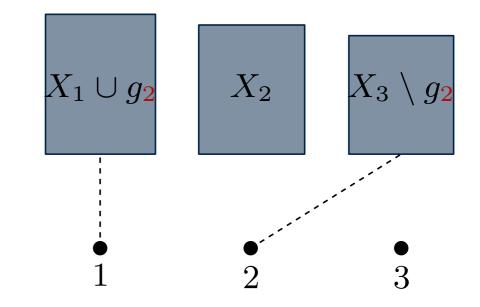
Case 1:

- $X_2 <_2 X_3 \setminus \{g_2\} >_2 X_1 \cup \{g_2\}$
- $X'_1 :=$ smallest subset of $X_1 \cup \{g_2\}$ s.t. $X'_1 >_1 X_1$.

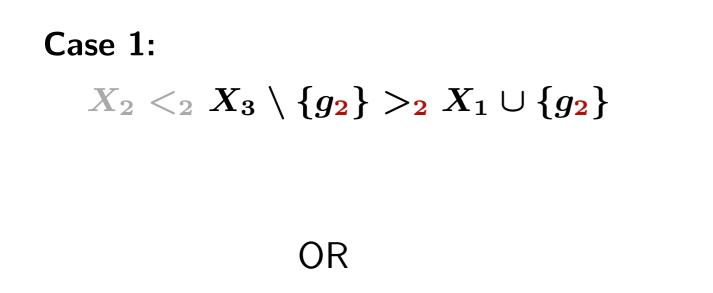


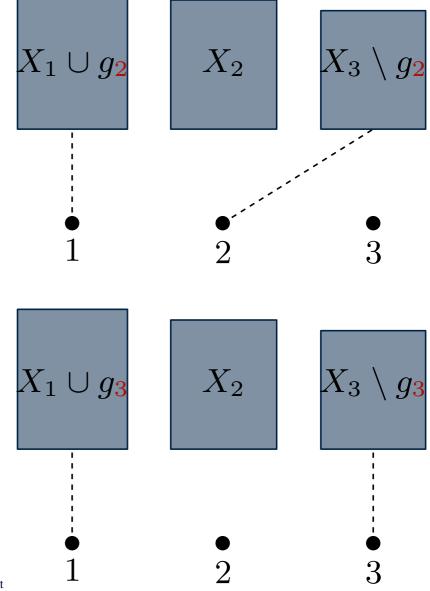
- If X'_1 and X_2 are EFX-feasible for agent 1, DONE!
- Otherwise ... $(Y_1, Y_2, Y_3) \leftarrow PR_1(X'_1, X_2, X'_3).$

Case 1: $X_2 <_2 X_3 \setminus \{g_2\} >_2 X_1 \cup \{g_2\}$

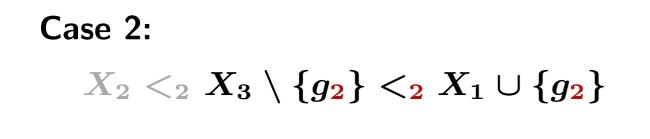


Hannaneh Akrami

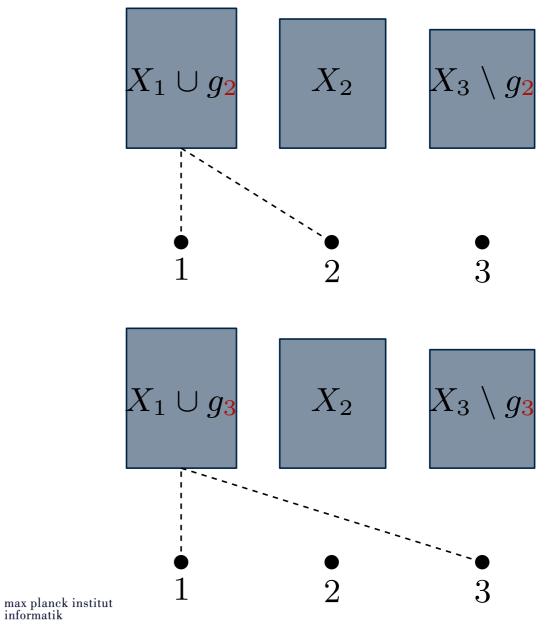




Hannaneh Akrami

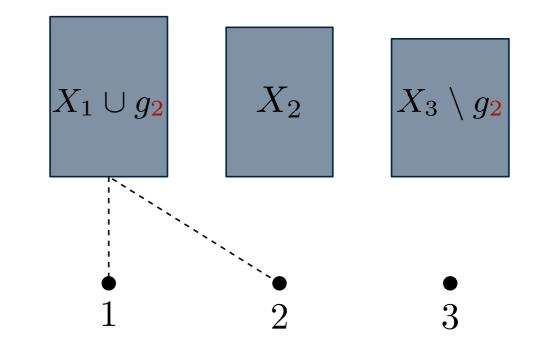


AND



Hannaneh Akrami

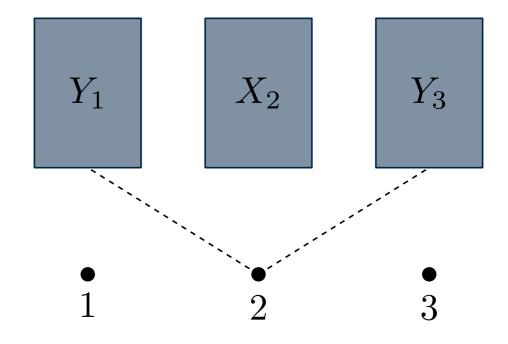
Case 2: $X_2 <_2 X_3 \setminus \{g_2\} <_2 X_1 \cup \{g_2\}$



Hannaneh Akrami

Case 2:

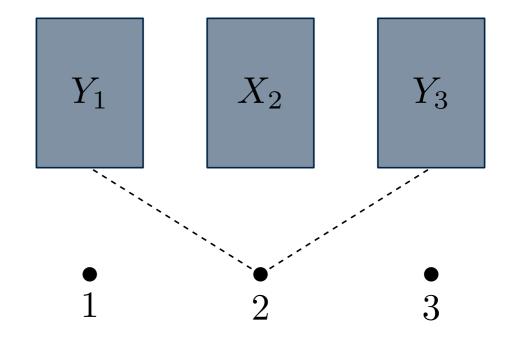
- $X_2 <_2 X_3 \setminus \{g_2\} <_2 X_1 \cup \{g_2\}$
- $(Y_1, Y_3) \leftarrow PR_2(X_1 \cup \{g_2\}, X_3 \setminus \{g_2\})$



Case 2:

- $X_2 <_2 X_3 \setminus \{g_2\} <_2 X_1 \cup \{g_2\}$
- $(Y_1, Y_3) \leftarrow PR_2(X_1 \cup \{g_2\}, X_3 \setminus \{g_2\})$

 $X_2 <_3 X_3 \setminus \{g_3\} <_{\mathbf{3}} X_1 \cup \{g_{\mathbf{3}}\}$

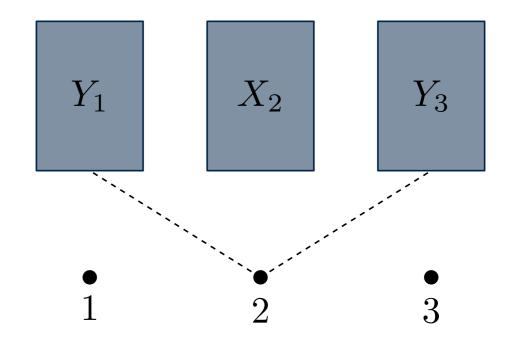


Case 2:

- $X_2 <_2 X_3 \setminus \{g_2\} <_2 X_1 \cup \{g_2\}$
- $(Y_1, Y_3) \leftarrow PR_2(X_1 \cup \{g_2\}, X_3 \setminus \{g_2\})$

 $X_2<_{3}X_3\setminus\{g_{\mathbf{3}}\}<_{\mathbf{3}}X_1\cup\{g_{\mathbf{3}}\}$

 $\implies \max_3(Y_1, Y_3) >_3 X_2$

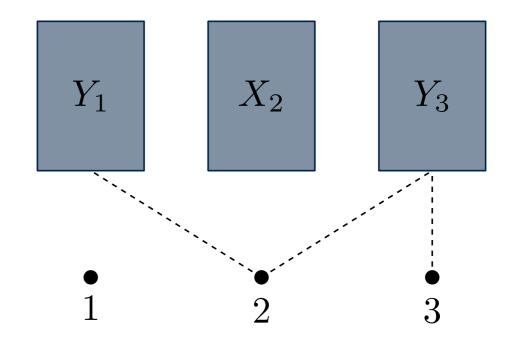


Case 2:

- $X_2 <_2 X_3 \setminus \{g_2\} <_2 X_1 \cup \{g_2\}$
- $(Y_1, Y_3) \leftarrow PR_2(X_1 \cup \{g_2\}, X_3 \setminus \{g_2\})$

 $X_2 <_3 X_3 \setminus \{g_{\mathbf{3}}\} <_{\mathbf{3}} X_1 \cup \{g_{\mathbf{3}}\}$

 $\implies \max_3(Y_1, Y_3) >_3 X_2$



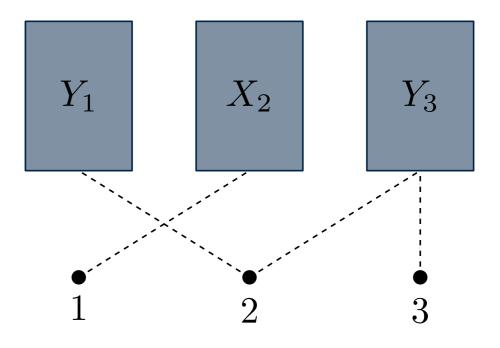
Case 2:

- $X_2 <_2 X_3 \setminus \{g_2\} <_2 X_1 \cup \{g_2\}$
- $(Y_1, Y_3) \leftarrow PR_2(X_1 \cup \{g_2\}, X_3 \setminus \{g_2\})$

 $X_2 <_3 X_3 \setminus \{g_{\mathbf{3}}\} <_{\mathbf{3}} X_1 \cup \{g_{\mathbf{3}}\}$

 $\implies \max_3(Y_1, Y_3) >_3 X_2$

• If X_2 is EFX-feasible for agent 1, DONE!



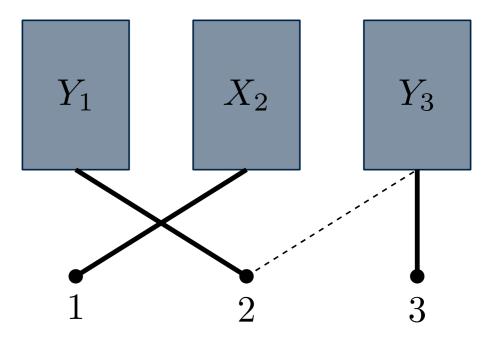
Case 2:

- $X_2 <_2 X_3 \setminus \{g_2\} <_2 X_1 \cup \{g_2\}$
- $(Y_1, Y_3) \leftarrow PR_2(X_1 \cup \{g_2\}, X_3 \setminus \{g_2\})$

 $X_2<_{3}X_3\setminus\{g_{\mathbf{3}}\}<_{\mathbf{3}}X_1\cup\{g_{\mathbf{3}}\}$

 $\implies \max_3(Y_1, Y_3) >_3 X_2$

• If X_2 is EFX-feasible for agent 1, DONE!



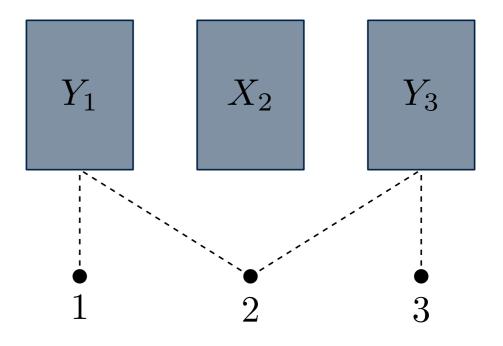
Case 2:

- $X_2 <_2 X_3 \setminus \{g_2\} <_2 X_1 \cup \{g_2\}$
- $(Y_1, Y_3) \leftarrow PR_2(X_1 \cup \{g_2\}, X_3 \setminus \{g_2\})$

 $X_2 <_3 X_3 \setminus \{g_{\mathbf{3}}\} <_{\mathbf{3}} X_1 \cup \{g_{\mathbf{3}}\}$

 $\implies \max_3(Y_1, Y_3) >_3 X_2$

- If X_2 is EFX-feasible for agent 1, DONE!
- Otherwise ...



Hannaneh Akrami

Case Analysis $X_2 <_2 X_3 \setminus \{g_2\} <_2 X_1 \cup \{g_2\}$ Y'_1 X_2 • $(Y_1, Y_3) \leftarrow PR_2(X_1 \cup \{g_2\}, X_3 \setminus \{g_2\})$ $X_2 <_3 X_3 \setminus \{g_3\} <_3 X_1 \cup \{g_3\}$

$$\implies \max_3(Y_1, Y_3) >_3 X_2$$

- If X_2 is EFX-feasible for agent 1, DONE!
- Otherwise ...

Case 2:

2

 Y_3

3

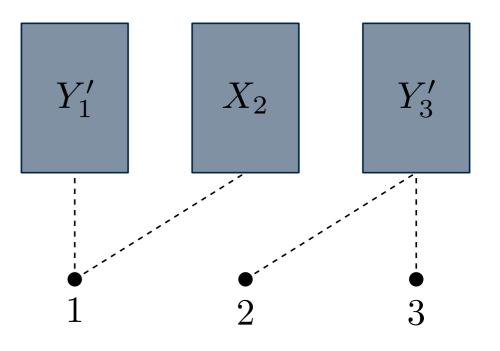
Case 2:

- $X_2 <_2 X_3 \setminus \{g_2\} <_2 X_1 \cup \{g_2\}$
- $(Y_1, Y_3) \leftarrow PR_2(X_1 \cup \{g_2\}, X_3 \setminus \{g_2\})$

 $X_2 <_3 X_3 \setminus \{g_{\mathbf{3}}\} <_{\mathbf{3}} X_1 \cup \{g_{\mathbf{3}}\}$

$$\implies \max_3(Y_1, Y_3) >_3 X_2$$

- If X_2 is EFX-feasible for agent 1, DONE!
- Otherwise ...



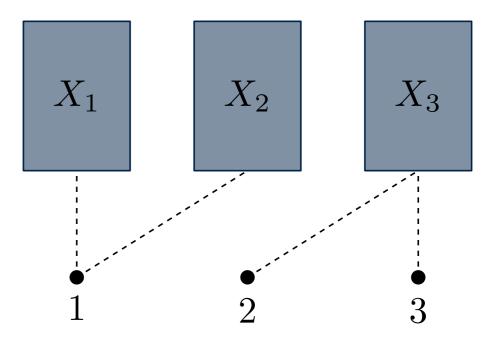
Hannaneh Akrami

Recap

Invariants:

- X_1 and X_2 are **EFX-feasible** to agent 1.
- X_3 is **EFX-feasible** to agent 2 or 3.

 $\Phi(X) = \min(v_1(X_1), v_1(X_2))$



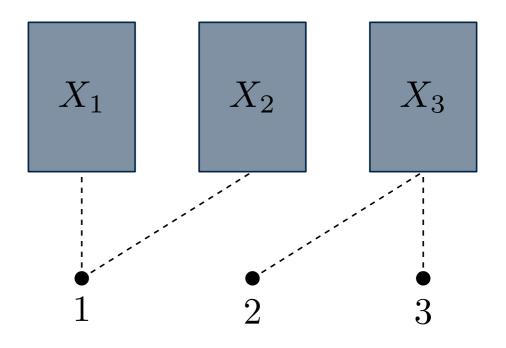
Recap

Invariants:

- X_1 and X_2 are **EFX-feasible** to agent 1.
- X_3 is **EFX-feasible** to agent 2 or 3.

 $\Phi(X) = \min(v_1(X_1), v_1(X_2))$

• Make X_3 less desirable!

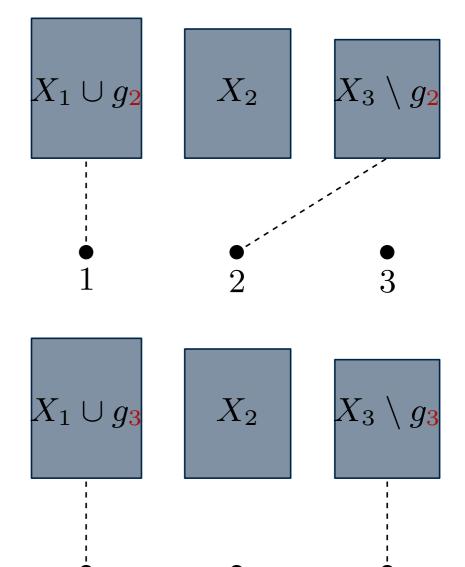


Recap

Case 1: $X_2 <_2 X_3 \setminus \{g_2\} >_2 X_1 \cup \{g_2\}$

OR

$X_2<_{3}X_3\setminus\{g_{\mathbf{3}}\}>_{\mathbf{3}}X_1\cup\{g_{\mathbf{3}}\}$



2

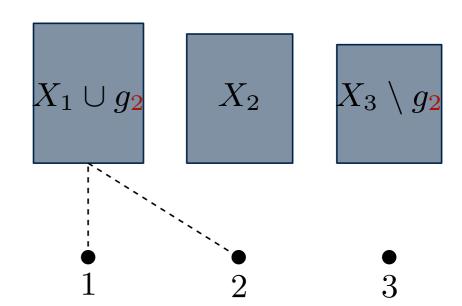
Hannaneh Akrami

EFX: A Simpler Approach

3

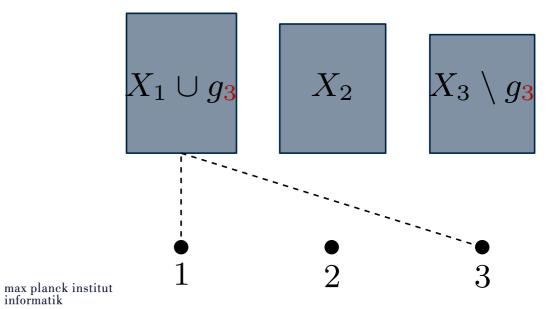
Recap

Case 2: $X_2 <_2 X_3 \setminus \{g_2\} <_2 X_1 \cup \{g_2\}$



AND

$X_2<_3X_3\setminus\{g_{\mathbf{3}}\}<_{\mathbf{3}}X_1\cup\{g_{\mathbf{3}}\}$



EFX: A Simpler Approach

Hannaneh Akrami

EFX with Charity

Hannaneh Akrami

EFX: A Simpler Approach

EFX with Charity

- $\frac{1}{2}$ -NSW [Caragiannis, Gravin, Huang'19]
- n-1 unallocated goods + $\frac{1}{2}$ -NSW [Chaudhury, Kavitha, Mehlhorn, Sgouritsa'20]
- n-2 unallocated goods + $\frac{1}{2}$ -NSW [Berger, Cohen, Feldman, Fiat'21][Mahara'21]

EFX with Charity

• $\frac{1}{2}$ -NSW [Caragiannis, Gravin, Huang'19]

 $v_i(X_i) \ge (1 - \epsilon) \cdot v_i(X_j \setminus \{g\})$ for all

agents i, j and all goods $g \in X_j$.

- n-1 unallocated goods + $\frac{1}{2}$ -NSW [Chaudhury, Kavitha, Mehlhorn, Sgouritsa'20]
- n-2 unallocated goods + $\frac{1}{2}$ -NSW [Berger, Cohen, Feldman, Fiat'21][Mahara'21]
- $(1-\epsilon)$ -EFX allocation with $\mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ unallocated goods

[Chaudhury, Garg, Mehlhorn, Mehta, Misra'21]

max planck institut informatik

• $(1-\epsilon)$ -EFX allocation with $\mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ unallocated goods

[Chaudhury, Garg, Mehlhorn, Mehta, Misra'21]

• $(1 - \epsilon)$ -EFX allocation with $\mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ unallocated goods

[Chaudhury, Garg, Mehlhorn, Mehta, Misra'21]

• Reduce $(1 - \epsilon)$ -EFX with sublinear charity to an extremal graph theory problem: Rainbow Cycle Number (RCN)

• $(1 - \epsilon)$ -EFX allocation with $\mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ unallocated goods

[Chaudhury, Garg, Mehlhorn, Mehta, Misra'21]

- Reduce (1ϵ) -EFX with sublinear charity to an extremal graph theory problem: Rainbow Cycle Number (RCN)
- $\mathsf{RCN}(d) = \mathcal{O}(d^4)$ [Chaudhury, Garg, Mehlhorn, Mehta, Misra'21]

• $(1-\epsilon)$ -EFX allocation with $\mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ unallocated goods

[Chaudhury, Garg, Mehlhorn, Mehta, Misra'21]

• Reduce $(1 - \epsilon)$ -EFX with sublinear charity to an extremal graph theory problem: Rainbow Cycle Number (RCN)

•
$$\mathsf{RCN}(d) = \mathcal{O}(d^4)$$
 [Chaudhury, Garg, Mehlhorn, Mehta, Misra'21] $\implies \mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ charity

• $(1-\epsilon)$ -EFX allocation with $\mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ unallocated goods

[Chaudhury, Garg, Mehlhorn, Mehta, Misra'21]

- Reduce (1ϵ) -EFX with sublinear charity to an extremal graph theory problem: Rainbow Cycle Number (RCN)
- $\mathsf{RCN}(d) = \mathcal{O}(d^4)$ [Chaudhury, Garg, Mehlhorn, Mehta, Misra'21] $\implies \mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ charity
- $\mathsf{RCN}(d) = \Omega(d)$ [Chaudhury, Garg, Mehlhorn, Mehta, Misra'21]

• $(1-\epsilon)$ -EFX allocation with $\mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ unallocated goods

[Chaudhury, Garg, Mehlhorn, Mehta, Misra'21]

• Reduce $(1 - \epsilon)$ -EFX with sublinear charity to an extremal graph theory problem: Rainbow Cycle Number (RCN)

•
$$\mathsf{RCN}(d) = \mathcal{O}(d^4)$$
 [Chaudhury, Garg, Mehlhorn, Mehta, Misra'21] $\implies \mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ charity

• $\mathsf{RCN}(d) = \Omega(d)$ [Chaudhury, Garg, Mehlhorn, Mehta, Misra'21]

 $\implies \Omega((n/\epsilon)^{\frac{1}{2}})$ charity

• $(1-\epsilon)$ -EFX allocation with $\mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ unallocated goods

[Chaudhury, Garg, Mehlhorn, Mehta, Misra'21]

• Reduce $(1 - \epsilon)$ -EFX with sublinear charity to an extremal graph theory problem: Rainbow Cycle Number (RCN)

•
$$\mathsf{RCN}(d) = \mathcal{O}(d^4)$$
 [Chaudhury, Garg, Mehlhorn, Mehta, Misra'21] $\implies \mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ charity

- $\mathsf{RCN}(d) = \Omega(d)$ [Chaudhury, Garg, Mehlhorn, Mehta, Misra'21] $\implies \Omega((n/\epsilon)^{\frac{1}{2}})$ charity
- $\mathsf{RCN}(d) = \mathcal{O}(d \log d)$ [A., Alon, Chaudhury, Garg, Mehlhorn, Mehta]

• $(1-\epsilon)$ -EFX allocation with $\mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ unallocated goods

[Chaudhury, Garg, Mehlhorn, Mehta, Misra'21]

• Reduce $(1 - \epsilon)$ -EFX with sublinear charity to an extremal graph theory problem: Rainbow Cycle Number (RCN)

•
$$\mathsf{RCN}(d) = \mathcal{O}(d^4)$$
 [Chaudhury, Garg, Mehlhorn, Mehta, Misra'21] $\implies \mathcal{O}((n/\epsilon)^{\frac{4}{5}})$ charity

•
$$\mathsf{RCN}(d) = \Omega(d)$$
 [Chaudhury, Garg, Mehlhorn, Mehta, Misra'21] $\implies \Omega((n/\epsilon)^{\frac{1}{2}})$ charity

• $\mathsf{RCN}(d) = \mathcal{O}(d \log d)$ [A., Alon, Chaudhury, Garg, Mehlhorn, Mehta]

$$\implies \tilde{\mathcal{O}}((n/\epsilon)^{\frac{1}{2}})$$
 charity

Our Results

1. Assume n is small.

Theorem 1 [A., Alon, Chaudhury, Garg, Mehlhorn, Mehta]

EFX allocations exists for $n=3 \ensuremath{\,\mathrm{when}}$

- one agent has **nice-cancelable** valuation function, and
- two agents have general monotone valuation functions.

2. EFX with charity: Allow a small subset of goods to remain unallocated. **Theorem 2** [A., Alon, Chaudhury, Garg, Mehlhorn, Mehta] $(1 - \epsilon)$ -EFX allocations exist with $\tilde{O}((n/\epsilon)^{\frac{1}{2}})$ unallocated goods.

Future Directions

- EFX for 3 agents with general monotone valuations?
- EFX for 4 agents?

Future Directions

- EFX for 3 agents with general monotone valuations?
- EFX for 4 agents?

Hannaneh Akrami

. . .

EFX: A Simpler Approach