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Lecture 4: Existence of envy-free cake divisions



•  The resource: Cake [0,1]    (heterogeneous and divisible) 

•   Set of agents: {1,2, …, n} 

•   Piece of a cake: finite union of subintervals of [0,1]
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Last Lecture: Introduction to Cake Cutting

•  Valuation function   :vi Agent  values piece  at i X vi(X) ≥ 0



Fairness Notions

    Allocation:  
    A partition  of the cake  where piece  belongs to agent  

• Proportionality: for each agent , we have    
    [Steinhaus, 1948] 

• Envy-freeness: for every pair  of agents, we have  
    [Foley 1967]

A = (A1, A2, …, An) [0,1] Ai i

i ∈ [n] vi(Ai) ≥ 1/n

i, j ∈ [n] vi(Ai) ≥ vi(Aj)

0 1



2 queries for n = 2 Cut-and-choose

𝒪(n2) Dubins-Spanier, Amer. Math. Mon. 1961

𝒪(n log n)
Edmonds & Pruhs, TALG 2011]Ω(n log n)
 Even-Paz [1984]  (via recursion)

Query Complexity of Proportionality

Source: ‘Computational Social Choice’ Lecture Slides by Rohit Vaish, IITD



- Cut-and-choose: between two agents using 2 queries

- Selfridge-Conway: among three agents using 8 queries

•  Computing an envy-free cake division:

What about  agents?n ≥ 4

non-contiguous pieces

Existence of Envy-free Cake Divisions



Existence of Envy-free Cake Divisions

All allocations

EF Prop⟹⟹

Envy-free cake division exist for any number of agents
Stromquist [1980], Su [1999] connected pieces
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Sperner’s Lemma

A beautiful lemma that, on the face of it,  
has nothing to do with cake division
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Enter the house through a door.
The room we entered can have either 1 or 2 doors

• 1 door : sperner solution 
• 2 doors: leave the room using the other door 
                   and enter a new room

Keep walking!

• reach a fully colored baby triangle 
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Sperner’s Lemma

Any Sperner colored triangulation has at least one fully colored baby triangle

Think:  
Why cannot such walks cycle back on themselves?

• The number of rooms = finite 
     the walk terminates 

•  at least one walk that will take us to 
    a fully colored sperner solution

⟹

∃
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Sperner’s Lemma

Any Sperner colored triangulation has at least one fully colored baby triangle

Holds true for any dimension



Cake division using Sperner’s Lemma

Forest Simmons, popularized by Francis Su [1999]



Cake division using Sperner’s Lemma

•  The resource: cake [0,1] and n agents 

•  An allocation  is envy-free if  (X1, …, Xn) vi(Xi) ≥ vi(Xj) for all i, j
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•  The resource: cake [0,1] and three agents 

•  An allocation  is envy-free if (X1, X2, X3) vi(Xi) ≥ vi(Xj) for all i, j

(x1, x2, x3) : a cut

Cake division using Sperner’s Lemma
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x1 + x2 + x3 = 1 and all xi ≥ 0
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Space of all possible cutsTriangle!!!

•  The resource: cake [0,1] and three agents
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Cake division using Sperner’s Lemma

Set of agents: {A, B, C}
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B

Assign ownerships to each vertex such that  
each baby triangle consists of all three owners {A, B, C}.

To generate a Sperner coloring, we go to a vertex, 
say some , and 
ask its owner agent her most favorite piece in this cut                                                 

(x1, x2, x3)
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(1,0,0)

(There exists an efficient way to do this)

C

Ownership labeling
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Sperner’s lemma  ⟹
Existence of a  
baby triangle that  
has all the labels 

1 2 3  ,      &+ 

Ownership labeling ⟹

Sperner coloring
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What we have is not a single cut (and hence not a single allocation), but three 
nearby cuts, where envy-free-type of thing is going on.
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⟹

‘Approximate’ envy-free connected division

Imagine making this triangulation finer and finer 
 - we will have increasingly ‘nearby’ cuts  
 - where we have envy-free like things happening

We can do something more: use convergence properties
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Sperner’s Lemma  A set of three ‘nearby’ cuts where different agents  
                                         prefer different pieces 

⟹

‘Approximate’ envy-free connected division

Imagine making this triangulation finer and finer 
 - we will have increasingly ‘nearby’ cuts  
 - where we have envy-free like things happening

Valuations are (topologically) closed   the limiting cut has to be envy-free⟹
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Denote a cut . Consider a sequence of cuts  
Triangle is bounded  the above sequence has a convergent subsequence 

(Using Bolzano-Weistrass convergence theorem)

X = (x1, x2, x3) X(1), X(2), X(3), …
⟹
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Third Assumption: valuations are closed Closed under limit!

Idea: There is a limiting cut where we can turn approximate EF into exact EF

For any sequence of (converging) cuts  if an agent  prefers  
piece k  at each of   then she prefers the piece k in the limit as well!

X(1), X(2), X(3), … i
X(1), X(2), X(3), …

We can take increasingly finer triangulations.  
They will all converge to a single cut-point,  
and at that cut,  all three agents will prefer different pieces

Exact envy-free connected division
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                   (and hence, it does not lead to an efficient algorithm) 

Sperner’s Lemma

Envy-free cake division with connected pieces exist for any number of agents

Stromquist [1980], Su [1999]

All allocations

EF Prop⟹⟹
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Envy-free cake divisions

No finite-query protocols exists for connected EF cake division 

Stromquist, J. of Combinatorics 2008

even for three agents!

Envy-free cake division with connected pieces exist for any number of agents

Stromquist [1980], Su [1999]

An efficient algorithm: 1/2-EF + 1/3-NSW allocation for connected EF cake division 
[ABKR] WINE’19 (Fair and Efficient Cake Division with Connected Pieces)(28 May)

Efficient algorithms for connected EF cake division for a broad class of instances
[ABKR] EC’20 (Fair Cake Division under Monotone Likelihood Rapos)(25 June)



Query Complexity of Envy-freeness

Ω(n2)

𝒪(nnnnnn

)

2 queries for n = 2
𝒪(1) queries for n = 3

Cut-and-choose
Selfridge-Conway

Procaccia, IJCAI 2009

A finite but unbounded protocol Brams & Taylor, Amer. Math. Mon. 1995

Aziz & Mackenzie, FOCS 2016

Open

Source: ‘Computational Social Choice’ Lecture Slides by Rohit Vaish, IITD


