

Topics in Computational Social Choice Theory

Lecture 4: Existence of envy-free cake divisions

Nidhi Rathi

Last Lecture: Introduction to Cake Cutting

- The resource: Cake [0,1] (heterogeneous and divisible)
- Set of agents: $\{1,2, \ldots, n\}$
- Piece of a cake: finite union of subintervals of $[0,1]$
- Valuation function v_{i} : Agent i values piece X at $v_{i}(X) \geq 0$

Fairness Notions

Allocation:

A partition $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ of the cake $[0,1]$ where piece A_{i} belongs to agent i

- Proportionality: for each agent $i \in[n]$, we have $v_{i}\left(A_{i}\right) \geq 1 / n$ [Steinhaus, 1948]
- Envy-freeness: for every pair $\boldsymbol{i}, \boldsymbol{j} \in[n]$ of agents, we have $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)$ [Foley 1967]

Query Complexity of Proportionality

Prop \neq EF

for > two agents

Set of all Allocations

Existence of Envy-free Cake Divisions

- Computing an envy-free cake division:
- Cut-and-choose: between two agents using 2 queries
- Selfridge-Conway: among three agents using 8 queries

What about $n \geq 4$ agents?

Existence of Envy-free Cake Divisions

Stromquist [1980], Su [1999]
connected pieces
Envy-free cake division exist for any number of agents

Sperner's Lemma

Sperner's Lemma

A beautiful lemma that, on the face of it, has nothing to do with cake division

Sperner's Lemma

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into smaller triangles (Formal terms: simplex and its triangulation)

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner coloring

- Main vertices have distinct colors

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner coloring

- Main vertices have distinct colors
- Boundary vertices inherit colors of the adjacent main vertices

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner coloring

- Main vertices have distinct colors
- Boundary vertices inherit colors of the adjacent main vertices

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner coloring

- Main vertices have distinct colors
- Boundary vertices inherit colors of the adjacent main vertices

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner coloring

- Main vertices have distinct colors
- Boundary vertices inherit colors of the adjacent main vertices

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner coloring

- Main vertices have distinct colors
- Boundary vertices inherit colors of the adjacent main vertices

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner coloring

- Main vertices have distinct colors
- Boundary vertices inherit colors of the adjacent main vertices

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner labeling

- Main vertices have distinct labels
- Boundary vertices inherit labels of the adjacent main vertices

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner coloring

- Main vertices have distinct colors
- Boundary vertices inherit colors of the adjacent main vertices

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner coloring

- Main vertices have distinct colors
- Boundary vertices inherit colors of the adjacent main vertices

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner coloring

- Main vertices have distinct colors
- Boundary vertices inherit colors of the adjacent main vertices

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner coloring

- Main vertices have distinct colors
- Boundary vertices inherit colors of the adjacent main vertices

(odd number)

Sperner's Lemma

Ingredients:

1) A triangle that is subdivided into baby triangles (Formal terms: simplex and its triangulation)
2) Sperner coloring

- Main vertices have distinct colors
- Boundary vertices inherit colors of the adjacent main vertices

(odd number)

Sperner's Lemma

Sperner's Lemma

- Entire main triangle: HOUSE
- Baby triangles: ROOMS
- $-\longrightarrow$: DOOR

Sperner's Lemma

- Entire main triangle: HOUSE
- Baby triangles: ROOMS
- $-\longrightarrow$: DOOR

Sperner's Lemma

- Entire main triangle: HOUSE
- Baby triangles:

ROOMS

- $-\longrightarrow$: DOOR

Sperner's Lemma

Observation 1:

Number of doors on the boundary is ODD

Sperner's Lemma

Observation 1:

Number of doors on the boundary is ODD

Sperner's Lemma

Observation 1:

Number of doors on the boundary is ODD

Sperner's Lemma

Observation 2:
A room can have 0,1 , or 2 doors

Sperner's Lemma

Observation 2:

A room can have 0,1 , or 2 doors

0 door

Sperner's Lemma

Observation 2:

A room can have 0,1 , or 2 doors.

0 door

Sperner's Lemma

Observation 2:

A room can have 0,1 , or 2 doors.

0 door

2 doors

Sperner's Lemma

Observation 2:

A room can have 0,1 , or 2 doors.
A room with 1 door is a fully colored baby triangle

Sperner's Lemma

Observation 2:

A room can have 0,1 , or 2 doors.
A room with 1 door is a fully colored baby triangle

So, we enter the house through a door!

Sperner's Lemma

Observation 2:

A room can have 0,1 , or 2 doors.
A room with 1 door is a fully colored baby triangle

So, we enter the house through a door!

Sperner's Lemma

Enter the house through a door.
The room we entered can have either 1 or 2 doors

Sperner's Lemma

Enter the house through a door.
The room we entered can have either 1 or 2 doors

- 1 door : sperner solution

Sperner's Lemma

Enter the house through a door.
The room we entered can have either 1 or 2 doors

- 1 door: sperner solution
- 2 doors: leave the room using the other door and enter a new room

Sperner's Lemma

Enter the house through a door.
The room we entered can have either 1 or 2 doors

- 1 door: sperner solution
- 2 doors: leave the room using the other door and enter a new room

Sperner's Lemma

Enter the house through a door.
The room we entered can have either 1 or 2 doors

- 1 door : sperner solution
- 2 doors: leave the room using the other door and enter a new room

Keep walking!

Sperner's Lemma

Enter the house through a door.
The room we entered can have either 1 or 2 doors

- 1 door : sperner solution
- 2 doors: leave the room using the other door and enter a new room

Keep walking!

Sperner's Lemma

Enter the house through a door.
The room we entered can have either 1 or 2 doors

- 1 door : sperner solution
- 2 doors: leave the room using the other door and enter a new room

Keep walking!

Sperner's Lemma

Enter the house through a door.
The room we entered can have either 1 or 2 doors

- 1 door: sperner solution
- 2 doors: leave the room using the other door and enter a new room

Keep walking!

- reach a fully colored baby triangle

Sperner's Lemma

Enter the house through a door.
The room we entered can have either 1 or 2 doors

- 1 door : sperner solution
- 2 doors: leave the room using the other door and enter a new room

Keep walking!

- reach a fully colored baby triangle

- thrown out of the house

Sperner's Lemma

Thrown out?

Sperner's Lemma

Thrown out?

- Cannot happen from (since no doors)

Sperner's Lemma

Thrown out?

- Cannot happen from (since no doors)

- Entry and exit doors are paired up

Sperner's Lemma

Thrown out?

- Cannot happen from (since no doors)

- Entry and exit doors are paired up
- There exists odd number of doors on the boundary. \Longrightarrow we can enter again from another door!

Sperner's Lemma

Thrown out?

- Cannot happen from (since no doors)

- Entry and exit doors are paired up
- There exists odd number of doors on the boundary. \Longrightarrow we can enter again from another door!

Sperner's Lemma

Thrown out?

- Cannot happen from (since no doors)

- Entry and exit doors are paired up
- There exists odd number of doors on the boundary. \Longrightarrow we can enter again from another door!
 Keep walking!

Sperner's Lemma

Thrown out?

- Cannot happen from (since no doors)

- Entry and exit doors are paired up
- There exists odd number of doors on the boundary. \Longrightarrow we can enter again from another door!
 Keep walking!

Sperner's Lemma

Thrown out?

- Cannot happen from (since no doors)

- Entry and exit doors are paired up
- There exists odd number of doors on the boundary. \Longrightarrow we can enter again from another door!
 Keep walking!

Sperner's Lemma

Thrown out?

- Cannot happen from (since no doors)

- Entry and exit doors are paired up
- There exists odd number of doors on the boundary. \Longrightarrow we can enter again from another door!
 Keep walking!

Sperner's Lemma

Think:
Why cannot such walks cycle back on themselves?

Sperner's Lemma

- The number of rooms = finite \Longrightarrow the walk terminates

Think:
Why cannot such walks cycle back on themselves?

Sperner's Lemma

- The number of rooms = finite \Longrightarrow the walk terminates
- \exists at least one walk that will take us to a fully colored sperner solution

Think:
Why cannot such walks cycle back on themselves?

Sperner's Lemma

(odd number)

Sperner's Lemma

(odd number)

Sperner's Lemma

(odd number)

Sperner's Lemma

Holds true for any dimension

Cake division using Sperner's Lemma

Forest Simmons, popularized by Francis Su [1999]

Cake division using Sperner's Lemma

- The resource: cake $[0,1]$ and n agents
- An allocation $\left(X_{1}, \ldots, X_{n}\right)$ is envy-free if $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)$ for all i, j

Cake division using Sperner's Lemma

- The resource: cake [0,1] and three agents
- An allocation $\left(X_{1}, X_{2}, X_{3}\right)$ is envy-free if $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)$ for all i, j

$$
\left(x_{1}, x_{2}, x_{3}\right): \text { a cut }
$$

Cake division using Sperner's Lemma

- The resource: cake [0,1] and three agents
- An allocation $\left(X_{1}, X_{2}, X_{3}\right)$ is envy-free if $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)$ for all i, j

Cake division using Sperner's Lemma

- The resource: cake [0,1] and three agents
- An allocation $\left(X_{1}, X_{2}, X_{3}\right)$ is envy-free if $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)$ for all i, j

Cake division using Sperner's Lemma

- The resource: cake [0,1] and three agents
- An allocation $\left(X_{1}, X_{2}, X_{3}\right)$ is envy-free if $v_{i}\left(X_{i}\right) \geq v_{i}\left(X_{j}\right)$ for all i, j

Cake division using Sperner's Lemma

Assumptions on preferences/valuations

Cake division using Sperner's Lemma

Assumptions on preferences/valuations

- Given any cut $\left(x_{1}, x_{2}, x_{3}\right)$, each agent can point to its favorite piece

Cake division using Sperner's Lemma

Assumptions on preferences/valuations

- Given any cut $\left(x_{1}, x_{2}, x_{3}\right)$, each agent can point to its favorite piece
- Hungry: every agent prefers a non-empty piece over an empty one.

Cake division using Sperner's Lemma

Assumptions on preferences/valuations

- Given any cut $\left(x_{1}, x_{2}, x_{3}\right)$, each agent can point to its favorite piece
- Hungry: every agent prefers a non-empty piece over an empty one.

Goal: to invoke Sperner's lemma somehow

Cake division using Sperner's Lemma

Assumptions on preferences/valuations

- Given any cut $\left(x_{1}, x_{2}, x_{3}\right)$, each agent can point to its favorite piece
- Hungry: every agent prefers a non-empty piece over an empty one.

Goal: to invoke Sperner's lemma somehow

$$
\text { Set of agents: }\{A, B, C\}
$$

Cake division using Sperner's Lemma

Cake division using Sperner's Lemma

(0,1,0)
(1,0,0)

Ownership labeling

Cake division using Sperner's Lemma

Assign ownerships to each vertex such that each baby triangle consists of all three owners $\{A, B, C\}$.

Ownership labeling

Cake division using Sperner's Lemma

Assign ownerships to each vertex such that each baby triangle consists of all three owners $\{A, B, C\}$.

Ownership labeling

Cake division using Sperner's Lemma

Ownership labeling
Assign ownerships to each vertex such that each baby triangle consists of all three owners $\{A, B, C\}$.

Cake division using Sperner's Lemma

Ownership labeling
Assign ownerships to each vertex such that each baby triangle consists of all three owners $\{A, B, C\}$.

Cake division using Sperner's Lemma

Ownership labeling

Cake division using Sperner's Lemma

Assign ownerships to each vertex such that each baby triangle consists of all three owners $\{A, B, C\}$.
(There exists an efficient way to do this)

To generate a Sperner coloring, we go to a vertex, say some (x_{1}, x_{2}, x_{3}), and ask its owner agent her most favorite piece in this cut

Ownership labeling

Cake division using Sperner's Lemma

(0,1,0)
(1,0,0)

Ownership labeling

Cake division using Sperner's Lemma

(0,1,0)
(1,0,0)

Ownership labeling

Cake division using Sperner's Lemma

Ownership labeling

Sperner coloring

Cake division using Sperner's Lemma

Sperner's lemma \Longrightarrow

Cake division using Sperner's Lemma

Existence of a

Sperner's lemma \Longrightarrow baby triangle that has all the labels $1,2 \& 3$

Cake division using Sperner's Lemma

Existence of a
Sperner's lemma \Longrightarrow baby triangle that has all the labels $1,2 \& 3$

Cake division using Sperner's Lemma

What we have is not a single cut (and hence not a single allocation), but three nearby cuts, where envy-free-type of thing is going on.

Cake division using Sperner's Lemma

What we have is not a single cut (and hence not a single allocation), but three nearby cuts, where envy-free-type of thing is going on.

A single cut where all three agents prefer different pieces \Longrightarrow

Cake division using Sperner's Lemma

What we have is not a single cut (and hence not a single allocation), but three nearby cuts, where envy-free-type of thing is going on.

A single cut where all three agents prefer different pieces \Longrightarrow EF cake division

Cake division using Sperner's Lemma

Sperner's Lemma \LongrightarrowA set of three 'nearby' cuts where different agents prefer different pieces

A single cut where all three agents prefer different pieces \Longrightarrow EF cake division

Cake division using Sperner's Lemma

Sperner's Lemma \Longrightarrow
A set of three 'nearby' cuts where different agents
preferent pieces

'Approximate' envy-free connected division

Cake division using Sperner's Lemma

Sperner's Lemma \LongrightarrowA set of three 'nearby' cuts where different agents prefer different pieces

'Approximate' envy-free connected division

Cake division using Sperner's Lemma

Imagine making this triangulation finer and finer

> | Sperner's Lemma \Longrightarrow |
| :---: |
| |
| |
| A set of three 'nearby' cuts where different agents |

'Approximate' envy-free connected division

Cake division using Sperner's Lemma

Imagine making this triangulation finer and finer

- we will have increasingly 'nearby' cuts
- where we have envy-free like things happening

> Sperner's Lemma \Longrightarrow A set of three 'nearby' cuts where different agents prefer different pieces

'Approximate' envy-free connected division

Cake division using Sperner's Lemma

Imagine making this triangulation finer and finer

- we will have increasingly 'nearby' cuts
- where we have envy-free like things happening

We can do something more: use convergence properties

$$
\begin{array}{|c|}
\hline \text { Sperner's Lemma } \Longrightarrow
\end{array} \begin{gathered}
\text { A set of three 'nearby' cuts where different agents } \\
\\
\text { prefer different pieces }
\end{gathered}
$$

'Approximate' envy-free connected division

Cake division using Sperner's Lemma

Imagine making this triangulation finer and finer

- we will have increasingly 'nearby' cuts
- where we have envy-free like things happening

Valuations are (topologically) closed \Longrightarrow the limiting cut has to be envy-free

> | Sperner's Lemma \Longrightarrow |
| :---: |
| |
| |
| A set of three 'nearby' cuts where different agents |

'Approximate' envy-free connected division

Cake division using Sperner's Lemma

Cake division using Sperner's Lemma

Third Assumption: valuations are closed

Cake division using Sperner's Lemma

Third Assumption: valuations are closed
Denote a cut $X=\left(x_{1}, x_{2}, x_{3}\right)$. Consider a sequence of cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$

Cake division using Sperner's Lemma

Third Assumption: valuations are closed
Denote a cut $X=\left(x_{1}, x_{2}, x_{3}\right)$. Consider a sequence of cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ Triangle is bounded

Cake division using Sperner's Lemma

Third Assumption: valuations are closed
Denote a cut $X=\left(x_{1}, x_{2}, x_{3}\right)$. Consider a sequence of cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ Triangle is bounded \Longrightarrow the above sequence has a convergent subsequence

Cake division using Sperner's Lemma

Third Assumption: valuations are closed
Denote a cut $X=\left(x_{1}, x_{2}, x_{3}\right)$. Consider a sequence of cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ Triangle is bounded \Longrightarrow the above sequence has a convergent subsequence
(Using Bolzano-Weistrass convergence theorem)

Cake division using Sperner's Lemma

Third Assumption: valuations are closed
Denote a cut $X=\left(x_{1}, x_{2}, x_{3}\right)$. Consider a sequence of cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ Triangle is bounded \Longrightarrow the above sequence has a convergent subsequence

Cake division using Sperner's Lemma

Third Assumption: valuations are closed
Denote a cut $X=\left(x_{1}, x_{2}, x_{3}\right)$. Consider a sequence of cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ Triangle is bounded \Longrightarrow the above sequence has a convergent subsequence.

For any sequence of (converging) cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$

Cake division using Sperner's Lemma

Third Assumption: valuations are closed
Denote a cut $X=\left(x_{1}, x_{2}, x_{3}\right)$. Consider a sequence of cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ Triangle is bounded \Longrightarrow the above sequence has a convergent subsequence.

For any sequence of (converging) cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ if an agent i prefers piece k at each of $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$

Cake division using Sperner's Lemma

Third Assumption: valuations are closed

Denote a cut $X=\left(x_{1}, x_{2}, x_{3}\right)$. Consider a sequence of cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$
Triangle is bounded \Longrightarrow the above sequence has a convergent subsequence.

For any sequence of (converging) cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ if an agent i prefers piece \boldsymbol{k} at each of $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ then she prefers the piece \boldsymbol{k} in the limit as well!

Cake division using Sperner's Lemma

Third Assumption: valuations are closed Closed under limit!

Denote a cut $X=\left(x_{1}, x_{2}, x_{3}\right)$. Consider a sequence of cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$
Triangle is bounded \Longrightarrow the above sequence has a convergent subsequence.
For any sequence of (converging) cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ if an agent i prefers piece \boldsymbol{k} at each of $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ then she prefers the piece \boldsymbol{k} in the limit as well!

Cake division using Sperner's Lemma

Third Assumption: valuations are closed Closed under limit!

For any sequence of (converging) cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ if an agent i prefers piece \boldsymbol{k} at each of $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ then she prefers the piece \boldsymbol{k} in the limit as well!

Cake division using Sperner's Lemma

Third Assumption: valuations are closed Closed under limit!

Idea: There is a limiting cut where we can turn approximate EF into exact EF

For any sequence of (converging) cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ if an agent i prefers piece \boldsymbol{k} at each of $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ then she prefers the piece \boldsymbol{k} in the limit as well!

Cake division using Sperner's Lemma

Third Assumption: valuations are closed Closed under limit!

Idea: There is a limiting cut where we can turn approximate EF into exact EF

For any sequence of (converging) cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ if an agent i prefers piece \boldsymbol{k} at each of $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ then she prefers the piece \boldsymbol{k} in the limit as well!

We can take increasingly finer triangulations. They will all converge to a single cut-point, and at that cut, all three agents will prefer different pieces

Cake division using Sperner's Lemma

Third Assumption: valuations are closed Closed under limit!

Idea: There is a limiting cut where we can turn approximate EF into exact EF

For any sequence of (converging) cuts $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ if an agent i prefers piece \boldsymbol{k} at each of $X^{(1)}, X^{(2)}, X^{(3)}, \ldots$ then she prefers the piece \boldsymbol{k} in the limit as well!

We can take increasingly finer triangulations. They will all converge to a single cut-point, and at that cut, all three agents will prefer different pieces

Exact envy-free connected division

Cake division using Sperner's Lemma

Sperner's Lemma

Convergence-based existential proof of envy-free cake divisions with connected pieces

Cake division using Sperner's Lemma

Sperner's Lemma

Convergence-based existential proof of envy-free cake divisions with connected pieces (and hence, it does not lead to an efficient algorithm)

Cake division using Sperner's Lemma

Sperner's Lemma

Convergence-based existential proof of envy-free cake divisions with connected pieces (and hence, it does not lead to an efficient algorithm)

Stromquist [1980], Su [1999]

Envy-free cake divisions

Stromquist [1980], Su [1999]
Envy-free cake division with connected pieces exist for any number of agents

Envy-free cake divisions

Stromquist [1980], Su [1999]
Envy-free cake division with connected pieces exist for any number of agents

Stromquist, J. of Combinatorics 2008
No finite-query protocols exists for connected EF cake division even for three agents!

Envy-free cake divisions

Stromquist [1980], Su [1999]
Envy-free cake division with connected pieces exist for any number of agents

Stromquist, J. of Combinatorics 2008
No finite-query protocols exists for connected EF cake division even for three agents!
[ABKR] WINE'19
(Fair and Efficient Cake Division with Connected Pieces)(28 May)
An efficient algorithm: 1/2-EF +1/3-NSW allocation for connected EF cake division

Envy-free cake divisions

Stromquist [1980], Su [1999]
Envy-free cake division with connected pieces exist for any number of agents

Stromquist, J. of Combinatorics 2008
No finite-query protocols exists for connected EF cake division
[ABKR] WINE'19
(Fair and Efficient Cake Division with Connected Pieces)(28 May)
An efficient algorithm: 1/2-EF +1/3-NSW allocation for connected EF cake division
[ABKR] EC'20
(Fair Cake Division under Monotone Likelihood Ratios)(25 June)
Efficient algorithms for connected EF cake division for a broad class of instances

Query Complexity of Envy-freeness

