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Fair Division

How to divide resources fairly among heterogeneous agents.

Divisible resources: land, time, etc.

Indivisible resources: people, rooms, tasks, etc.

← This paper
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Fair Division of Indivisible Goods

An instance (N,M, (vi)i∈N ) consists of the following:

A non-empty set of agents N ,
A set of indivisible goods M ,
The agents’ valuations (vi : 2

M → R≥0)i∈N .

A subset of M is called a bundle.

An allocation is a partition (Ai)i∈N of M whose bundles are
uniquely labelled by agents.

A partial allocation is a labelled partition (Ai)i∈N of a subset of M ,
where M \ (Ai)i∈N is the set of unallocated goods (and also called
the charity).
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Envy-Freeness (EF)

EF: one of the most natural concepts of fairness.

Definition

A partial allocation (Ai)i∈N is said to be envy-free (EF) iff

vi(Ai) ≥ vi(Aj) ∀i, j ∈ N.

In words, every agent i does not envy any other agent j.

Q. Does every instance admit an EF allocation?
A. No, e.g., even when 2 agents divide only 1 good.
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Envy-Freeness up to Any Good (EFX)

EFX: “the most compelling” relaxation of EF [Caragiannis et al., 2019].

Definition

A partial allocation (Ai)i∈N is said to be envy-free up to any good
(EFX) iff

vi(Ai) ≥ vi(Aj \ {g}) ∀g ∈ Aj , ∀i, j ∈ N.

In words, every agent i would not envy any other agent j if any single item
in his bundle Aj were removed.

Q. Does every instance admit an EFX allocation?
— The “most enigmatic” open question [Procaccia, 2020].
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EFX for a Few Agents

An EFX allocation has been shown to exist in the following cases:

|N | Valuations

[Plaut and Roughgarden, 2020] 2 Monotone

[Chaudhury et al., 2020] 3 Additive

[Berger et al., 2022] 3 Nice-cancellable

[Akrami et al., 2025] 3 At least one is MMS-feasible1

1The other two are arbitrary monotone valuations.
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Valuation Classes

Definition

A valuation v : 2M → R≥0 is said to be monotone iff

v(X) ≤ v(Y ) ∀X ⊆ Y ⊆M.

Theorem (Plaut and Roughgarden [2020])

An EFX allocation exists for 2 agents with monotone valuations.

Definition

A valuation v : 2M → R≥0 is said to be additive iff

v(X) =
∑
g∈X

v({g}) ∀X ⊆M.

Theorem (Chaudhury et al. [2020])

An EFX allocation exists for 3 agents with additive valuations.
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Valuation Classes

Definition

A monotone valuation v : 2M → R≥0 is said to be nice-cancellable iff
there exists an injective valuation v′ : 2M → R≥0 such that

v(X) > v(Y )⇒ v′(X) > v′(Y ) ∀X,Y ⊆M,

and that

v′(X ∪ {g}) > v′(Y ∪ {g})⇒ v′(X) > v′(Y ) ∀g ∈M \ Y, ∀X,Y ⊆M.

Theorem (Berger et al. [2022])

An EFX allocation exists for 3 agents with nice-cancellable valuations.

Definition

A valuation v : 2M → R≥0 is said to be MMS-feasible iff

max {v(X), v(S \X)} ≥ min {v(Y ), v(S \ Y )} ∀X,Y ⊆ S ⊆M.

Additive ⊊ Nice-cancellable ⊊ MMS-feasible ⊊ Monotone.
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First Main Result of the Paper

Definition

A valuation v : 2M → R≥0 is said to be MMS-feasible iff

max {v(X), v(S \X)} ≥ min {v(Y ), v(S \ Y )} ∀X,Y ⊆ S ⊆M.

Additive ⊊ Nice-cancellable ⊊ MMS-feasible ⊊ Monotone.

Theorem (Akrami et al. [2025])

An EFX allocation exists when |N | = 3 and at least one agent has an
MMS-feasible valuation.

A simple and constructive proof.

Transition between allocations to improve a certain potential.

Doing away with intricate concepts in previous work.
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Additional Definitions

Definition

For each relation ⋆ ∈ {≤,≥, <,>} over R and an agent i ∈ N , we let ⋆i
denote the binary relation over 2M s.t.

X ⋆i Y ⇔ vi(X) ⋆ vi(Y ) ∀X,Y ⊆M.

In inequalities with any ⋆i ∈ {≤i,≥i, <i, >i} for any i ∈ N , we let max
and min denote the maximum and minimum according to ⋆i, respectively.

Definition

In a partition (X1, X2, . . . , Xn) of M , a bundle Xk is said to be
EFX-feasible for an agent i ∈ N iff

Xk ≥i max
j∈{1,2,...,n}

max
g∈Xj

(Xj \ {g}) .
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Reduction to Non-Degenerate Instances

Definition

An instance (N,M, (vi)i∈N ) is said to be non-degenerate iff each
valuation vi is injective, i.e.,

X ̸= Y ⇒ vi(X) ̸= vi(Y ) ∀X,Y ⊆M,∀i ∈ N.

Lemma (Akrami et al. [2025])

For any instance I = (N,M, (vi)i∈N ), one can construct a non-degenerate
instance Ĩ = (N,M, (ṽi)i∈N ) such that an allocation X is EFX for I if it
is EFX for Ĩ.

In what follows, we consider an arbitrary non-degenerate instance
I = (N := {1, 2, 3},M, (v1, v2, v3)) where v3 is MMS-feasible.
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Potential & Invariants

We keep updating a partition X = (X1, X2, X3) of M along with the
following potential and invariants.

Potential

ϕ(X) := min {v1(X1), v1(X2)} .

It suffices to show that ϕ(X) can be strictly increased when X does not
induce any EFX allocation.

Invariants

Both X1 and X2 are EFX-feasible for agent 1.

X3 is EFX-feasible for at least one of agents 2 and 3.

X1 X2 X3

1 2 3
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Initialization

Theorem (Plaut and Roughgarden [2020])

Given any non-degenerate instance I = (N,M, (v)i∈N ) with identical
valuations and any non-EFX allocation (Ai)i∈N for I, one can compute an
allocation (Bi)i∈N such that mini∈N v(Ai) < mini∈N v(Bi).

Their method is referred to as the PR algorithm for repeated use.

Now, we initialize the partition (X1, X2, X3), which enjoys the invariants:

1. Obtain a partition (X1, X2, X3) s.t. all the bundles are EFX-feasible
for agent 1, using the PR algorithm.

2. Assume w.l.o.g. that X3 is the most valuable for agent 3.

X1 X2 X3

1 2 3
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An Immediate Case

Lemma

Let a partition X satisfy the invariants. If either X1 or X2 is EFX-feasible
for either agent 2 or 3 in X, we can obtain an EFX allocation from X.

Proof.

Suppose w.l.o.g. that X3 is EFX-feasible for agent 3.

If either X1 or X2 is EFX-feasible for agent 2, assign bundle X3 to
agent 3, and let agent 2 pick one of X1 and X2.

Otherwise, if either X1 or X2 is EFX-feasible for agent 3, let agent 2
pick any bundle and agent 1 then pick one of the rest.

X1 X2 X3

1 2 3
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Further Case Work

Due to the previous lemma, we assume that neither X1 nor X2 is
EFX-feasible for agent 2 or 3 in X, where the following is observed:

Lemma

For each i ∈ {2, 3}, it holds under the above assumption that

X3 \ {gi} >i max {X1, X2} ,
where gi denotes the good g ∈ X3 that maximizes vi(X3 \ {g}).

Proof.

Let i ∈ {2, 3} be arbitrary, and suppose w.l.o.g. that X1 ≥i X2. As X1 is
not EFX-feasible for agent i in X, it then holds that X1 <i X3 \ {gi}.

Suppose w.l.o.g. that X1 ≤1 X2. It remains to discuss the following cases:

Case 1: X3 \ {gi} >i X1 ∪ {gi} for agent i = 2 or i = 3.

Case 2: X3 \ {gi} ≤i X1 ∪ {gi} for each agent i ∈ {2, 3}.
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Case 1: X3 \ {gi} >i X1 ∪ {gi} for agent i = 2 or i = 3.

Suppose w.l.o.g. that X3 \ {g3} >3 X1 ∪ {g3}. Together with the previous
lemma, we see that X3 \ {g3} is EFX-feasible for agent 3.

X1 ∪ {g3} X2 X3 \ {g3}

1 2 3

Let X ′
1 be a minimal subset of X1 ∪ {g3} that agent 1 finds more valuable

than X1. Let also X ′
2 := X2 and X ′

3 := M \ (X ′
1 ∪X ′

2) = (X1 ∪X3) \X ′
1.
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Lemma

X ′
1 >1 X

′
2 \ {g} ∀g ∈ X ′

2,

X ′
2 ≥1 X

′
1 \ {h} ∀h ∈ X ′

1.

Proof.

Since both X1 and X2 are EFX-feasible for agent 1 in X, it follows that

X ′
1 >1 X1 ≥1 X2 \ {g} = X ′

2 \ {g} ∀g ∈ X ′
2,

X ′
2 = X2 ≥1 X1 ≥1 X

′
1 \ {h} ∀h ∈ X ′

1.
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Case 1: X3 \ {gi} >i X1 ∪ {gi} for agent i = 2 or i = 3.

Lemma

X ′
1 >1 X

′
2 \ {g} ∀g ∈ X ′

2,

X ′
2 ≥1 X

′
1 \ {h} ∀h ∈ X ′

1.

Note that the partition X ′ := (X ′
1, X

′
2, X

′
3) enjoys that ϕ(X

′) > ϕ(X).

Thus, we are done if both X ′
1 and X ′

2 are EFX-feasible for agent 1 in X ′.

Otherwise, the lemma implies that there is a good g ∈ X ′
3 such that

X ′
3 \ {g} >1 min {X1, X2}. The PR algorithm finds a partition

Y = (Y1, Y2, Y3) whose bundles are all EFX-feasible for agent 1 in Y and
enjoy the second inequality of the following:

ϕ(Y ) ≥1 min {Y1, Y2, Y3} >1 min
{
X ′

1, X
′
2, X

′
3

}
= ϕ(X ′) ≥ ϕ(X).

Suppose w.l.o.g. that agent 3 finds Y3 the most valuable; then Y satisfies
the invariants.
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enjoy the second inequality of the following:

ϕ(Y ) ≥1 min {Y1, Y2, Y3} >1 min
{
X ′

1, X
′
2, X

′
3

}
= ϕ(X ′) ≥ ϕ(X).

Suppose w.l.o.g. that agent 3 finds Y3 the most valuable; then Y satisfies
the invariants.
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Case 2: X3 \ {gi} ≤i X1 ∪ {gi} for each agent i ∈ {2, 3}.

Since we’ve shown that X3 \ {gi} >i max {X1, X2} for each i ∈ {2, 3}, it
follows that

X2 ≤i X3 \ {gi} ≤i X1 ∪ {gi} ∀i ∈ {2, 3}.

X1 ∪ {g2} X2 X3 \ {g2}

1 2 3

X1 ∪ {g3} X2 X3 \ {g3}
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Case 2: X3 \ {gi} ≤i X1 ∪ {gi} for each agent i ∈ {2, 3}.

X2 ≤i X3 \ {gi} ≤i X1 ∪ {gi} ∀i ∈ {2, 3}. (1)

The PR algorithm finds a partition X ′ = (X2, Y2, Y3) of M such that

min {X1 ∪ {g2}, X3 \ {g2}} ≤2 min {Y2, Y3} , (2)

Y2 ≤3 Y3. (3)

Lemma

For each i ∈ {2, 3}, Yi is EFX-feasible for agent i in X ′.

Proof.

Eqs. (1) and (2) yield that Y2 ≥2 X3 \ {g} for any g ∈ X3, and that

Y2 ≥2 min {X1 ∪ {g2}, X3 \ {g2}} = X3 \ {g2} ≥2 X2,

implying the claim for i = 2.

Eq. (3) and MMS-feasibility of v3 give that

Y3 ≥3 min {Y2, Y3} ≥3 min {X1 ∪ {g3}, X3 \ {g3}} ≥3 X2.

Combining this with Eq. (3) leads to EFX-feasibility of Y3 for agent 3.
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Case 2: X3 \ {gi} ≤i X1 ∪ {gi} for each agent i ∈ {2, 3}.

Lemma

For each i ∈ {2, 3}, Yi is EFX-feasible for agent i in X ′.

X2 Y2 Y3

1 2 3

If X2 is EFX-feasible for agent 1 in X ′, we are done.

Otherwise, it remains to do the following (informally stated):

1. If Y3 ≤1 X2, move some goods from Y2 to Y3.
2. Apply the PR algorithm in terms of v1.
3. Let agent 2 pick their favorite bundle.
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“EFX: A Simpler Approach and an (Almost) Optimal Guarantee via

Rainbow Cycle Number” [Akrami et al., 2025]

1 Preliminaries

2 EFX for 3 Agents

3 EFX with Charity
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EFX with Charity

It has been shown that a partial EFX allocation exists with the following
number of unallocated goods:

Charity

Chaudhury et al. [2021b] n− 1

Berger et al. [2022] n− 2

Q. Does an EFX allocation with a sublinear charity exist?
— An open question.
— But yes, if an approximation is allowed.
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Rainbow Cycle Number

Definition

For each integer d > 0, the rainbow cycle number R(d) denotes the
largest integer k such that there exists a k-partite directed graph
G = (V1 ∪ V2 ∪ · · · ∪ Vk, E) that satisfies the following:

For every i ∈ {1, 2, . . . , k}, 1 ≤ |Vi| ≤ d.

For every i, j ∈ {1, 2, . . . , k} with i ̸= j, each vertex in Vi has an
incoming edge from some vertex in Vj .

There is no cycle that visits each part at most once.

Previous work shows the following reduction to a problem in graph theory.

Theorem (Chaudhury et al. [2021a])

Let ϵ ∈
(
0, 12

]
be arbitrary. For any instance with n agents, there is a

(1− ϵ)-EFX allocation with O
(

n
ϵ dn,ϵ

)
unallocated goods, where dn,ϵ

denotes the smallest integer d > 0 that enjoys dR(d) ≥ n
ϵ .
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Upper Bounds in Previous Work

Theorem (Chaudhury et al. [2021a])

Let ϵ ∈
(
0, 12

]
be arbitrary. For any instance with n agents, there is a

(1− ϵ)-EFX partial allocation with O
(

n
ϵ dn,ϵ

)
many unallocated goods,

where dn,ϵ denotes the smallest integer d > 0 that enjoys dR(d) ≥ n
ϵ .

Upper bounds on R(d) imply those on the number of unallocated goods.

Previous work gives the following upper bounds:

R(d) Charity

Chaudhury et al. [2021a] O
(
d4
)

O
((

n
ϵ

)0.8)
Berendsohn et al. [2022] O

(
d2+o(1)

)
O
((

n
ϵ

)0.67)
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Second Main Result of the Paper

This paper establishes an improved and almost tight upper bound.2

Theorem (Akrami et al. [2025], Jahan et al. [2023])

It holds that R(d) = O (d log d).

Corollary

Let ϵ ∈
(
0, 12

]
be arbitrary. For any instance with n agents, there is a

(1− ϵ)-EFX partial allocation with Õ
((

n
ϵ

)0.5)
many unallocated goods.

R(d) Charity

[Chaudhury et al., 2021a] O
(
d4
)

O
((

n
ϵ

)0.8)
[Berendsohn et al., 2022] O

(
d2+o(1)

)
O
((

n
ϵ

)0.67)
[Akrami et al., 2025, Jahan et al., 2023] Õ (d) Õ

((
n
ϵ

)0.5)
2It is shown by Chaudhury et al. [2021a] that R(d) ≥ d.
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Summary of the Paper

The paper improves the following two fronts towards the fundamental
open problem about the existence of EFX allocations:

A small number of agents:
3 agents and at least one MMS-feasible valuation.

Charity (and approximation):

(1− ϵ)-EFX with O
((

n
ϵ

)1/2)
many unallocated goods.

Relevant open problems include the following:

Existence of EFX allocations for 3 agents with general valuations.

Existence of EFX allocations for 4 agents with additive valuations.
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