

MAX PLANCK INSTITUTE FOR INFORMATICS

Mechanism Design Without Money

Kurt Mehlhorn, Javier Cembrano, Golnoosh Shahkarami

Max Planck Institute for Informatics April 22, 2025

Introduction

Please Introduce yourself!

- What is your name?
- Where are you from?
- Which Program are you studying?
 - Which Semester?
- How much were you exposed to Algorithms?

Organization

- Seminar 2+0, 7 CPS
- Organizers Kurt Mehlhorn, Javier Cembrano, and Golnoosh Shahkarami
- Time Every Tuesday 14:15 15:45
- Requirements
 Basic algorithms lecture
- Structure
- First 4 lectures by us
- One week break
- Student presentation

Organization

- Your task
 - 1. Send us your preferred order of the papers
 - 2. Give a practice talk
 - 3. Present a paper (60-75 minutes)
 - 4. Write a summary of the paper
- Grade
 - 70% presentation
 - 20% summary
 - 10% engagement

April 29th One week before your talk May 27th – July 15th July 22nd

Games

- Prisoner's Dilemma
 - Two suspects are arrested
 - Police has no evidence
 - Each have two options: confess or stay quiet
 - They cannot talk to each other
 - They are selfish

- Dominant strategy Bob: C, Alice: C
- Nash equilibrium
- Pareto optimal (NC, NC)

(C, C)

Mechanism Design

- How can we model strategic behavior?
 - Each agent wants to optimize their own utility rather than the general goal of making everyone happy
- What affects does strategic behavior have?
- How should we set rules of the games?

How to design systems that can cope with strategic behavior?

Using financial compensation: mechanism design with money

Using voting mechanism: mechanism design without money

- One item to sell
- A: set of agents (player/bidders)
- v_i : value of agent *i* for winning the item
- **b**_i: reported bid of agent i
- *u_i* = *v_i p*: utility of agent *i* in case of winning
 (*u_i* = 0 otherwise)
- Mechanism:
 - Who wins?
 - How much should they pay?

- One item to sell
- A: set of agents (player/bidders)
- v_i : value of agent *i* for winning the item
- **b**_i: reported bid of agent i
- *u_i* = *v_i b_j*: utility of agent *i* in case of winning
 (*u_i* = 0 otherwise)
- Second-price Auction:
 - Who wins? Bidder with highest bid
 - How much should they pay? **2nd** highest bid b_i

A bid b_i is a (weakly) **dominant strategy** for player *i* with value v_i if for all possible bids b'_i ۲ by that player and all possible bids b_{-i} of the other players,

 $u_i((b_i, b_{-i}), v_i) \ge u_i((b'_i, b_{-i}), v_i).$

Theorem – Vickrey, 1961

In a Second-price auction, for each player it is a dominant strategy to bid **truthfully**.

Proof. Fix a player i, we need to show that u_i is maximized by $b_i = v_i$.

```
Let b_i = \max_{k \neq i} b_k. Then u_i = \max\{0, v_i - b_i\}.
```

1. If $v_i \leq b_i$:

better to lose!

2. If $v_i > b_i$:

OR INFORMATICS

you should bid higher than b_i to win and there is no difference if you bid less or higher than v_i

Mechanism Design without Money

- 1. Stable matchings
- 2. Kidney exchange
- 3. Facility location
- 4. Distortion
- 5. Impartial selection
- 6. Strategyproof mechanism with Withholding agents
- 7. Fair division
- 8. Budget aggregation

Mechanism Design without Money

- 1. Stable matchings (Lecture 4)
- 2. Kidney exchange
- 3. Facility location (Lecture 3)
- 4. Distortion
- 5. Impartial selection
- 6. Strategyproof mechanism with Withholding agents
- 7. Fair division
- 8. Budget aggregation

Input

- A: set of agents
- Each agent brings an item to exchange
- Each agent has a preference list over houses

Output

• A permutation $\pi: A \to A$ between agents and houses

Goal

Agents get happier

Input

- A: set of agents
- Each agent brings an item to exchange
- Each agent has a preference list over houses

Output

• A permutation $\pi: A \to A$ between agents and houses

Goal

• Agents get happier

Input

- A: set of agents
- Each agent brings an item to exchange
- Each agent has a preference list over houses

Output

• A permutation $\pi: A \to A$ between agents and houses

Goal

• Agents get happier

Blocking Coalition

- A subset of the agents $N \subseteq A$ is a blocking coalition of an allocation π , if there is an allocation $\sigma: N \rightarrow N$ such that
- 1. No $i \in N$ prefers $\pi(i)$ over $\sigma(i)$ and
- 2. At least one $i \in N$ prefers $\sigma(i)$ over $\pi(i)$.

Stable Allocation

• An allocation is stable if there is no blocking coalition.

Mechanism Design Without Money

Blocking Coalition

- A subset of the agents $N \subseteq A$ is a blocking coalition of an allocation π , if there is an allocation $\sigma: N \rightarrow N$ such that
- 1. No $i \in N$ prefers $\pi(i)$ over $\sigma(i)$ and
- 2. At least one $i \in N$ prefers $\sigma(i)$ over $\pi(i)$.

Stable Allocation

• An allocation is stable if there is no blocking coalition.

There is always a stable allocation.

- Set A' = A
- While $A' \neq \emptyset$
 - Construct a directed graph on vertices A'.

(Each vertex i has one outgoing edge to the owner of his preferred house among all houses owned by A'.)

- Find an arbitrary **directed cycle** in this graph.

There is always a stable allocation.

- Set A' = A
- While $A' \neq \emptyset$
 - Construct a directed graph on vertices A'.

(Each vertex *i* has one outgoing edge to the owner of his preferred house among all houses owned by A'.)

- Find an arbitrary **directed cycle** in this graph.

There is always a stable allocation.

- Set A' = A
- While $A' \neq \emptyset$
 - Construct a directed graph on vertices A'.

(Each vertex i has one outgoing edge to the owner of his preferred house among all houses owned by A'.)

- Find an arbitrary **directed cycle** in this graph.
- To each *i* in this cycle, assign the house owned by *i*'s successor in the cycle.
- Remove all agents in the cycle from A'.

There is always a stable allocation.

- Set A' = A
- While $A' \neq \emptyset$
 - Construct a directed graph on vertices A'.

(Each vertex i has one outgoing edge to the owner of his preferred house among all houses owned by A'.)

- Find an arbitrary **directed cycle** in this graph.
- To each *i* in this cycle, assign the house owned by *i*'s successor in the cycle.
- Remove all agents in the cycle from A'.

* There always is a directed cycle in the constructed graph.

The allocation outputted by the *Top Trading Cycles Algorithm* is

Stable,

Unique, Truthful.

Kidney Exchange

Organ donations

- It is forbidden to ask for or pay money for these!
- Requires the tissues to be compatible
- What if all your relatives who would be willing and able to donate are incompatible?
- We might need chain of exchanges
- Top Trading Cycles Algorithm
- All surgeries have to take place simultaneously, close to each other
- We need short cycles

Stable matchings: Effective Affirmative Action in School Choice (27.05)

Kidney exchange: Mix and Match: A Strategyproof Mechanism for Multi-hospital

Kidney Exchange (03.06)

Mechanism Design Without Money

Single Facility Location

- N: set of n strategic agents
- $X = \{x_1, ..., x_n\}$: each agent *i* has a preferred location $x_i \in \mathbb{R}^2$
- $f(X) \in \mathbb{R}^2$: location of the facility
- $d(x_i, f(X)) \ge 0$: Euclidean distance of agent *i* from the facility
- Goal: minimize some social cost objective
 - Egalitarian Social Cost:

 $\max_{i\in N} d(x_i, f(X))$

– Utilitarian Social Cost:

Single Facility Location

Strategic Single Facility Location

- Strategyproof Mechanism:
 - Locations ($x_i \in \mathbb{R}^2$) are **private** information
 - No agent has an incentive to misreport her location

Strategic Single Facility Location

- Strategyproof Mechanism:
 - Locations ($x_i \in \mathbb{R}^2$) are **private** information
 - No agent has an incentive to misreport her location

Strategic Single Facility Location

- Strategyproof Mechanism:
 - Locations ($x_i \in \mathbb{R}^2$) are **private** information
 - No agent has an incentive to misreport her location

Related Paper

Learning-Augmented Mechanism Design: Leveraging Predictions for Facility

Location

Mechanism Design Without Money

Voting

Top Choice Voting

Top Choice Voting

Ranked Voting

Metric Distortion

- Voters and Candidates lie in a metric space
- Voter's cost for a candidate is their distance
- Distances satisfy triangle inequality
- The ranked list of each voter is consistent with the distances

Metric Distortion - Example

$$\operatorname{Cost}(a) = \frac{n}{2} + n,$$
 $\operatorname{Cost}(b) = \frac{n}{2}$

Distortion =
$$sup_{all\ metrics}$$
 $\frac{Cost\ (voting\ rule)}{optimal\ cost} = \frac{Cost\ (a)}{Cost\ (b)} = \frac{\frac{3n}{2}}{\frac{n}{2}} = 3$

Mechanism Design Without Money

Related Paper

Resolving the Optimal Metric Distortion Conjecture (17.06)

Mechanism Design Without Money

Cake-Cutting

How to fairly divide a cake among agents with differing preferences?

- A mother wants to divide a cake between her two kids
- She does not know what do the kids prefer
- She should come up with a mechanism!

Cut-and-choose Protocol

• One kid cut and the other chose!

- N: set of n agents
- *M*: set of *m* divisible/indivisible goods
- u_{ij} : utility of agent *i* for a good g_j
- $u_i: 2^M \to \mathbb{R}^+$: valuation functions

Goal

• Find a fair allocation of the goods to the agents.

Mechanism Design Without Money

- **EF**: An allocation X is envy free, if and only if for all agents $a_i, a_j: v_i(X_i) \ge v_i(X_j)$
 - May not always exist.
- EFX: An allocation X is envy free up to any item or EFX, if and only if for all agents a_i, a_j, and for all goods g ∈ X_j: v_i(X_i) ≥ v_i(X_j \ {g})

Do complete EFX allocations always exist?

Related Paper

EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle

Number (01.07)

Seminar Overview

- 1. Stable matchings: Effective Affirmative Action in School Choice (27.05)
- 2. Kidney exchange: Mix and Match: A Strategyproof Mechanism for Multi-hospital Kidney Exchange (03.06)
- 3. Facility location: Learning-Augmented Mechanism Design: Leveraging Predictions for Facility Location (10.06)
- 4. Distortion: Resolving the Optimal Metric Distortion Conjecture (17.06)
- 5. Impartial selection: Optimal Impartial Selection (24.06)
- 6. Fair division: EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number (01.07)
- 7. Budget aggregation: Truthful Aggregation of Budget Proposals (08.07)
- 8. Strategyproof mechanism with Withholding agents: Truthful Assignment without Money (15.07)

Don't forget!

Send us your preferred list of the student papers by April 29th.

Thank you!

Mechanism Design Without Money