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Warmup: Facility Location on the Line

5
P4
e Given: n preferences P = (p1,p2,...,pn) CR
@ Choose: Facility location f € R 4
o Constraints: Agent i incurs cost |f — pj| Ps
@ Objective: Minimize a social cost function P ;l
C(f.P)
. .. - 0 . - 2
Definition (Egalitarian /Utilitarian cost 1D)
Egalitarian: C° := maxyep |f — p| p1 )
Utilitarian: C*:= 1 _,|f —p|
0
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The problem

@ Given: n preferences of agents
P = (Pl’P2a---Pn) C R?
Choose: Facility location f € R? o

Constraints: Each agent suffers cost p1 p
d(f, pi) (Euclidean distance) s -

@ Objective: Minimize social cost AN
function C: (f,P) > R /

Definition
Egalitarian Cost C¢ := max,cp d(f, p)

e s N
Utilitarian Cost C" =3 _p d(Z’P)

Jakob Barkalaia Learning-augmented Mechanism Design July 3, 2025 6/38



Agents may be strategical

Definition (Strategyproofness)
Mechanism f : R?" — R? is strategyproof iff for all instances P € R?",
all i € [n], pi € R? it is the case that d(p;, f(P)) < d(pi, f(P—i, p}))

In other words: It is the dominant strategy for every player to truthfully
report preferences
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Coordinatewise Median Mechanism (CM)

Definition (Coordinatewise Median Mechanism)

Given: Preferences P = {(x1,y1),- .-, (Xn, ¥n)} C R?
Output: ~ f(P) := (Median(xi, ..., xy), Median(y1,...,yn))
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Generalized Coordinatewise Median (GCM)

Definition (Generalized CM)

Given: Preferences P = {(x1,y1), ..., (Xn,¥n)} and multiset P" C R?
Output: ~» f(P) := CM(PU P’)
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Median to the rescue

Theorem

The GCM mechanism is deterministic, strategyproof and anonymous (=
invariance under permutations of the agents).

Jakob Barkalaia Learning-augmented Mechanism Design July 3, 2025 10/38



Learning-Augmented Mechanism Design

Now: We are given prediction 6 of optimal facility location o(P)

Definition (Consistency and Robustness)

Let C be some social cost function and f some mechanism.
f is a-consistent, if an a-approximation is achieved for 6 = o(P) :

C(f(P,6=0(P)),P)
mﬁx{ C(o(P), P) }SO‘

f is S-robust, if a S-approximation is achieved for any prediction 6:

C(f(P,0),P)
”B?ax{ C(o(P). P) } =P
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Recap of 1-dimensional case

Definition (MinMaxP mechanism)

Input: P = (p1,...,pn) € R", prediction 6 € R, let
Pmin = mianP(p)apmax "= Pmin = Maxp &€ P(p)

A

o if 6 € [pmim pmax]
~ f(P’ 6) = 4 Pmin if 0 < Pmin
pmaX If 6 > pmaX
Equivalently:
F(P,6) = CM(P U P')

where P’ contains n — 1 copies of 6

v

The mechanism is strategyproof, 1-consistent and 2-robust as we have seen

Jakob Barkalaia Learning-augmented Mechanism Design July 3, 2025 13/38



lllustration of MinMaxP Mechanism (1D)

6 if 6 ¢ [pmim Pmax]
f(P,6) = Pmin if 8 < Pmin
f(P,0) Pmax  if 6> Pmax
| e |
pL P.z_g Ps 'R
Prin Prax @ Mechanism outputs prediction
[min p;, max p;] o if it's within the agents’

range

@ Otherwise, clips to nearest
endpoint of the interval
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2-dimensional case: Minimum Bounding Box
Mechanism

Definition (Min Bounding Box b

Mechanism) f(P, o)
|- @ ------ ----

! °o .

InPUt: P = {(Xla_yl)""’(xn»yn)} i Pp :
Prediction: 6 = (X%, y) : E
Output:  f(P,8) = MinMaxP(xq, . . ., x», %), 6o °

MinMaxP(y1. ..., Yn: §) 1P pE
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2-dimensional case

Definition (Minimum Bounding Box mechanism)

Input: P = ((x1,y1);- -, (Xn, ¥n)) € R?", prediction 6 = (X,y) € R?
~ f(P,8) = (MinMaxP((x1, - .., %n),X), MinMaxP((y1,...,¥n), 7))

Theorem

The Minimum Bounding Box mechanism is strategyproof, 1-consistent
and 1+ /2 robust for the egalitarian objective.
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Proof (1 + v/2)-Robustness

@ R contains all points from P

= S contains all points Circle R with radius C¢(0, P) ¢
from P

Axis-parallel square S
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Proof (1 + v/2)-Robustness

@ R contains all points from P
= S contains all points Circle R with radius C¢(o, P) ¢
from P

@ — All bounds for S also
hold for the minimum
axis-parallel bounding box

Axis-parallel square S
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Proof (1 + v/2)-Robustness

@ R contains all points from P
= S contains all points Circle R with radius C¢(o, P) ¢
from P

e = All bounds for S also
hold for the minimum
axis-parallel bounding box

e d(o,f) <+2C¢(o,p)

Axis-parallel square S
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Theorem

There is no deterministic, strategyproof, and anonymous mechanism that

is (2 — ¢)-consistent and (1 + /2 — €) robust with respect to the
egalitarian objective for any € > 0.
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Theorem

There is no deterministic, strategyproof, and anonymous mechanism that
is (2 — ¢)-consistent and (1 + /2 — €) robust with respect to the
egalitarian objective for any € > 0.

Lemma (Peters et al. (2013))

Any deterministic, strategyproof, anonymous, unanimous mechanism
solving the problem is equivalent to GCM with n — 1 phantom points.
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Theorem

There is no deterministic, strategyproof, and anonymous mechanism that
is (2 — ¢)-consistent and (1 + /2 — €) robust with respect to the
egalitarian objective for any € > 0.

Lemma (Peters et al. (2013))

Any deterministic, strategyproof, anonymous, unanimous mechanism
solving the problem is equivalent to GCM with n — 1 phantom points.

@ 1. For consistency better than 2, we have to place all n — 1 phantom
points on 6

@ 2. If we place all n — 1 phantom points on 0, robustness is at least

1++2
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We have to place all phantoms on the prediction

@ Assume atleast one of the n — 1 phantoms ¢’ is not on 6. Wlog
Y < Y5
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We have to place all phantoms on the prediction
@ Assume atleast one of the n — 1 phantoms ¢’ is not on 6. Wlog

Yg < Ya
@ Choose y = maxgep.y,<y; Yg and e = yg — y
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We have to place all phantoms on the prediction

@ Assume atleast one of the n — 1 phantoms ¢’ is not on 6. Wlog
Y < Y5

@ Choose y = maxgep.y,<y; Yg and e = yg — y

y
B e H e e 1 agent point
] :
Yo (D l

n — 1 agent points
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With n-1 phantom points on prediction , robustness at

least 1 + /2

(0,1)

o

O
<

(1-v21-v2)

@ optimum at o with cost 1

(1,0)
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With n-1 phantom points on prediction , robustness at
least 1 + /2

o

.o
(1_\/5’1_\/5)

@ optimum at o with cost 1
@ We have 2 phantom points at 6, hence 3 points with x = 1, 3 point
with y =1
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With n-1 phantom points on prediction , robustness at
least 1 + /2

(1-v21-v2)

@ optimum at o with cost 1
@ We have 2 phantom points at 6, hence 3 points with x = 1, 3 point
with y =1
o fis placed at (1,1) and cost is 14 /2
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2-dimensional case

Definition (Prediction Error)
Let P be an instance, 6 a prediction and o(P) the optimal facility
location. Define the prediction error
. d(6,0(P
n(o.P) = 20 oP)
C(o(P), P)

as the distance to the optimal location o(P) normalized by the optimal
social cost )
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Smoothness

Lemma

Let P be an instance of the problem. For any two predictions 6 and &, the
returned facility locations f(P, ) and f(P, &) by the Minimum
Bounding Box mechanism satisfy

d(f(P,0),f(P,5)) < d(5,0)
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Smoothness

Lemma

Let P be an instance of the problem. For any two predictions 6 and &, the
returned facility locations f(P, ) and f(P, &) by the Minimum
Bounding Box mechanism satisfy

d(f(P,06),f(P,8)) < d(6,0)

i & s e o000 X
Case 1: 5 G PL P2 P3 Paps




Smoothness

Lemma

Let P be an instance of the problem. For any two predictions 6 and &, the
returned facility locations f(P, ) and f(P, &) by the Minimum
Bounding Box mechanism satisfy

d(f(P,0),f(P,5)) < d(5,0)

Case l: ——————— e oo 0000 X
o
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Theorem

The Minimum Bounding Box mechanism achieves a min{1 + 1,1+ /2}
approximation

v

Proof.
e By definition d(6,0) = nC¢(o, P)
@ By previous lemma d(f (P, d), f(P,0)) < d(6,0),nC¢(o, P)

= =T = = = - &
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Theorem

The Minimum Bounding Box mechanism achieves a min{1 + 1,1+ /2}
approximation

v

Proof.
e By definition d(6,0) = nC¢(o, P)
@ By previous lemma d(f (P, d), f(P,0)) < d(6,0),nC¢(o, P)

P8 ) = il 107 8))
I€[n

= =T = = = 7 e
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Theorem

The Minimum Bounding Box mechanism achieves a min{1 + 1,1+ /2}
approximation

v

Proof.
e By definition d(6,0) = nC¢(o, P)
@ By previous lemma d(f (P, d), f(P,0)) < d(6,0),nC¢(o, P)

P8 ) = il 107 8))
I€|n

< 51;?,3]( [d(pi, f(P,0))+ d(f(P,0),f(P,5))]

— =T = = = 7 @
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Theorem

The Minimum Bounding Box mechanism achieves a min{1 + 1,1+ /2}
approximation

v

Proof.
e By definition d(6,0) = nC¢(o, P)
@ By previous lemma d(f (P, d), f(P,0)) < d(6,0),nC¢(o, P)

Ce(f(’Da 6)7 'D) - m?)]( d(p,, f('Dv 6))
I€|n

< 52%»]( [d(pi, f(P,0))+ d(f(P,0),f(P,0))]

< s’g?x[d(p,, o) +n- C(f(P,o0),P)]

O]

— =T = = = T
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Theorem

The Minimum Bounding Box mechanism achieves a min{1 + 1,1+ /2}
approximation

v

Proof.
e By definition d(6,0) = nC¢(o, P)
@ By previous lemma d(f (P, d), f(P,0)) < d(6,0),nC¢(o, P)

C(f(P,6),P) = i d(pi, f(P,0))
I€|n

< 52?)}( [d(pi, f(P,0))+ d(f(P,0),f(P,0))]

< s’g?x[d(p,, o) +n- C(f(P,o0),P)]

< (L+n)- C5(Ff(P,0),P)

— =T = = = N2 Ne)
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The plan

@ 1-Dimensional case: Median is optimal and strategyproof

e 2-Dimensional case: CM mechanism is a v/2-approximation and no
deterministic, strategyproof and anonymous algorithm can provide a
better approximation [Meir 2019]
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The plan

@ 1-Dimensional case: Median is optimal and strategyproof

@ 2-Dimensional case: CM mechanism is a v/2-approximation and no
deterministic, strategyproof and anonymous algorithm can provide a
better approximation [Meir 2019]

What can we achieve if we add predictions into the mix?
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The plan

@ 1-Dimensional case: Median is optimal and strategyproof

@ 2-Dimensional case: CM mechanism is a v/2-approximation and no
deterministic, strategyproof and anonymous algorithm can provide a
better approximation [Meir 2019]

What can we achieve if we add predictions into the mix?

= V2c?+2/(1+ c)-consistency and \/2c? +2/(1 — c)-robustness

where ¢ € [0,1)

Jakob Barkalaia Learning-augmented Mechanism Design July 3, 2025 25/38



The Mechanism

Definition (Coordinate Median with Predictions (CMP) mechanism)

Input: Locations P € R?", prediction 6 € R?, confidence value c € [0, 1)

~ f(P,6,c) = CM(PU P')

where P’ contains cn copies of 6

N
>
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The Mechanism

Definition (Clusters-and-Opt-on-Axes Instances)

Let c € [0,1). Define P to be the class of all instances (P, 8) such that

e f(P,6,c)=(0,0)

e o(P)=(0,1)

e Vpe P:pe{(0,1),(x,0),(—x,0)} for some x € R>g
Let PS.(c) C P where 6 = o(P) and PR, C P where 6 =

(0,0)

(=x,0)

coa coa
y
: |

f(P,6,c) (X 0)
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Lemma (COA instances always contain a worst-case instance)

Let r(P, 6, c) be the achieved approx-ratio. For any c € [0,1), the
CMP-mechanism is a-consistent and 3-robust where

o = maxpepe r(P,6=0(P),c) and B = maxpcpr r(P,6=(0,0),c)

x

e
™~

£

Arbitrary P

0A
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Definition (Optimal-on-Axes family)
For some ¢, 0, define Py, be the family of multisets P such that
e f(P,6,c)=(0,0)
® xo(P) =0, yo(P) >0
eVpeP:peAcUA,
Let PS5 (c) be the family when 6 = o(P) and PR (c) when 6 = (0,0)

F(P.5.c) .

Pe p7 Pg T P9 P10 P11
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Lemma (Convert OA instance to COA or make it strictly worse)
For any c € [0,1), P € P§,
@ There is some Q such that r(Q,o(Q),c) > r(P,o(P),c)

o OR there is some Q € PS,, such that r(Q, o(Q), c) > r(P,o(P),¢)
(This holds analogously for the robustness case)
y
Ps
Pa O(P)
P3
P2
P1
f(P,6,c)
e — o e e X
P6 P7 Pg ‘ P9 P10 P11
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OA to COA

Ps

Pa

P3

p1

f(P.5c)
Pe pP7 Ps P9 P10 P11
=] & = E DA
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OA to COA

Step 1: Move x-Points to dy, —dx

where d, := average distance to f.

Ps

Pa

pP3

P2

P1

f(P,8,c)
—dy dx
[m] = - 8
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OA to COA

Step 1: Move x-Points to dy, —dx
where d, := average distance to f.

Step 2: In the new instance @ we
have o(P) = o(Q).

Ps

P 10(P),0(Q)

P3

P2

P1
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OA to COA

Step 1: Move x-Points to d,, —dy
where d, := average distance to f.

Step 2: In the new instance @ we ,
have o(P) = o(Q). °
(P)=o(@) Pto(P),0(Q)
Step 3: In the new instance @ we
have f(P) = f(Q) hence social cost
doesnt change, optimal cost weakly

improves = r(Q) > r(P). P2

P3

P1
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OA to COA

Step 1: Move x-Points to d,, —dy
where d, := average distance to f.

Step 2: In the new instance @ we
have o(P) = o(Q).

Step 3: In the new instance @ we
have f(P) = f(Q) hence social cost
doesnt change, optimal cost weakly
improves = r(Q) > r(P).

Step 4: If not all y-points are on
o(Q), move one towards it to obtain
a strictly worse instance o

<

Ps

P 10(P),0(Q)

pP3
P2

P1
PL
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Lemma

Let
a:= max r(P,o(P),c
PE ‘gU Cg ( ) ( )7 )

and
B:= ma r(P,(0,0),c
Pepgﬁpg ( ( ) )

then the CMP mechanism is a-consistent and (3-robust
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Consistency and Robustness

Lemma
The CMP mechanism is with parameter c € [0,1) is —Vﬁi‘fcﬂ-consistent
and Y2<°F2_robyst

o(P)

F(P,5,c) (x.0)
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Consistency and Robustness

Lemma
The CMP mechanism is with parameter c € [0,1) is —Vﬁi‘fcﬂ-consistent
and Y2<°F2_robyst

y

o(P)
1
o X
[#(P.5.c) 0
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Consistency and Robustness

Lemma
The CMP mechanism is with parameter ¢ € [0,1) is —Viﬁ:rz-consistent
and Y2€°F2_robyst
y
o(P)
[ 2
B _ x2+1
e s x
f(P,6,c)y (x,0)
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Consistency and Robustness

Lemma
The CMP mechanism is with parameter c € [0,1) is —Vﬁi‘fcﬂ-consistent
and Y2<°F2_robyst

o(P)

F(P,5,c) (x.0)
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Consistency proof

o(P)

.Zgl—c

2

f(P,8,c)

> X
(x,0)
n where z is number of agent points with y =1

o = = £ DA
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Consistency proof

o(P)

® X
F(P,5,c) (x.0)

0z< 15°n where z is number of agent points with y =1

_ CU(f(P6=0(P),c),P) _ FEmx+13cn
- Cu(o(P),P) - 1"'Tcn\/xz—l-l

o «
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Consistency proof

y
o(P)
® X
[ F(P.o,c) (,0)
< =1
° o= C“(f(PO o(P),c),P) _ HEmxti5
Cu(o(P),P) - 1‘*'Cn\/xz—l—l

0o = el=adx _ g o }iﬁ

(1+¢)(1+x2)V1+x2
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Consistency proof

y
o(P)
® X
[ F(P.o,c) (,0)
< =1
o a= C"(f(PO o(P),c),P) _ HEmxti5
Cu(o(P),P) - 1‘*'Cn X2—|—1
r 1+c—(1—c)x _ _ 1+4c
° A= I imavineE 0 = X=1=
_ V2?42
° = a=Y¢
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Optimality

Lemma
Any deterministic, strategyproof and anonymous anonymous mechanism

5 \/2c2 o \/2c2
with %—consstency has a robustness no better than %
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Approximation in relation to the prediction error

Lemma

Let P be an instance of the problem. For any two prediction 6 and 6 the
returned facility locations f(P, 6, c) and f(P,&,c) by the CMP
mechanism satisfy

d(f(P,8,c), f(P,5,c)) < d(8,5)
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Approximation in relation to the prediction error

Lemma

Let P be an instance of the problem. For any two prediction 6 and 6 the
returned facility locations f(P, 6, c) and f(P,&,c) by the CMP
mechanism satisfy

d(f(P,8,c), f(P,5,c)) < d(8,5)

Theorem

The CMP mechanism achieves a min{ {5

V2cit2 | ) ¥ 2° +2} approximationJ
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