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Warmup: Facility Location on the Line

Given: n preferences P = (p1, p2, . . . , pn) ⊂ R
Choose: Facility location f ∈ R
Constraints: Agent i incurs cost |f − pi |
Objective: Minimize a social cost function
C (f ,P)

Definition (Egalitarian /Utilitarian cost 1D)

Egalitarian: C e := maxp∈P |f − p|

Utilitarian: Cu := 1
n

∑
p∈P |f − p|
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The problem

Given: n preferences of agents
P = (p1, p2, . . . pn) ⊂ R2

Choose: Facility location f ∈ R2

Constraints: Each agent suffers cost
d(f , pi ) (Euclidean distance)

Objective: Minimize social cost
function C : (f ,P) → R

Definition

Egalitarian Cost C e := maxp∈P d(f , p)

Utilitarian Cost Cu :=
∑

p∈P
d(f ,p)

n
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Agents may be strategical

Definition (Strategyproofness)

Mechanism f : R2n → R2 is strategyproof iff for all instances P ∈ R2n,
all i ∈ [n], p′i ∈ R2 it is the case that d(pi , f (P)) ≤ d(pi , f (P−i , p

′
i ))

In other words: It is the dominant strategy for every player to truthfully
report preferences
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Coordinatewise Median Mechanism (CM)

f (P)

Definition (Coordinatewise Median Mechanism)

Given: Preferences P = {(x1, y1), . . . , (xn, yn)} ⊂ R2

Output: ⇝ f (P) :=
(
Median(x1, . . . , xn), Median(y1, . . . , yn)

)
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Generalized Coordinatewise Median (GCM)

f (P ∪ P ′)

Definition (Generalized CM)

Given: Preferences P = {(x1, y1), . . . , (xn, yn)} and multiset P ′ ⊂ R2

Output: ⇝ f (P) := CM(P ∪ P ′)
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Median to the rescue

Theorem

The GCM mechanism is deterministic, strategyproof and anonymous (=
invariance under permutations of the agents).
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Learning-Augmented Mechanism Design

Now: We are given prediction ô of optimal facility location o(P)

Definition (Consistency and Robustness)

Let C be some social cost function and f some mechanism.
f is α-consistent, if an α-approximation is achieved for ô = o(P) :

max
P

{
C (f (P, ô = o(P)),P)

C (o(P),P)

}
≤ α

f is β-robust, if a β-approximation is achieved for any prediction ô:

max
P,ô

{
C (f (P, ô),P)

C (o(P),P)

}
≤ β
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Recap of 1-dimensional case

Definition (MinMaxP mechanism)

Input: P = (p1, . . . , pn) ∈ Rn, prediction ô ∈ R, let
pmin := minp∈P(p), pmax := pmin := max p ∈ P(p)

⇝ f (P, ô) =


ô if ô ∈ [pmin, pmax ]

pmin if ô < pmin

pmax if ô > pmax

Equivalently:
f (P, ô) = CM(P ∪ P ′)

where P ′ contains n − 1 copies of ô

The mechanism is strategyproof, 1-consistent and 2-robust as we have seen
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Illustration of MinMaxP Mechanism (1D)

Rp1 p2 p3ôpmin pmax

f (P, ô)

[min pi ,max pi ]

f (P, ô) =


ô if ô ∈ [pmin, pmax ]

pmin if ô < pmin

pmax if ô > pmax

Mechanism outputs prediction
ô if it’s within the agents’
range

Otherwise, clips to nearest
endpoint of the interval
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2-dimensional case: Minimum Bounding Box
Mechanism

Definition (Min Bounding Box
Mechanism)

Input: P = {(x1, y1), . . . , (xn, yn)}
Prediction: ô = (x̂ , ŷ)

Output: f (P, ô) = MinMaxP(x1, . . . , xn, x̂),

MinMaxP(y1, . . . , yn, ŷ)
pA pB

pC
pD

ô
f (P, ô)
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2-dimensional case

Definition (Minimum Bounding Box mechanism)

Input: P = ((x1, y1), . . . , (xn, yn)) ∈ R2n, prediction ô = (x̂ , ŷ) ∈ R2

⇝ f (P, ô) = (MinMaxP((x1, . . . , xn), x̂),MinMaxP((y1, . . . , yn), ŷ))

Theorem

The Minimum Bounding Box mechanism is strategyproof, 1-consistent
and 1 +

√
2 robust for the egalitarian objective.

pA pB

pC
pD

ô
f (P, ô)
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Proof (1 +
√
2)-Robustness

R contains all points from P
=⇒ S contains all points
from P

=⇒ All bounds for S also
hold for the minimum
axis-parallel bounding box

d(o, f ) ≤
√
2C e(o, p)

o

Axis-parallel square S

p1

p2

p3

p4Ce

f

d(
o,
f )

Circle R with radius C e(o,P)
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Theorem

There is no deterministic, strategyproof, and anonymous mechanism that
is (2− ε)-consistent and (1 +

√
2− ε) robust with respect to the

egalitarian objective for any ε > 0.

Lemma (Peters et al. (2013))

Any deterministic, strategyproof, anonymous, unanimous mechanism
solving the problem is equivalent to GCM with n − 1 phantom points.

1. For consistency better than 2, we have to place all n − 1 phantom
points on ô

2. If we place all n − 1 phantom points on ô, robustness is at least
1 +

√
2
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We have to place all phantoms on the prediction

Assume atleast one of the n − 1 phantoms q′ is not on ô. Wlog
yq′ < yô

Choose ȳ = maxq∈P:yq<yô yq and ε = yq′ − ȳ

x

y

ô

n − 1 agent points

1 agent point

f

yô

yô + ε

yô − ε

ε

ε
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yô − ε

ε

ε

Jakob Barkalaia Learning-augmented Mechanism Design July 3, 2025 19 / 38



With n-1 phantom points on prediction , robustness at

least 1 +
√
2

x

y

(1, 0)

(0, 1)

(1−
√
2, 1−

√
2)

o

ô

optimum at o with cost 1

We have 2 phantom points at ô, hence 3 points with x = 1, 3 point
with y = 1
f is placed at (1, 1) and cost is 1 +

√
2
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ô

optimum at o with cost 1
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2-dimensional case

Definition (Prediction Error)

Let P be an instance, ô a prediction and o(P) the optimal facility
location. Define the prediction error

η(ô,P) :=
d(ô, o(P))

C (o(P),P)

as the distance to the optimal location o(P) normalized by the optimal
social cost
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Smoothness

Lemma

Let P be an instance of the problem. For any two predictions ô and õ, the
returned facility locations f (P, ô) and f (P, õ) by the Minimum
Bounding Box mechanism satisfy

d(f (P, ô), f (P, õ)) ≤ d(ô, õ)

x
ô õ

Case 1: p1 p2 p3 p4p5

Case 2: x
ô õp1 p2 p3 p4 p5
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x
ô õ
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Theorem

The Minimum Bounding Box mechanism achieves a min{1 + η, 1 +
√
2}

approximation

Proof.

By definition d(ô, o) = ηC e(o,P)

By previous lemma d(f (P, ô), f (P, o)) ≤ d(ô, o), ηC e(o,P)

C e(f (P, ô),P) = max
i∈[n]

d(pi , f (P, ô))

≤ max
i∈[n]

[d(pi , f (P, o)) + d(f (P, o), f (P, ô))]

≤ max
i∈[n]

[d(pi , o) + η · C e(f (P, o),P)]

≤ (1 + η) · C e(f (P, o),P)
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The plan

1-Dimensional case: Median is optimal and strategyproof

2-Dimensional case: CM mechanism is a
√
2-approximation and no

deterministic, strategyproof and anonymous algorithm can provide a
better approximation [Meir 2019]

What can we achieve if we add predictions into the mix?

=⇒
√

2c2 + 2/(1 + c)-consistency and
√
2c2 + 2/(1− c)-robustness

where c ∈ [0, 1)
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The Mechanism

Definition (Coordinate Median with Predictions (CMP) mechanism)

Input: Locations P ∈ R2n, prediction ô ∈ R2, confidence value c ∈ [0, 1)

⇝ f (P, ô, c) = CM(P ∪ P ′)

where P ′ contains cn copies of ô

x

y

p1 p2

p3 p4

ô

f (P, ô, c)
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The Mechanism

Definition (Clusters-and-Opt-on-Axes Instances)

Let c ∈ [0, 1). Define P to be the class of all instances (P, ô) such that

f (P, ô, c) = (0, 0)

o(P) = (0, 1)

∀p ∈ P : p ∈ {(0, 1), (x , 0), (−x , 0)} for some x ∈ R≥0

Let PC
coa(c) ⊂ P where ô = o(P) and PR

coa ⊂ P where ô = (0, 0)

x

y

f (P, ô, c)

o(P) = (0, 1)

(x, 0)(−x, 0)
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Lemma (COA instances always contain a worst-case instance)

Let r(P, ô, c) be the achieved approx-ratio. For any c ∈ [0, 1), the
CMP-mechanism is α-consistent and β-robust where
α = maxP∈PC

coa
r(P, ô = o(P), c) and β = maxP∈PR

coa
r(P, ô = (0, 0), c)
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Definition (Optimal-on-Axes family)

For some c , ô, define Poa be the family of multisets P such that

f (P, ô, c) = (0, 0)

xo(P) = 0, yo(P) > 0

∀p ∈ P : p ∈ Ax ∪ Ay

Let PC
oa(c) be the family when ô = o(P) and PR

oa(c) when ô = (0, 0)

x

y

f (P, ô, c)

o(P)

p1

p2

p3

p4

p5

p6 p7 p8 p9 p10 p11
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Lemma (Convert OA instance to COA or make it strictly worse)

For any c ∈ [0, 1), P ∈ PC
oa

There is some Q such that r(Q, o(Q), c) > r(P, o(P), c)

OR there is some Q ∈ PC
coa such that r(Q, o(Q), c) ≥ r(P, o(P), c)

(This holds analogously for the robustness case)

x

y

f (P, ô, c)

o(P)

p1

p2

p3

p4

p5

p6 p7 p8 p9 p10 p11
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OA to COA

Step 1: Move x-Points to dx ,−dx
where dx := average distance to f .

Step 2: In the new instance Q we
have o(P) = o(Q).

Step 3: In the new instance Q we
have f (P) = f (Q) hence social cost
doesnt change, optimal cost weakly
improves =⇒ r(Q) ≥ r(P).

Step 4: If not all y -points are on
o(Q), move one towards it to obtain
a strictly worse instance

x

y

f (P, ô, c)

o(P)

p1

p2

p3

p4

p5

p6 p7 p8 p9 p10 p11
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y
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o(P), o(Q)

p1

p2

p3

p4

p5

−dx dx

p′1 ε
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Lemma

Let
α := max

P∈PC
oa∪PC

ca

r(P, o(P), c)

and
β := max

P∈PR
oa∪PR

ca

r(P, (0, 0), c)

then the CMP mechanism is α-consistent and β-robust
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Consistency and Robustness

Lemma

The CMP mechanism is with parameter c ∈ [0, 1) is
√
2c2+2
1+c -consistent

and
√
2c2+2
1−c -robust

x

y

f (P, ô, c)

o(P)

(x, 0)
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Consistency proof

x

y

f (P, ô, c)

o(P)

(x, 0)

z ≤ 1−c
2 n where z is number of agent points with y = 1

α = Cu(f (P,ô=o(P),c),P)
Cu(o(P),P) =

1+c
2

nx+ 1−c
2

n
1+c
2

n
√
x2+1

α′ = 1+c−(1−c)x

(1+c)(1+x2)
√
1+x2

= 0 =⇒ x = 1+c
1−c

=⇒ α =
√
2c2+2
1+c
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Optimality

Lemma

Any deterministic, strategyproof and anonymous anonymous mechanism

with
√
2c2+2
1+c -consistency has a robustness no better than

√
2c2+2
1+c
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Approximation in relation to the prediction error

Lemma

Let P be an instance of the problem. For any two prediction ô and õ the
returned facility locations f (P, ô, c) and f (P, õ, c) by the CMP
mechanism satisfy

d(f (P, ô, c), f (P, õ, c)) ≤ d(ô, õ)

Theorem

The CMP mechanism achieves a min{
√
2c2+2
1+c + η,

√
2c2+2
1−c } approximation
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