Learning-augmented Mechanism Design

Jakob Barkalaia

July 3, 2025

Jakob Barkalaia

Learning-augmented Mechanism Design

✓ □→ < ≥→ < ≥→</p>
July 3, 2025

э

Preliminaries

2 Minimizing egalitarian social cost

3 Minimizing utilitarian social cost

Jakob Barkalaia

Learning-augmented Mechanism Design

イロト イポト イヨト イヨト

э

"Learning-Augmented Mechanism Design: Leveraging Predictions for Facility Location", 2022 By Priyank Agrawal, Eric Balkanski, Vasilis Gkatzelis, Tingting Oua, and Xizhi Tan (Columbia University / Drexel University)

< <p>A

Table of Contents

- ∢ ⊒ →

Warmup: Facility Location on the Line

- Given: *n* preferences $P = (p_1, p_2, \dots, p_n) \subset \mathbb{R}$
- Choose: Facility location $f \in \mathbb{R}$
- Constraints: Agent *i* incurs cost $|f p_i|$
- Objective: Minimize a social cost function C(f, P)

Definition (Egalitarian /Utilitarian cost 1D) Egalitarian: $C^e := \max_{p \in P} |f - p|$ Utilitarian: $C^u := \frac{1}{n} \sum_{p \in P} |f - p|$

The problem

- Given: *n* preferences of agents $P = (p_1, p_2, \dots p_n) \subset \mathbb{R}^2$
- Choose: Facility location $f \in \mathbb{R}^2$
- Constraints: Each agent suffers cost d(f, p_i) (Euclidean distance)
- Objective: Minimize social cost function $C: (f, P) \to \mathbb{R}$

Definition

Egalitarian Cost
$$C^e := \max_{p \in P} d(f, p)$$

Utilitarian Cost $C^u := \sum_{p \in P} \frac{d(f, p)}{n}$

47 ▶

Definition (Strategyproofness)

Mechanism $f : \mathbb{R}^{2n} \to \mathbb{R}^2$ is **strategyproof** iff for all instances $P \in \mathbb{R}^{2n}$, all $i \in [n], p'_i \in \mathbb{R}^2$ it is the case that $d(p_i, f(P)) \le d(p_i, f(P_{-i}, p'_i))$

In other words: It is the dominant strategy for every player to truthfully report preferences

Coordinatewise Median Mechanism (CM)

Definition (Coordinatewise Median Mechanism) Given: Preferences $P = \{(x_1, y_1), \dots, (x_n, y_n)\} \subset \mathbb{R}^2$ Output: $\rightsquigarrow f(P) := (Median(x_1, \dots, x_n), Median(y_1, \dots, y_n))$

Generalized Coordinatewise Median (GCM)

Definition (Generalized CM)

Given: Preferences $P = \{(x_1, y_1), \dots, (x_n, y_n)\}$ and multiset $P' \subset \mathbb{R}^2$ Output: $\rightsquigarrow f(P) := CM(P \cup P')$

< □ > < □ > < □ > < □ > < □ > < □ >

э

Median to the rescue

Theorem

The **GCM** mechanism is deterministic, strategyproof and anonymous (= invariance under permutations of the agents).

Learning-Augmented Mechanism Design

Now: We are given prediction \hat{o} of optimal facility location o(P)

Definition (Consistency and Robustness)

Let C be some social cost function and f some mechanism.

f is α -consistent, if an α -approximation is achieved for $\hat{o} = o(P)$:

$$\max_{P}\left\{\frac{C(f(P, \hat{o} = o(P)), P)}{C(o(P), P)}\right\} \le o$$

f is β -robust, if a β -approximation is achieved for any prediction \hat{o} :

$$\max_{P, \hat{o}} \left\{ \frac{C(f(P, \hat{o}), P)}{C(o(P), P)} \right\} \leq \beta$$

Table of Contents

2 Minimizing egalitarian social cost

Minimizing utilitarian social cost

-47 ▶

∃ →

Recap of 1-dimensional case

Definition (**MinMaxP** mechanism)

Input: $P = (p_1, ..., p_n) \in \mathbb{R}^n$, prediction $\hat{o} \in \mathbb{R}$, let $p_{min} := \min_{p \in P}(p), p_{max} := p_{min} := \max p \in P(p)$

$$\rightsquigarrow f(P, \hat{o}) = \begin{cases} \hat{o} & \text{if } \hat{o} \in [p_{min}, p_{max}] \\ p_{min} & \text{if } \hat{o} < p_{min} \\ p_{max} & \text{if } \hat{o} > p_{max} \end{cases}$$

Equivalently:

$$f(P,\hat{o})=CM(P\cup P')$$

where P' contains n-1 copies of \hat{o}

The mechanism is strategyproof, 1-consistent and 2-robust as we have seen

Illustration of **MinMaxP** Mechanism (1D)

$$f(P, \hat{o}) = \begin{cases} \hat{o} & \text{if } \hat{o} \in [p_{min}, p_{max}] \\ p_{min} & \text{if } \hat{o} < p_{min} \\ p_{max} & \text{if } \hat{o} > p_{max} \end{cases}$$

 $\rightarrow \mathbb{R}$

- Mechanism outputs prediction ô if it's within the agents' range
- Otherwise, clips to nearest endpoint of the interval

2-dimensional case: **Minimum Bounding Box** Mechanism

2-dimensional case

Definition (Minimum Bounding Box mechanism)

Input: $P = ((x_1, y_1), \dots, (x_n, y_n)) \in \mathbb{R}^{2n}$, prediction $\hat{o} = (\hat{x}, \hat{y}) \in \mathbb{R}^2$

 $\rightsquigarrow f(P, \hat{o}) = (MinMaxP((x_1, \dots, x_n), \hat{x}), MinMaxP((y_1, \dots, y_n), \hat{y}))$

Theorem

The Minimum Bounding Box mechanism is strategyproof, 1-consistent and $1 + \sqrt{2}$ robust for the egalitarian objective.

Proof $(1 + \sqrt{2})$ -Robustness

 ■ R contains all points from P ⇒ S contains all points from P

Proof $(1 + \sqrt{2})$ -Robustness

- R contains all points from P
 S contains all points from P
- All bounds for S also hold for the minimum axis-parallel bounding box

Proof $(1 + \sqrt{2})$ -Robustness

- R contains all points from P
 S contains all points from P
- All bounds for S also hold for the minimum axis-parallel bounding box
- $d(o, f) \leq \sqrt{2}C^{e}(o, p)$

There is no deterministic, strategyproof, and anonymous mechanism that is $(2 - \varepsilon)$ -consistent and $(1 + \sqrt{2} - \varepsilon)$ robust with respect to the egalitarian objective for any $\varepsilon > 0$.

э

There is no deterministic, strategyproof, and anonymous mechanism that is $(2 - \varepsilon)$ -consistent and $(1 + \sqrt{2} - \varepsilon)$ robust with respect to the egalitarian objective for any $\varepsilon > 0$.

Lemma (Peters et al. (2013))

Any deterministic, strategyproof, anonymous, unanimous mechanism solving the problem is equivalent to **GCM** with n - 1 phantom points.

There is no deterministic, strategyproof, and anonymous mechanism that is $(2 - \varepsilon)$ -consistent and $(1 + \sqrt{2} - \varepsilon)$ robust with respect to the egalitarian objective for any $\varepsilon > 0$.

Lemma (Peters et al. (2013))

Any deterministic, strategyproof, anonymous, unanimous mechanism solving the problem is equivalent to **GCM** with n - 1 phantom points.

- 1. For consistency better than 2, we have to place all n-1 phantom points on \hat{o}
- 2. If we place all n-1 phantom points on \hat{o} , robustness is at least $1+\sqrt{2}$

We have to place all phantoms on the prediction

• Assume atleast one of the n-1 phantoms q' is not on \hat{o} . Wlog $y_{q'} < y_{\hat{o}}$

∃ ⇒

э

< (T) > <

We have to place all phantoms on the prediction

- Assume atleast one of the n-1 phantoms q' is not on \hat{o} . Wlog $y_{q'} < y_{\hat{o}}$
- Choose $\bar{y} = \max_{q \in P: y_q < y_{\hat{\sigma}}} y_q$ and $\varepsilon = y_{q'} \bar{y}$

We have to place all phantoms on the prediction

- Assume atleast one of the n-1 phantoms q' is not on \hat{o} . Wlog $y_{q'} < y_{\hat{o}}$
- Choose $\bar{y} = \max_{q \in P: y_q < y_{\hat{\sigma}}} y_q$ and $\varepsilon = y_{q'} \bar{y}$

With n-1 phantom points on prediction , robustness at least $1+\sqrt{2}$

• optimum at *o* with cost 1

With n-1 phantom points on prediction , robustness at least $1+\sqrt{2}$

- optimum at *o* with cost 1
- We have 2 phantom points at ô, hence 3 points with x = 1, 3 point with y = 1

With n-1 phantom points on prediction , robustness at least $1+\sqrt{2}$

- optimum at *o* with cost 1
- We have 2 phantom points at ô, hence 3 points with x = 1, 3 point with y = 1
- f is placed at (1,1) and cost is $1+\sqrt{2}$

2-dimensional case

Definition (Prediction Error)

Let *P* be an instance, \hat{o} a prediction and o(P) the optimal facility location. Define the prediction error

$$\eta(\hat{o}, P) := \frac{d(\hat{o}, o(P))}{C(o(P), P)}$$

as the distance to the optimal location o(P) normalized by the optimal social cost

Smoothness

Lemma

Let P be an instance of the problem. For any two predictions \hat{o} and \tilde{o} , the returned facility locations $f(P, \hat{o})$ and $f(P, \tilde{o})$ by the **Minimum Bounding Box** mechanism satisfy

 $d(f(P, \hat{o}), f(P, \tilde{o})) \leq d(\hat{o}, \tilde{o})$

Smoothness

Lemma

Let P be an instance of the problem. For any two predictions \hat{o} and \tilde{o} , the returned facility locations $f(P, \hat{o})$ and $f(P, \tilde{o})$ by the **Minimum Bounding Box** mechanism satisfy

 $d(f(P, \hat{o}), f(P, \tilde{o})) \leq d(\hat{o}, \tilde{o})$

Smoothness

Jal

Lemma

Let P be an instance of the problem. For any two predictions \hat{o} and \tilde{o} , the returned facility locations $f(P, \hat{o})$ and $f(P, \tilde{o})$ by the **Minimum Bounding Box** mechanism satisfy

 $d(f(P, \hat{o}), f(P, \tilde{o})) \leq d(\hat{o}, \tilde{o})$

ob Barkalaia	Learning-augmented Mechanism Design	July 3, 2025	22 / 38
	•	이 문 에 이 문 에	≣ *) Q (*

The Minimum Bounding Box mechanism achieves a min $\{1 + \eta, 1 + \sqrt{2}\}$ approximation

- By definition $d(\hat{o}, o) = \eta C^{e}(o, P)$
- By previous lemma $d(f(P, \hat{o}), f(P, o)) \leq d(\hat{o}, o), \eta C^{e}(o, P)$

The Minimum Bounding Box mechanism achieves a min $\{1 + \eta, 1 + \sqrt{2}\}$ approximation

- By definition $d(\hat{o}, o) = \eta C^{e}(o, P)$
- By previous lemma $d(f(P, \hat{o}), f(P, o)) \leq d(\hat{o}, o), \eta C^{e}(o, P)$

$$C^{e}(f(P, \hat{o}), P) = \max_{i \in [n]} d(p_i, f(P, \hat{o}))$$

The Minimum Bounding Box mechanism achieves a min $\{1 + \eta, 1 + \sqrt{2}\}$ approximation

- By definition $d(\hat{o}, o) = \eta C^{e}(o, P)$
- By previous lemma $d(f(P, \hat{o}), f(P, o)) \leq d(\hat{o}, o), \eta C^{e}(o, P)$

$$egin{aligned} C^e(f(P, \hat{o}), P) &= \max_{i \in [n]} d(p_i, f(P, \hat{o})) \ &\leq \max_{i \in [n]} \left[d(p_i, f(P, o)) + d(f(P, o), f(P, \hat{o}))
ight] \end{aligned}$$

The Minimum Bounding Box mechanism achieves a min $\{1 + \eta, 1 + \sqrt{2}\}$ approximation

- By definition $d(\hat{o}, o) = \eta C^{e}(o, P)$
- By previous lemma $d(f(P, \hat{o}), f(P, o)) \leq d(\hat{o}, o), \eta C^{e}(o, P)$

$$egin{aligned} \mathcal{C}^{e}(f(P, \hat{o}), P) &= \max_{i \in [n]} d(p_{i}, f(P, \hat{o})) \ &\leq \max_{i \in [n]} \left[d(p_{i}, f(P, o)) + d(f(P, o), f(P, \hat{o}))
ight] \ &\leq \max_{i \in [n]} \left[d(p_{i}, o) + \eta \cdot \mathcal{C}^{e}(f(P, o), P)
ight] \end{aligned}$$

The Minimum Bounding Box mechanism achieves a min $\{1 + \eta, 1 + \sqrt{2}\}$ approximation

- By definition $d(\hat{o}, o) = \eta C^{e}(o, P)$
- By previous lemma $d(f(P, \hat{o}), f(P, o)) \leq d(\hat{o}, o), \eta C^{e}(o, P)$

$$C^{e}(f(P, \hat{o}), P) = \max_{i \in [n]} d(p_{i}, f(P, \hat{o}))$$

$$\leq \max_{i \in [n]} [d(p_{i}, f(P, o)) + d(f(P, o), f(P, \hat{o}))]$$

$$\leq \max_{i \in [n]} [d(p_{i}, o) + \eta \cdot C^{e}(f(P, o), P)]$$

$$\leq (1 + \eta) \cdot C^{e}(f(P, o), P)$$

Table of Contents

2 Minimizing egalitarian social cost

< 47 ▶

< ∃⇒

The plan

- 1-Dimensional case: Median is optimal and strategyproof
- 2-Dimensional case: CM mechanism is a $\sqrt{2}$ -approximation and no deterministic, strategyproof and anonymous algorithm can provide a better approximation [Meir 2019]

The plan

- 1-Dimensional case: Median is optimal and strategyproof
- 2-Dimensional case: CM mechanism is a $\sqrt{2}$ -approximation and no deterministic, strategyproof and anonymous algorithm can provide a better approximation [Meir 2019]

What can we achieve if we add predictions into the mix?

The plan

v

- 1-Dimensional case: Median is optimal and strategyproof
- 2-Dimensional case: CM mechanism is a $\sqrt{2}$ -approximation and no deterministic, strategyproof and anonymous algorithm can provide a better approximation [Meir 2019]

What can we achieve if we add predictions into the mix?

$$\implies \sqrt{2c^2+2}/(1+c)$$
-consistency and $\sqrt{2c^2+2}/(1-c)$ -robustness where $c\in [0,1)$

The Mechanism

Definition (Coordinate Median with Predictions (CMP) mechanism) Input: Locations $P \in \mathbb{R}^{2n}$, prediction $\hat{o} \in \mathbb{R}^2$, confidence value $c \in [0, 1)$

$$\rightsquigarrow f(P, \hat{o}, c) = CM(P \cup P')$$

where P' contains cn copies of \hat{o}

The Mechanism

Definition (Clusters-and-Opt-on-Axes Instances)

Let $c \in [0,1)$. Define \mathcal{P} to be the class of all instances (P, \hat{o}) such that

•
$$f(P, \hat{o}, c) = (0, 0)$$

•
$$o(P) = (0,1)$$

• $\forall p \in P : p \in \{(0,1), (x,0), (-x,0)\}$ for some $x \in \mathbb{R}_{\geq 0}$

Let $\mathcal{P}^{\mathcal{C}}_{coa}(c) \subset \mathcal{P}$ where $\hat{o} = o(P)$ and $\mathcal{P}^{\mathcal{R}}_{coa} \subset \mathcal{P}$ where $\hat{o} = (0,0)$

Lemma (COA instances always contain a worst-case instance) Let $r(P, \hat{o}, c)$ be the achieved approx-ratio. For any $c \in [0, 1)$, the CMP-mechanism is α -consistent and β -robust where $\alpha = \max_{P \in \mathcal{P}_{coa}^{C}} r(P, \hat{o} = o(P), c)$ and $\beta = \max_{P \in \mathcal{P}_{coa}^{R}} r(P, \hat{o} = (0, 0), c)$

Definition (Optimal-on-Axes family)

For some c, \hat{o} , define \mathcal{P}_{oa} be the family of multisets P such that

- $f(P, \hat{o}, c) = (0, 0)$
- $x_o(P) = 0, y_o(P) > 0$
- $\forall p \in P : p \in A_x \cup A_y$

Let $\mathcal{P}_{o2}^{C}(c)$ be the family when $\hat{o} = o(P)$ and $\mathcal{P}_{o2}^{R}(c)$ when $\hat{o} = (0,0)$

Lemma (Convert OA instance to COA or make it strictly worse) For any $c \in [0, 1)$, $P \in \mathcal{P}_{oa}^{C}$ • There is some Q such that r(Q, o(Q), c) > r(P, o(P), c)

• OR there is some $Q \in \mathcal{P}_{coa}^C$ such that $r(Q, o(Q), c) \ge r(P, o(P), c)$

(This holds analogously for the robustness case)

Jakob Barkal

aia	Learning-augmented Mechanism Design	July 3, 202	5	31 / 38
	 • 1 		E ▶ - 4	= *) Q (*

Step 1: Move x-Points to $d_x, -d_x$ where $d_x :=$ average distance to f.

b Barkalaia	Learning-augmented Mechanism Design	July 3, 2025	31 / 38	
	•	이 문 에 이 문 에	≣ જોવલ	2

Jak

Step 1: Move x-Points to d_x , $-d_x$ where d_x := average distance to f.

Step 2: In the new instance Q we have o(P) = o(Q).

ob Barkalaia	Learning augmented Mechanism Design	 July 3 2025	31 / 38
	Learning-augmented Mechanism Design	July 3, 2023	J1/J0

Step 1: Move x-Points to $d_x, -d_x$ where $d_x :=$ average distance to f.

Step 2: In the new instance Q we have o(P) = o(Q).

Step 3: In the new instance Q we have f(P) = f(Q) hence social cost doesnt change, optimal cost weakly improves $\implies r(Q) \ge r(P)$.

▲ 伊 → ▲ 三

Step 1: Move x-Points to $d_x, -d_x$ where $d_x :=$ average distance to f.

Step 2: In the new instance Q we have o(P) = o(Q).

Step 3: In the new instance Q we have f(P) = f(Q) hence social cost doesnt change, optimal cost weakly improves $\implies r(Q) \ge r(P)$.

Step 4: If not all *y*-points are on o(Q), move one towards it to obtain a strictly worse instance

Lemma

Let

$$\alpha := \max_{P \in \mathcal{P}_{oa}^{C} \cup \mathcal{P}_{ca}^{C}} r(P, o(P), c)$$

and

$$\beta := \max_{P \in \mathcal{P}_{oa}^{R} \cup \mathcal{P}_{ca}^{R}} r(P, (0, 0), c)$$

then the CMP mechanism is α -consistent and β -robust

イロト 不得 トイヨト イヨト

Lemma

Jakob Barkalaia	Learning-augmented Mechanism Design	July 3, 2025		33 / 38
	<	日本本語を本語を本語を	10	596

Lemma

kob Barkalaia	Learning-augmented Mechanism Design	July 3, 2025		33 / 38
	4	◆ 豊 ▶ → 豊 ▶	æ	୬୯୯

Lemma

Jakob Barkalaia	Learning-augmented Mechanism Design	July 3, 2025		33 / 38
	4	日本本國大大兩大大兩大	æ	୬୯୯

Lemma

Jakob Barkalaia	Learning-augmented Mechanism Design	July 3, 2025		34 / 38	
	4	日本人間を人間を人間を	2	୬୯୯	

• $z \leq \frac{1-c}{2}n$ where z is number of agent points with y = 1

< A > <

I ∃ ►

э

•
$$z \leq \frac{1-c}{2}n$$
 where z is number of agent points with $y = 1$
• $\alpha = \frac{C^u(f(P, \hat{o} = o(P), c), P)}{C^u(o(P), P)} = \frac{\frac{1+c}{2}nx + \frac{1-c}{2}n}{\frac{1+c}{2}n\sqrt{x^2+1}}$

・ロト ・四ト ・ヨト ・ヨト

•
$$z \leq \frac{1-c}{2}n$$
 where z is number of agent points with $y = 1$
• $\alpha = \frac{C^u(f(P,\hat{o}=o(P),c),P)}{C^u(o(P),P)} = \frac{\frac{1+c}{2}nx+\frac{1-c}{2}n}{\frac{1+c}{2}n\sqrt{x^2+1}}$
• $\alpha' = \frac{1+c-(1-c)x}{(1+c)(1+x^2)\sqrt{1+x^2}} = 0 \implies x = \frac{1+c}{1-c}$

July 3, 2025

イロト イポト イヨト イヨト

•
$$z \leq \frac{1-c}{2}n$$
 where z is number of agent points with $y = 1$
• $\alpha = \frac{C^u(f(P,\hat{o}=o(P),c),P)}{C^u(o(P),P)} = \frac{\frac{1+c}{2}nx+\frac{1-c}{2}n}{\frac{1+c}{2}n\sqrt{x^2+1}}$
• $\alpha' = \frac{1+c-(1-c)x}{(1+c)(1+x^2)\sqrt{1+x^2}} = 0 \implies x = \frac{1+c}{1-c}$
• $\implies \alpha = \frac{\sqrt{2c^2+2}}{1+c}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Optimality

Lemma

Any deterministic, strategyproof and anonymous anonymous mechanism with $\frac{\sqrt{2c^2+2}}{1+c}$ -consistency has a robustness no better than $\frac{\sqrt{2c^2+2}}{1+c}$

Approximation in relation to the prediction error

Lemma

Let P be an instance of the problem. For any two prediction \hat{o} and \tilde{o} the returned facility locations $f(P, \hat{o}, c)$ and $f(P, \tilde{o}, c)$ by the **CMP** mechanism satisfy

 $d(f(P, \hat{o}, c), f(P, \tilde{o}, c)) \leq d(\hat{o}, \tilde{o})$

Approximation in relation to the prediction error

Lemma

Let P be an instance of the problem. For any two prediction \hat{o} and \tilde{o} the returned facility locations $f(P, \hat{o}, c)$ and $f(P, \tilde{o}, c)$ by the **CMP** mechanism satisfy

$$d(f(P, \hat{o}, c), f(P, \tilde{o}, c)) \leq d(\hat{o}, \tilde{o})$$

Theorem

The **CMP** mechanism achieves a min
$$\{\frac{\sqrt{2c^2+2}}{1+c} + \eta, \frac{\sqrt{2c^2+2}}{1-c}\}$$
 approximation

< 回 > < 回 > < 回 >

Agrawal, Privank et al. (2022). "Learning-Augmented Mechanism Design: Leveraging Predictions for Facility Location". In: Proceedings of the 23rd ACM Conference on Economics and Computation. EC '22. Boulder, CO, USA: Association for Computing Machinery, pp. 497-528. ISBN: 9781450391504. DOI: 10.1145/3490486.3538306. URL: https://doi.org/10.1145/3490486.3538306. Meir, Reshef (2019). "Strategyproof Facility Location for Three Agents on a Circle". In: Algorithmic Game Theory: 12th International Symposium, SAGT 2019, Athens, Greece, September 30 – October 3, 2019, Proceedings. Athens, Greece: Springer-Verlag, pp. 18–33. ISBN: 978-3-030-30472-0.