

Gibbard-Satterthwaite Theorem (and a bit about Revelation Principle)

Mechanism Design Without Money

Kurt Mehlhorn, Javier Cembrano, Golnoosh Shahkarami

April 29, 2025

• voters $V = \{1, ..., n\}$, alternatives A with |A| = m

Social Choice Functions

- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A

 $\mathscr{L}(A)$: set of binary relations > satisfying

• either a > b or b > a

for every $a, b \in A$ with $a \neq b$

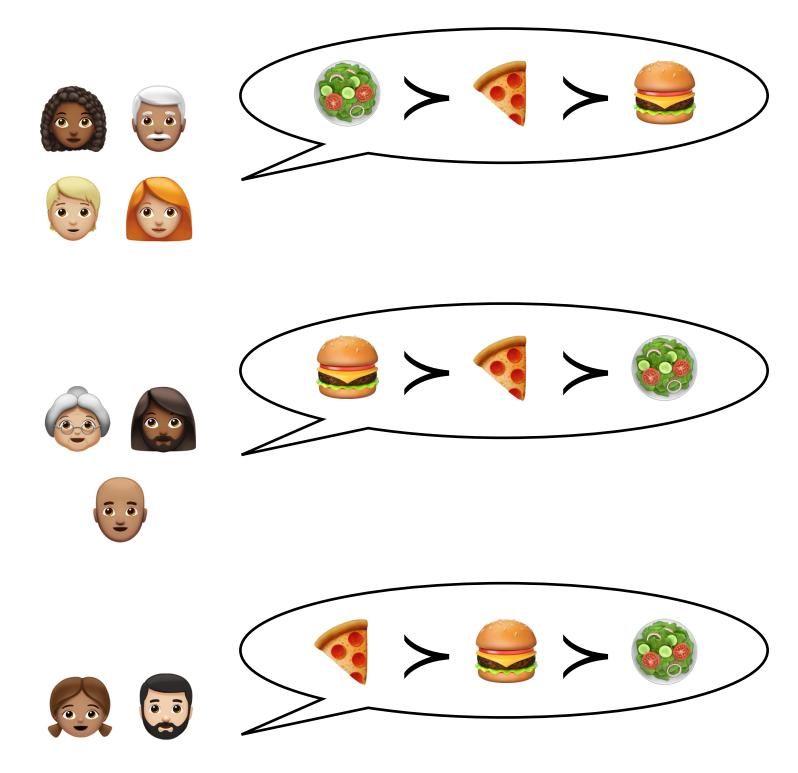
• a > c whenever a > b and b > c

- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c

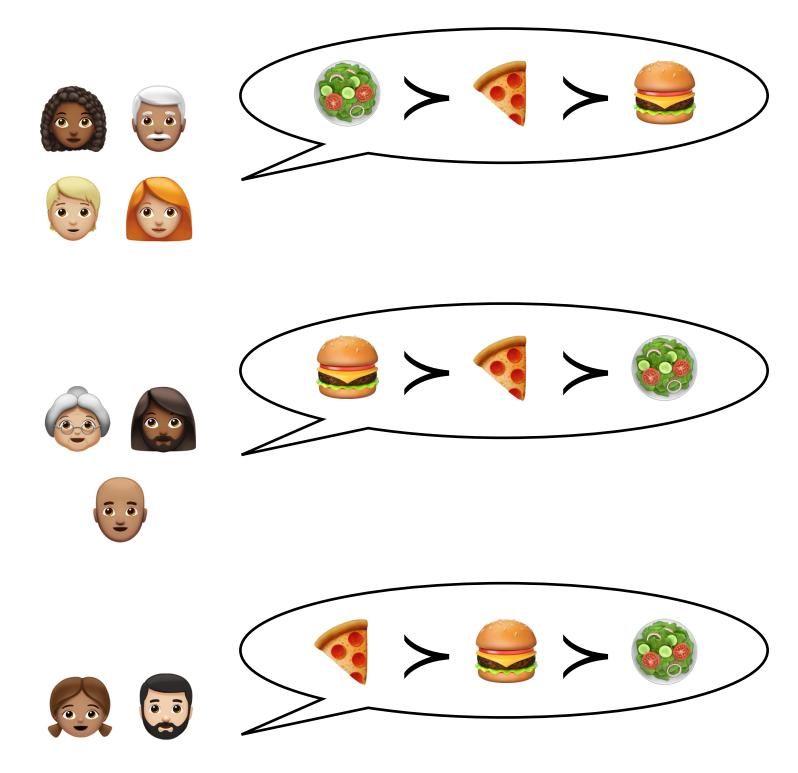
- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ► each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



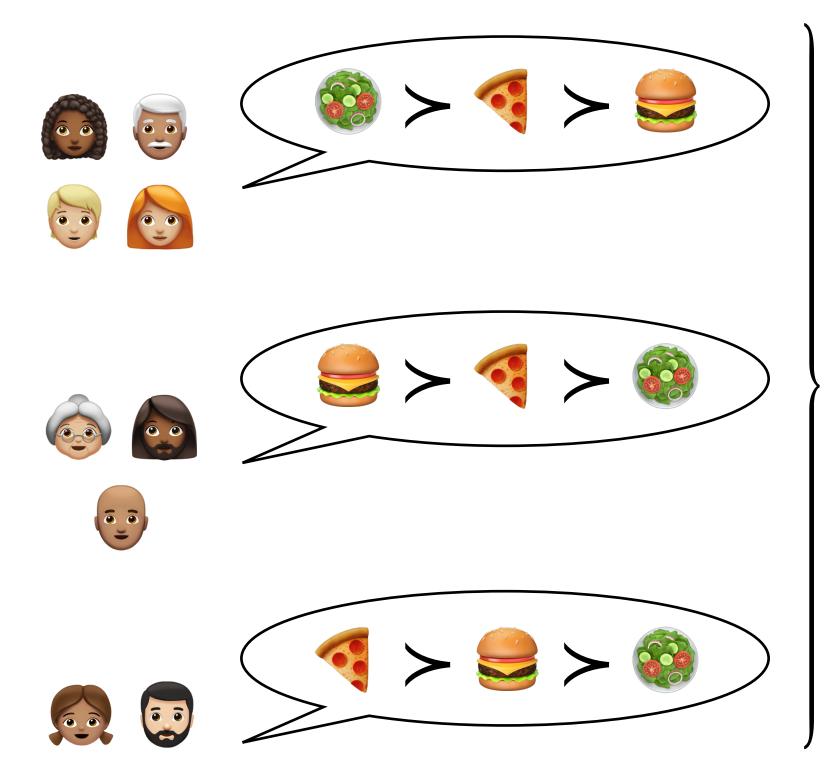
- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ► each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



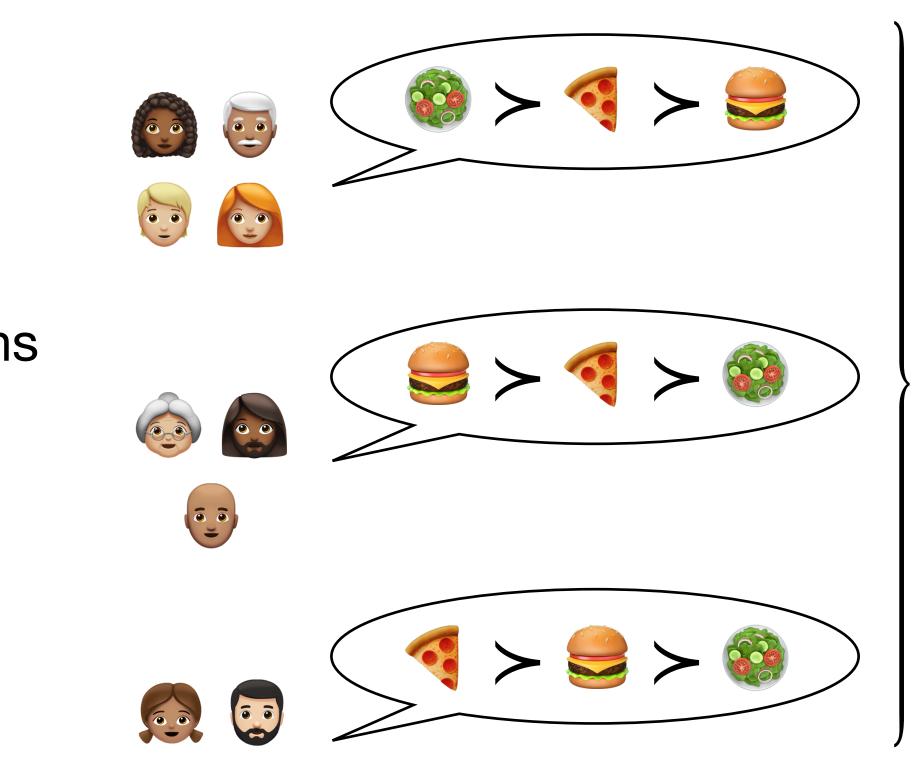
- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



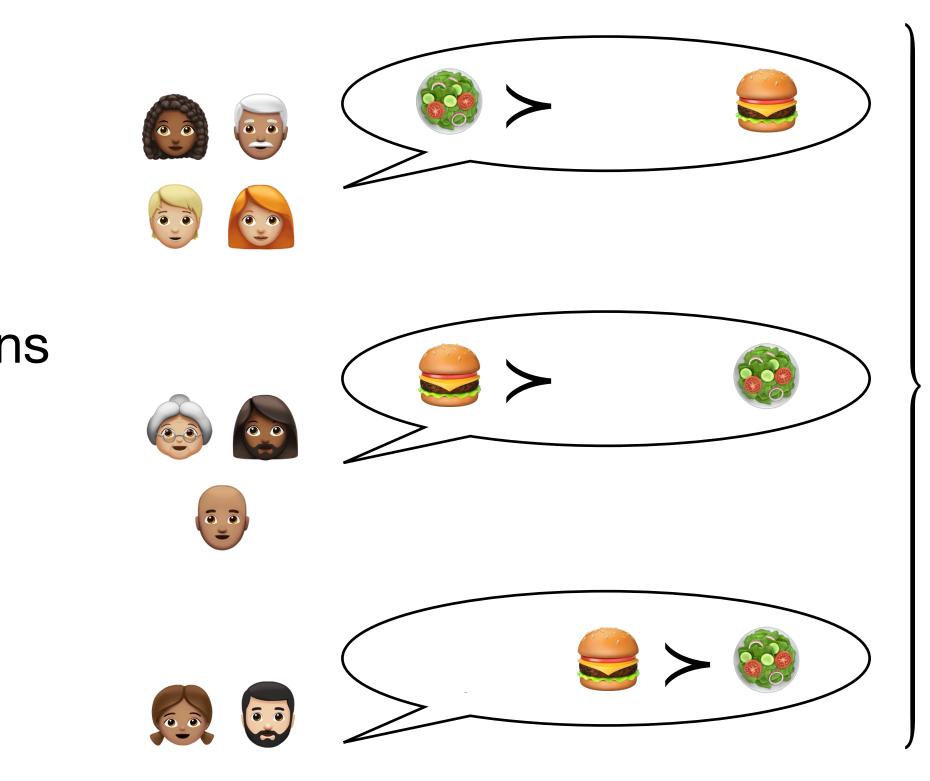
- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters
- **Single Transferable Vote:** eliminate the alternative ranked first by the fewest voters, until only one remains

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



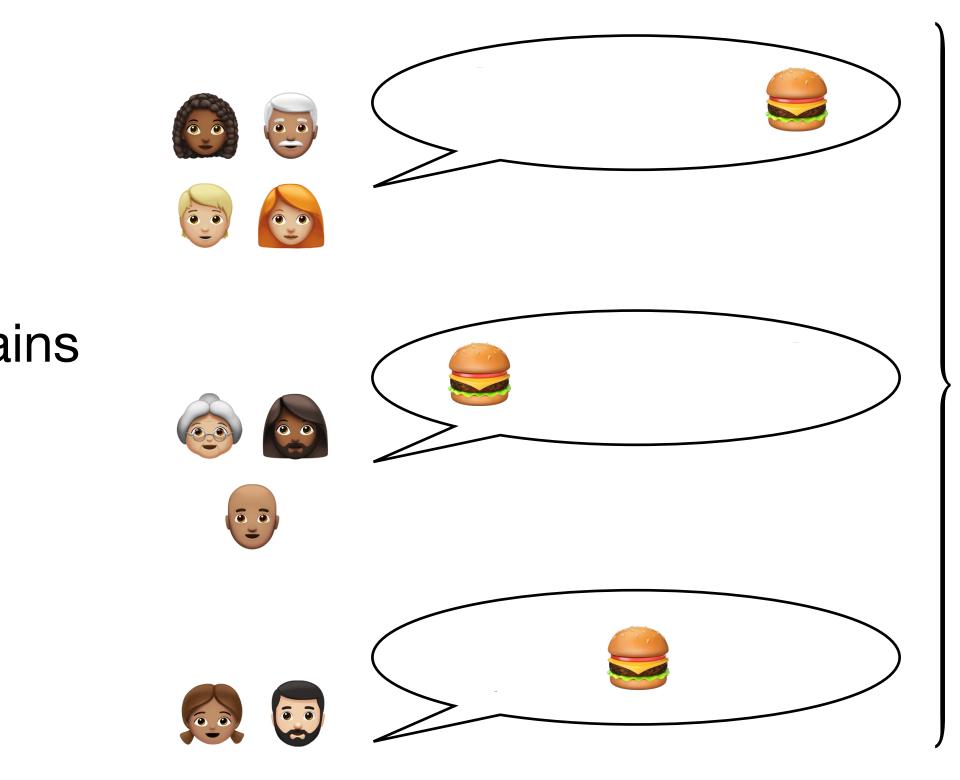
- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ► each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters
- **Single Transferable Vote:** eliminate the alternative ranked first by the fewest voters, until only one remains

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



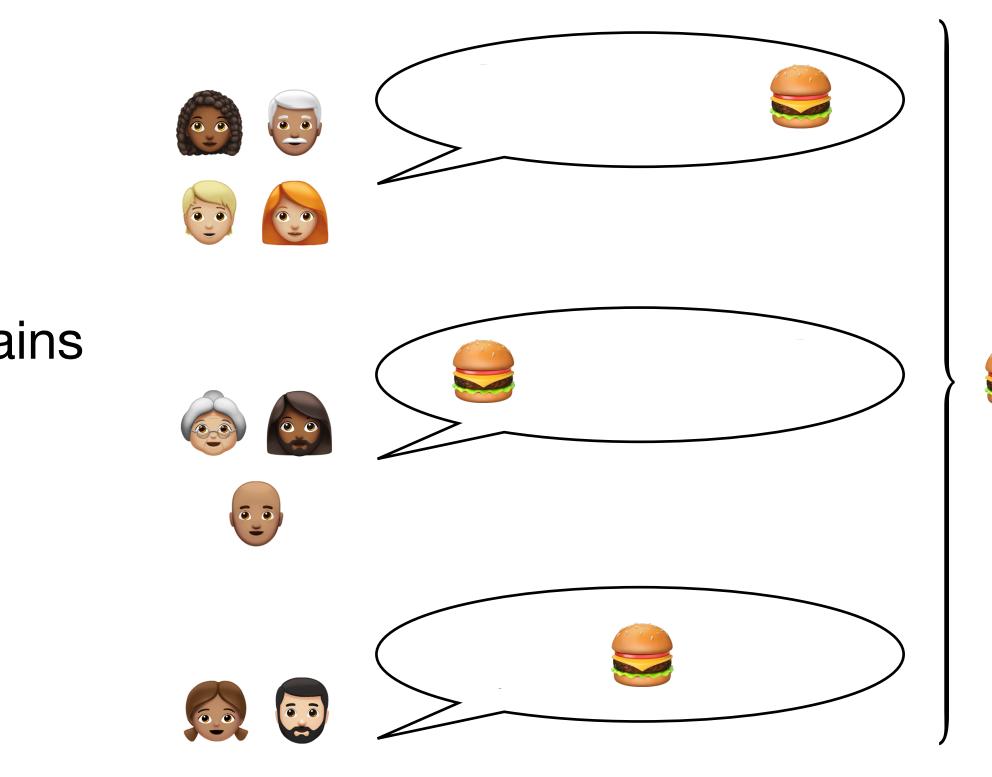
- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ► each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters
- **Single Transferable Vote:** eliminate the alternative ranked first by the fewest voters, until only one remains

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



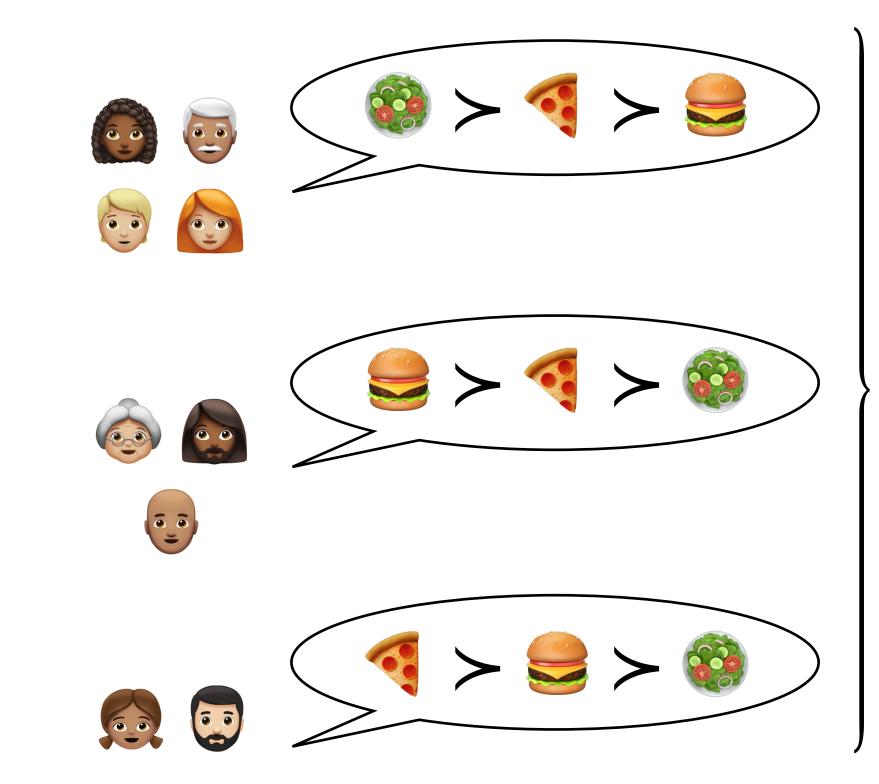
- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ► each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters
- **Single Transferable Vote:** eliminate the alternative ranked first by the fewest voters, until only one remains

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters
- Single Transferable Vote: eliminate the alternative ranked first by the fewest voters, until only one remains
- **Borda:** select the alternative with largest total score, where position $j \in \{1, ..., m\}$ gives score m - j

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters
- Single Transferable Vote: eliminate the alternative ranked first by the fewest voters, until only one remains
- **Borda:** select the alternative with largest total score, where position $j \in \{1, ..., m\}$ gives score m - j

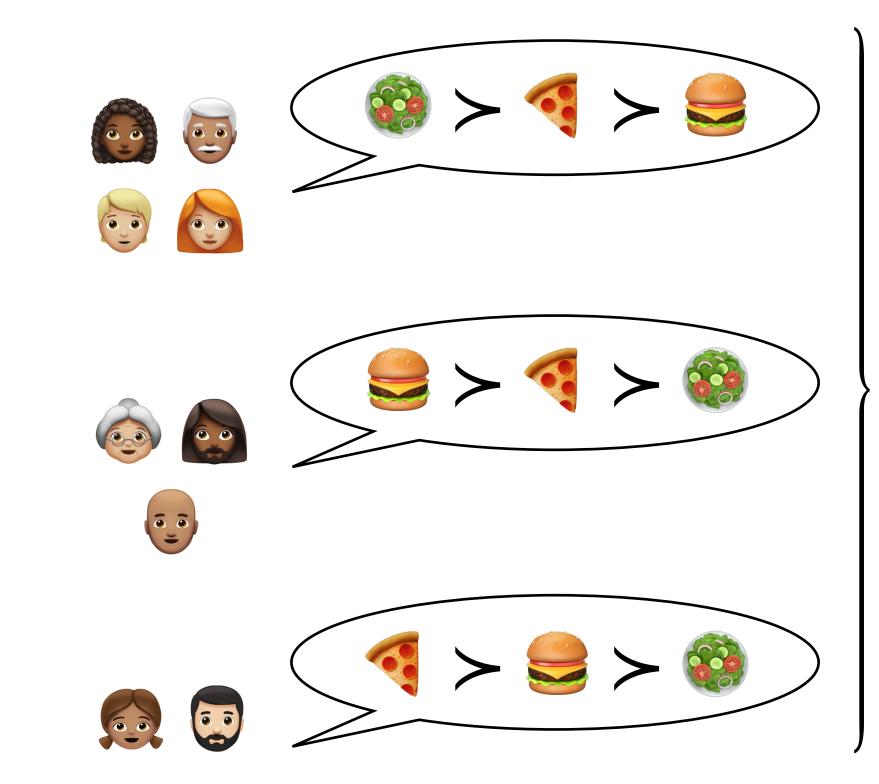
$$\textcircled{0} = 4 \cdot 2 + 3 \cdot 0 + 2 \cdot 0 = 8$$

$$\mathbf{q} = 4 \cdot 1 + 3 \cdot 1 + 2 \cdot 2 = 11$$

 $= 4 \cdot 0 + 3 \cdot 2 + 2 \cdot 1 = 8$

Social Choice Functions

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters
- Single Transferable Vote: eliminate the alternative ranked first by the fewest voters, until only one remains
- **Borda:** select the alternative with largest total score, where position $j \in \{1, ..., m\}$ gives score m - j

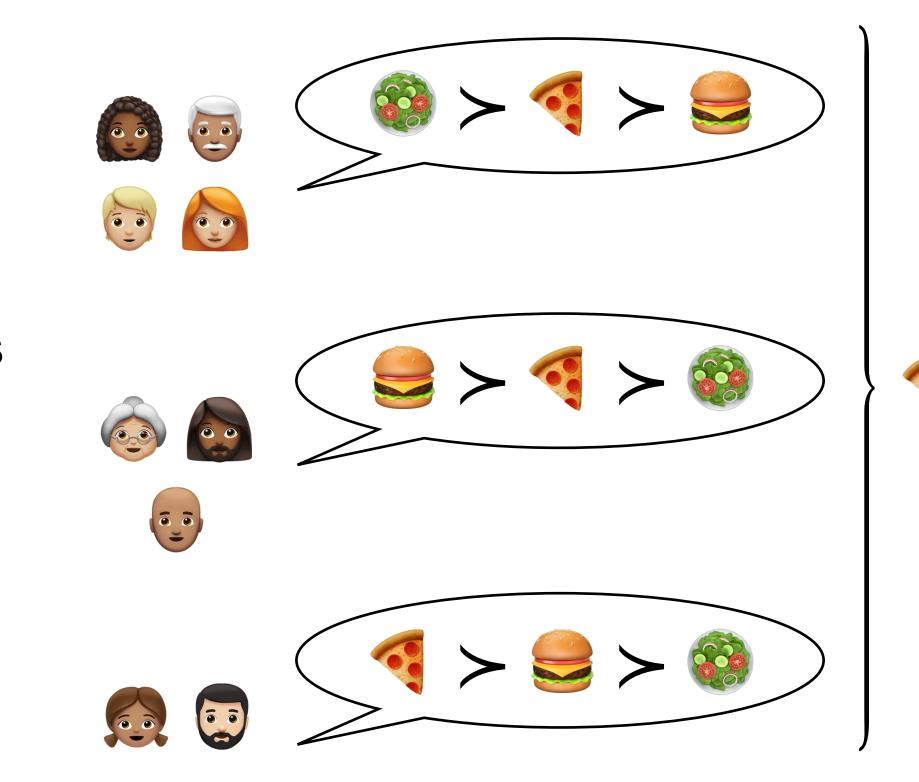
$$\textcircled{0} = 4 \cdot 2 + 3 \cdot 0 + 2 \cdot 0 = 8$$

$$\mathbf{q} = 4 \cdot 1 + 3 \cdot 1 + 2 \cdot 2 = 11$$

 $= 4 \cdot 0 + 3 \cdot 2 + 2 \cdot 1 = 8$

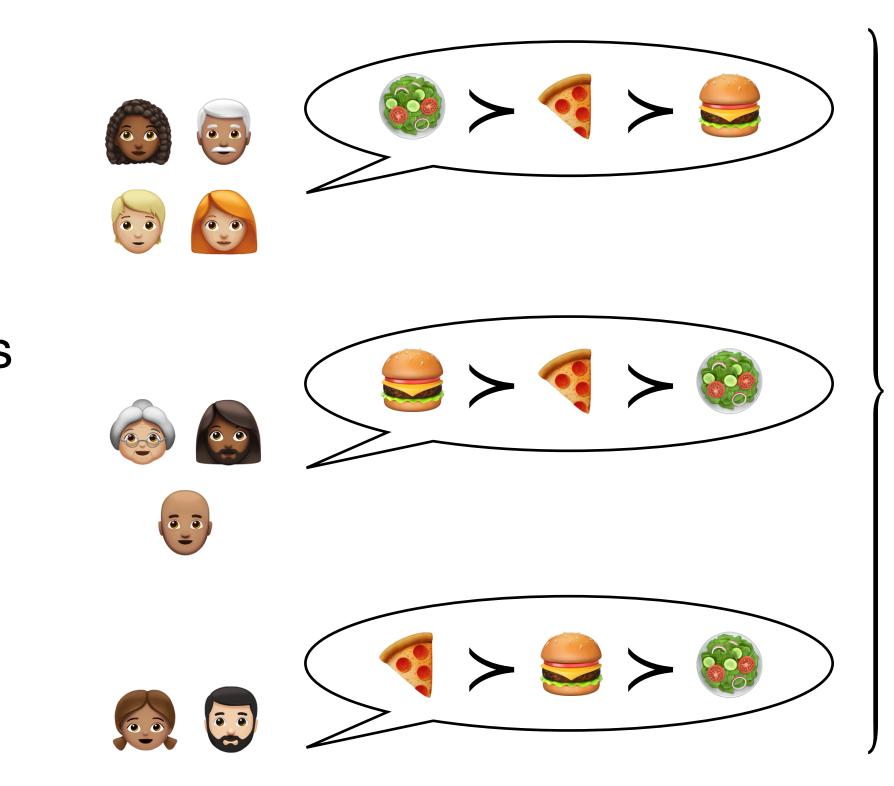
Social Choice Functions

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters
- Single Transferable Vote: eliminate the alternative ranked first by the fewest voters, until only one remains
- Borda: select the alternative with largest total score, where position $j \in \{1, ..., m\}$ gives score m - j
- can (a group of) voters misreport their preferences and obtain a better outcome?

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c

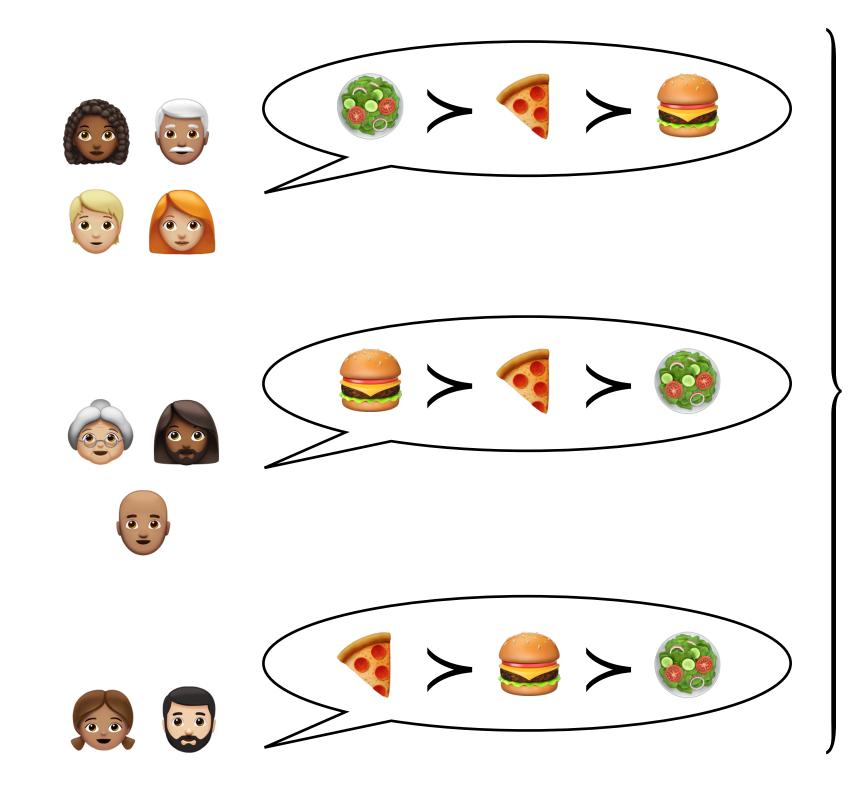


- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters

can (a group of) voters misreport their preferences and obtain a better outcome?

Social Choice Functions

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c

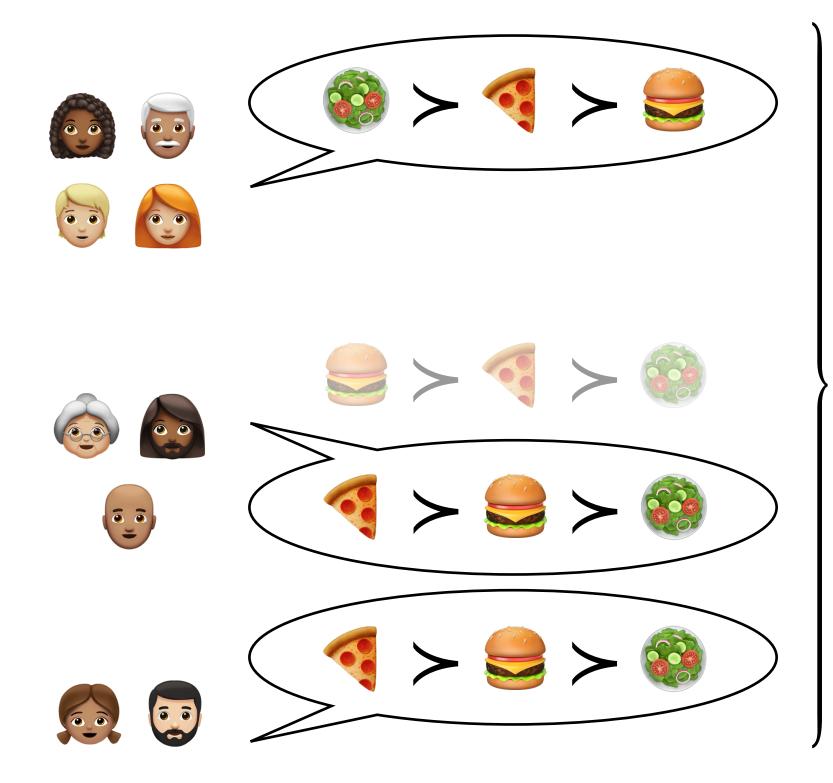


- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters

can (a group of) voters misreport their preferences and obtain a better outcome?

Social Choice Functions

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c

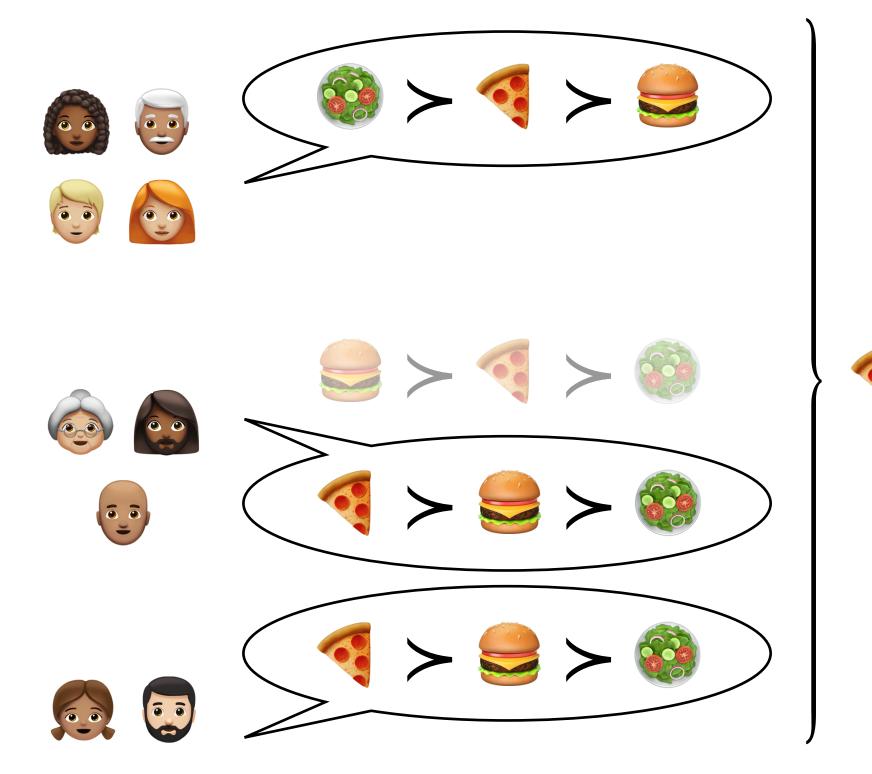


- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$
- **Plurality:** select the alternative ranked first by the largest number of voters

can (a group of) voters misreport their preferences and obtain a better outcome?

Social Choice Functions

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c

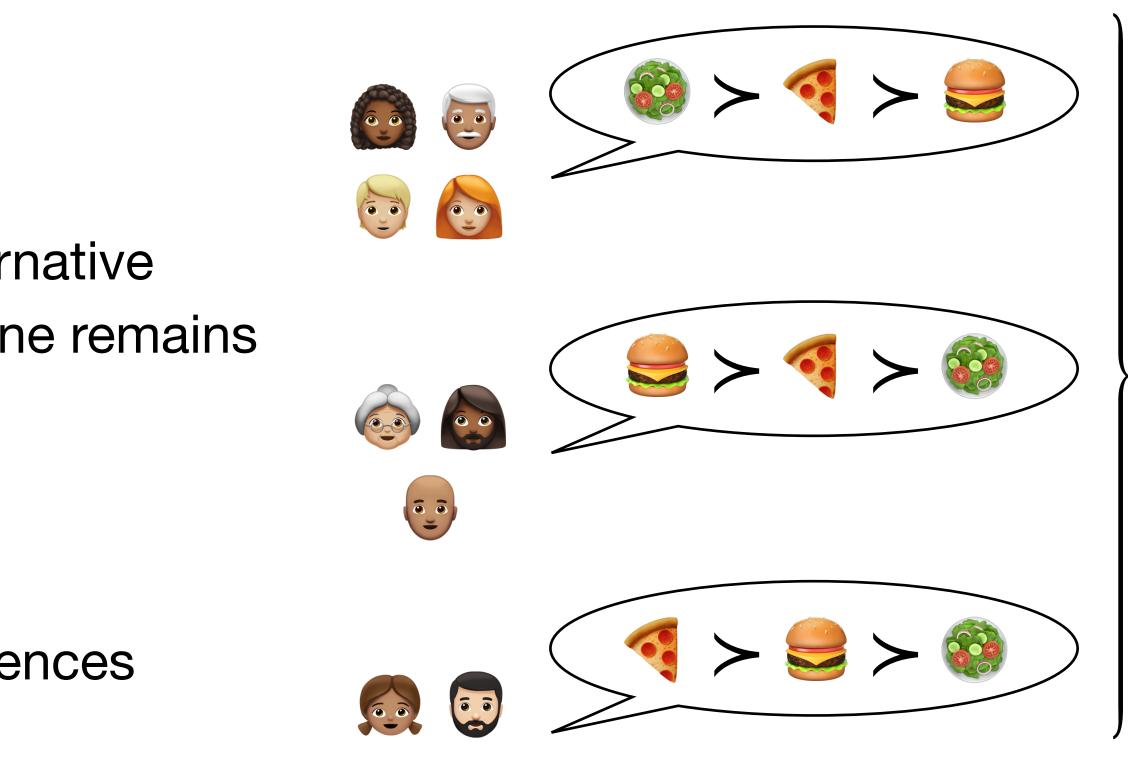


- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

can (a group of) voters misreport their preferences and obtain a better outcome?

Social Choice Functions

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c

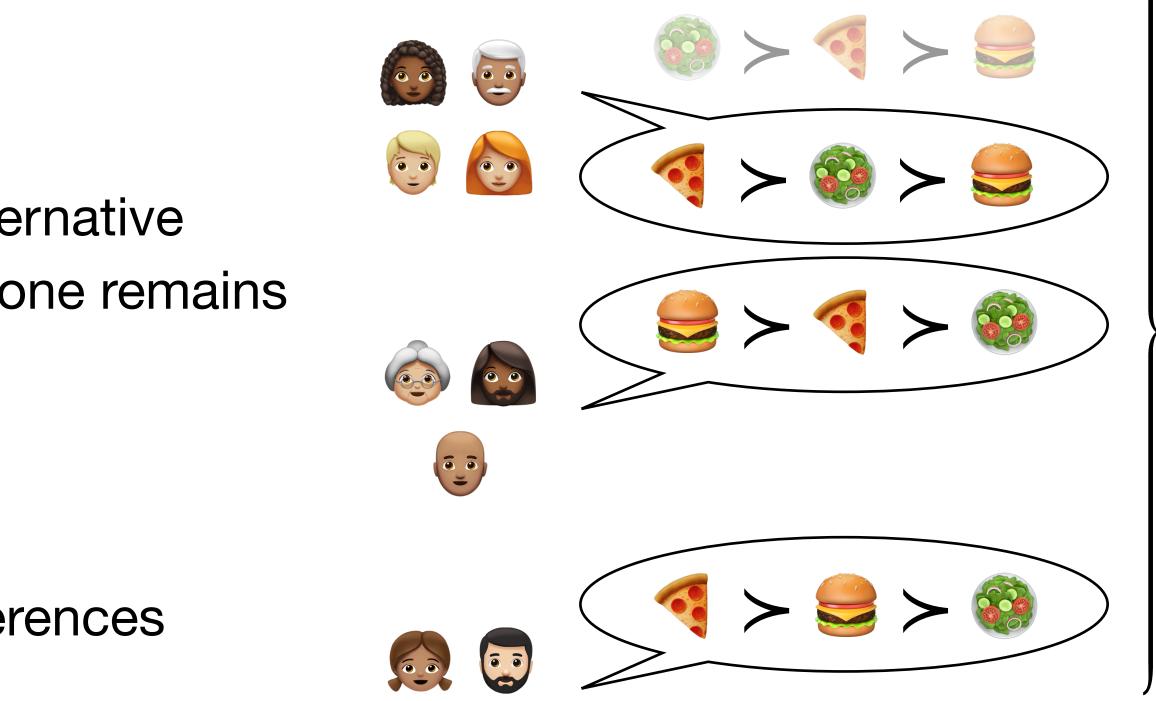


- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

can (a group of) voters misreport their preferences and obtain a better outcome?

Social Choice Functions

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c

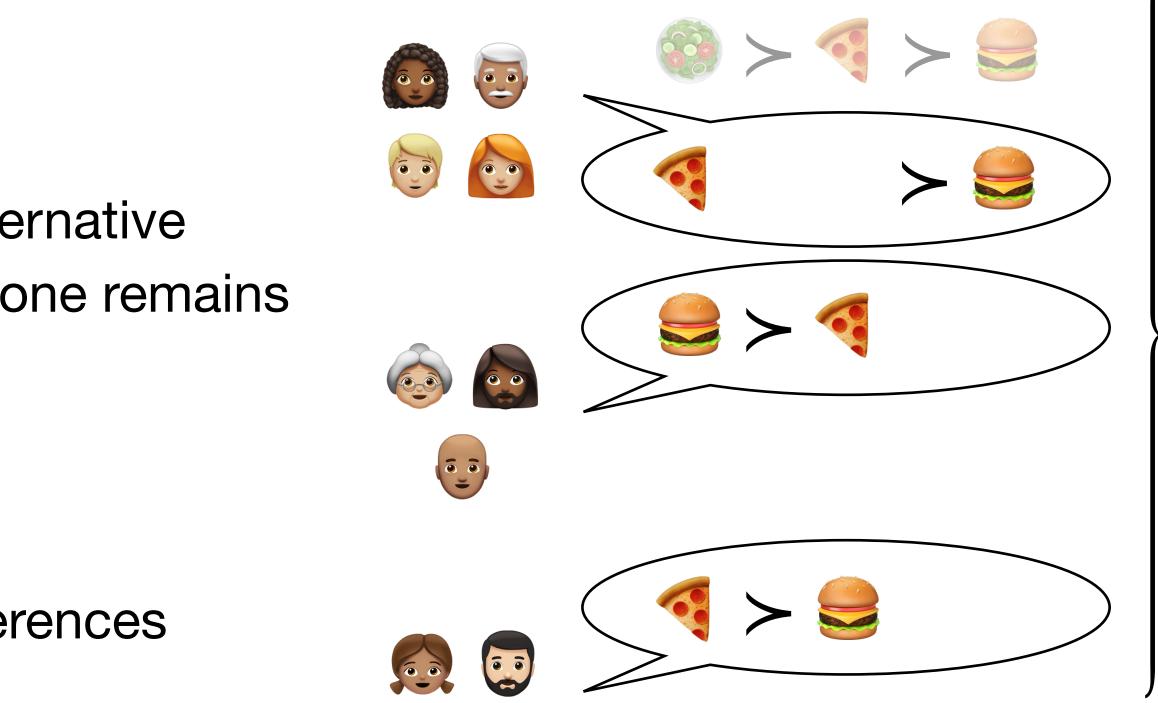


- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

can (a group of) voters misreport their preferences and obtain a better outcome?

Social Choice Functions

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c

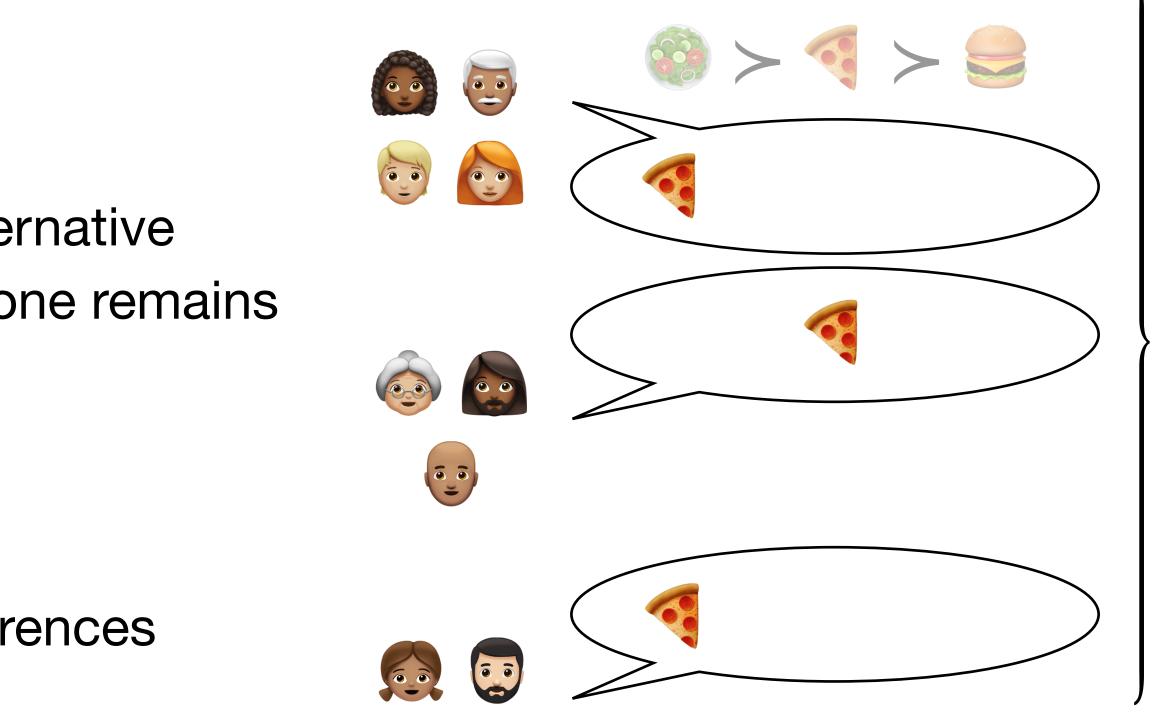


- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

can (a group of) voters misreport their preferences and obtain a better outcome?

Social Choice Functions

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

can (a group of) voters misreport their preferences and obtain a better outcome?

Social Choice Functions

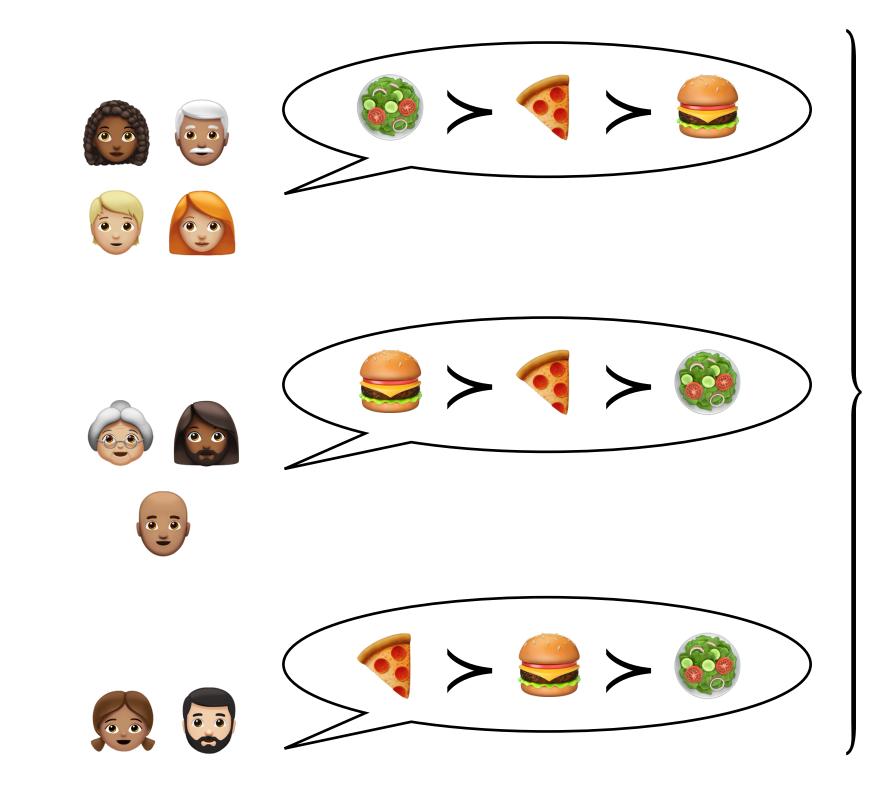
- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

- Borda: select the alternative with largest total score, where position $j \in \{1, ..., m\}$ gives score m - j
- can (a group of) voters misreport their preferences and obtain a better outcome?

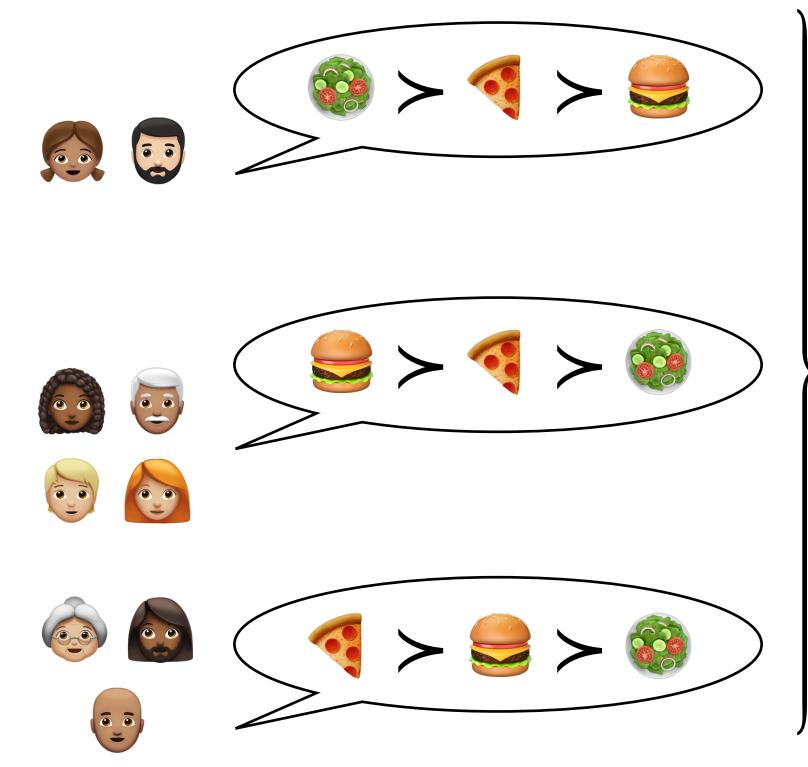
- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

- Borda: select the alternative with largest total score, where position $j \in \{1, ..., m\}$ gives score m - j
- can (a group of) voters misreport their preferences and obtain a better outcome?

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

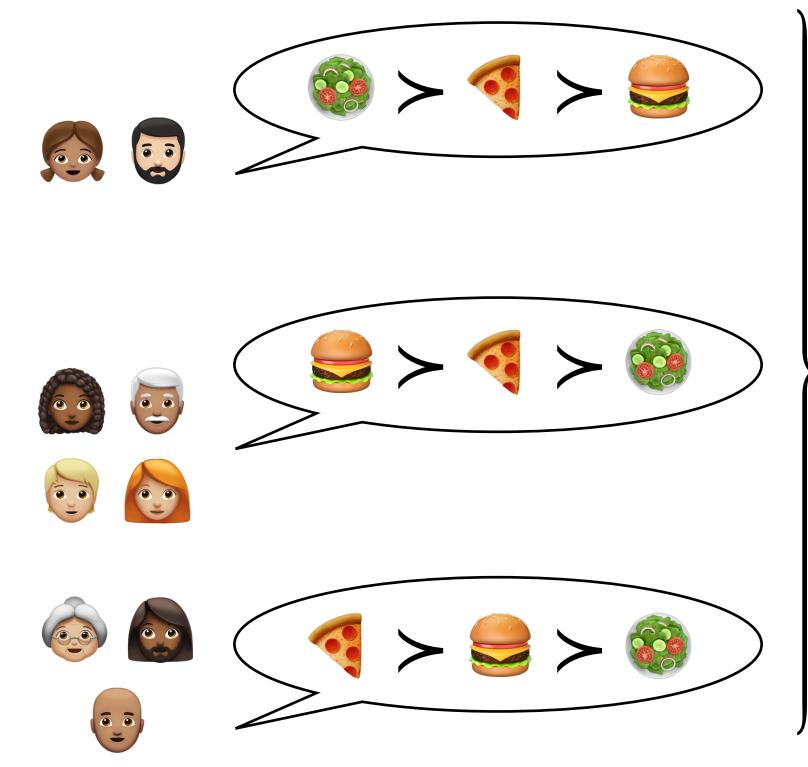
$$= 2 \cdot 2 + 4 \cdot 0 + 3 \cdot 0 = 4$$

$$\mathbf{4} = 2 \cdot 1 + 4 \cdot 1 + 3 \cdot 2 = 12$$

$$= 2 \cdot 0 + 4 \cdot 2 + 3 \cdot 1 = 11$$

- Borda: select the alternative with largest total score, where position $j \in \{1, ..., m\}$ gives score m - j
- can (a group of) voters misreport their preferences and obtain a better outcome?

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

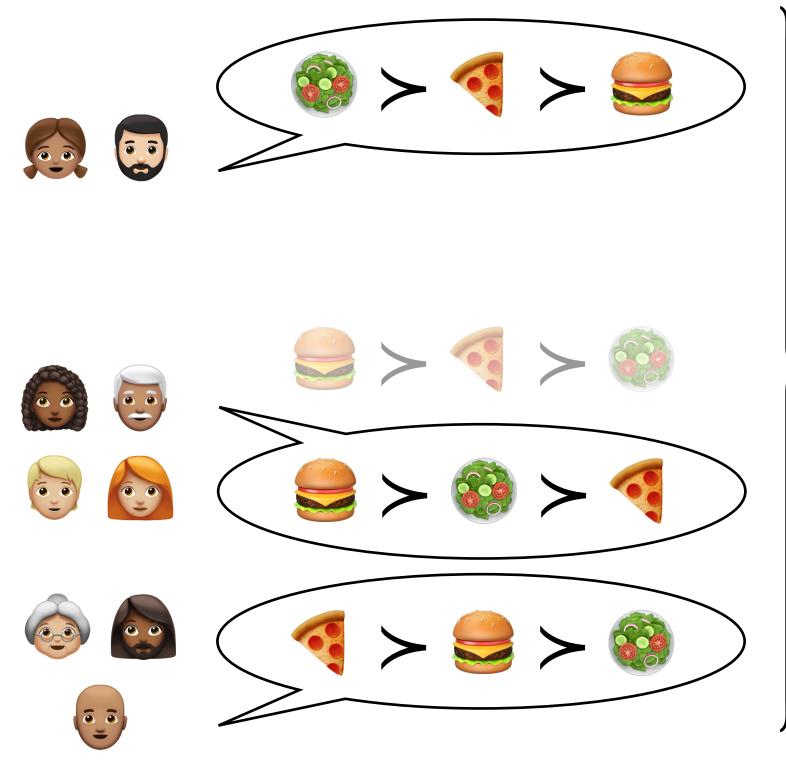
$$= 2 \cdot 2 + 4 \cdot 0 + 3 \cdot 0 = 4$$

$$\mathbf{4} = 2 \cdot 1 + 4 \cdot 1 + 3 \cdot 2 = 12$$

$$= 2 \cdot 0 + 4 \cdot 2 + 3 \cdot 1 = 11$$

- Borda: select the alternative with largest total score, where position $j \in \{1, ..., m\}$ gives score m - j
- can (a group of) voters misreport their preferences and obtain a better outcome?

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



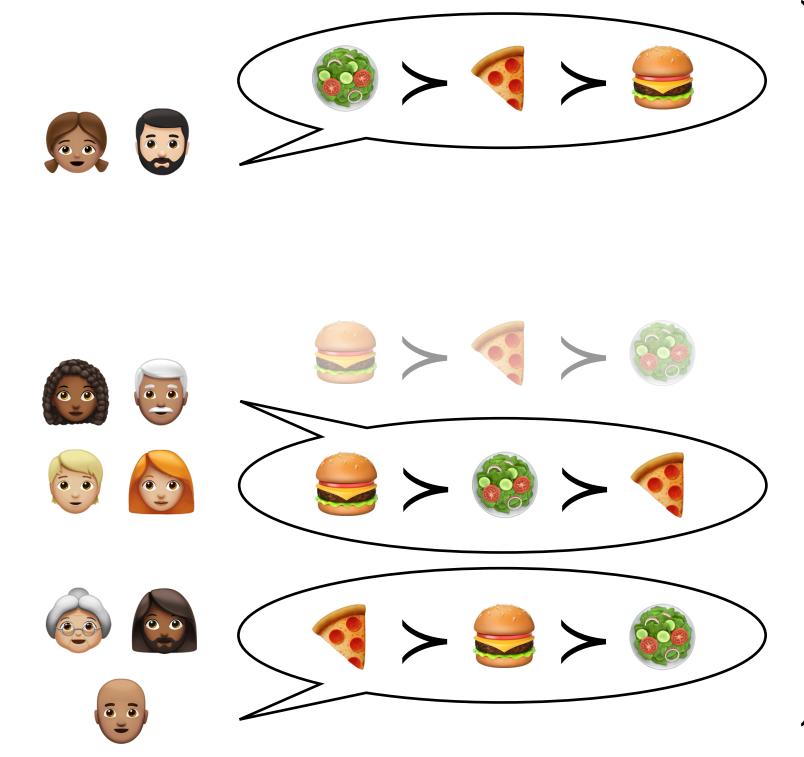
- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

 $= 2 \cdot 0 + 4 \cdot 2 + 3 \cdot 1 = 11$ $= 2 \cdot 0 + 4 \cdot 2 + 3 \cdot 1 = 11$

- Borda: select the alternative with largest total score, where position $j \in \{1, ..., m\}$ gives score m - j
- can (a group of) voters misreport their preferences and obtain a better outcome?

Social Choice Functions

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



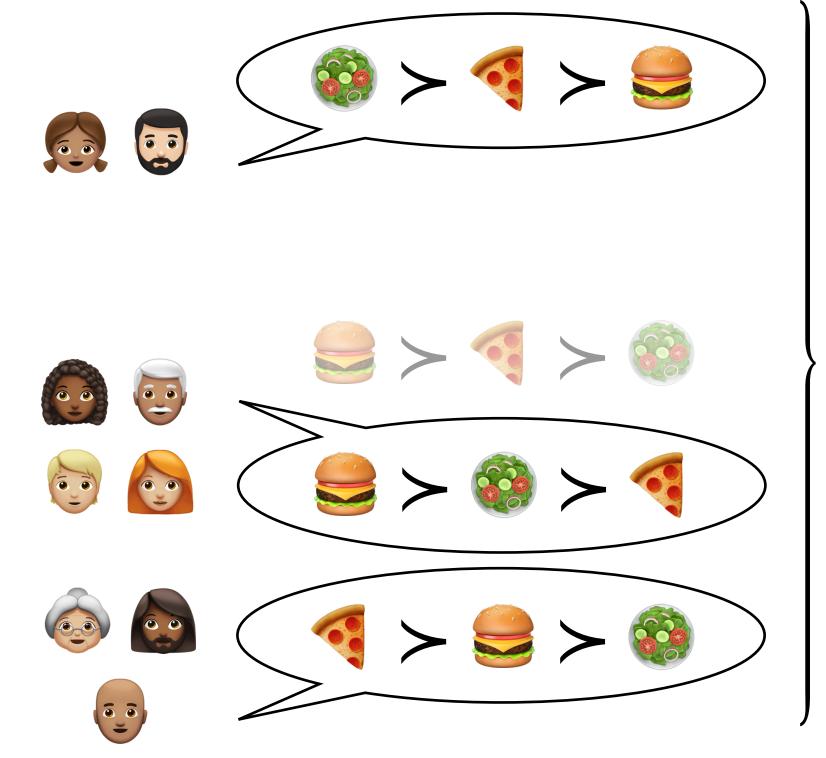
- voters $V = \{1, ..., n\}$, alternatives A with |A| = m
- ▶ each $i \in V$ has strict preference $\succ_i \in \mathscr{L}(A)$ over A
- a social choice function is a function $f: \mathscr{L}(A)^n \to A$

 $= 2 \cdot 0 + 4 \cdot 2 + 3 \cdot 1 = 11$ $= 2 \cdot 0 + 4 \cdot 2 + 3 \cdot 1 = 11$

- Borda: select the alternative with largest total score, where position $j \in \{1, ..., m\}$ gives score m - j
- can (a group of) voters misreport their preferences and obtain a better outcome?

Social Choice Functions

- $\mathscr{L}(A)$: set of binary relations > satisfying
- either a > b or b > afor every $a, b \in A$ with $a \neq b$
- a > c whenever a > b and b > c



► *f* is strategyproof if $f(\succ) \ge_i f(\succ'_i, \succ_{-i})$ holds for every $\succ \in \mathscr{L}(A)^n$, $i \in V$, and $\succ'_i \in \mathscr{L}(A)$

no voter has incentives to misreport

- f is strategyproof if $f(\succ) \geq_i f(\succ'_i, \succ_{-i})$ holds for every $\succ \in \mathscr{L}(A)^n$, $i \in V$, and $\succ'_i \in \mathscr{L}(A)$ no voter has incentives to misreport
- ▶ f is dictatorial if there is $i \in V$ such that $f(\succ) \succ_i a$ for every $\succ \in \mathscr{L}(A)^n$ and $a \in A \setminus f(\succ)$ top choice of i is always selected

- f is strategyproof if $f(\succ) \geq_i f(\succ'_i, \succ_i)$ holds for every $\succ \in \mathscr{L}(A)^n$, $i \in V$, and $\succ'_i \in \mathscr{L}(A)$ no voter has incentives to misreport
- ► f is dictatorial if there is $i \in V$ such that $f(\succ) \succ_i a$ for every $\succ \in \mathscr{L}(A)^n$ and $a \in A \setminus f(\succ)$ top choice of *i* is always selected

\succ_1	• • •	\succ_{i-1}	\succ_i	\succ_{i+1}	• • •	\succ_{n}
•	• • •	•	a	b	•••	•
	• • •	U	•	a	•••	b
•	• • •	•	•	•	•••	• •
a	• • •	•	b	•	• • •	•
b	• • •	a	•	•	•••	•

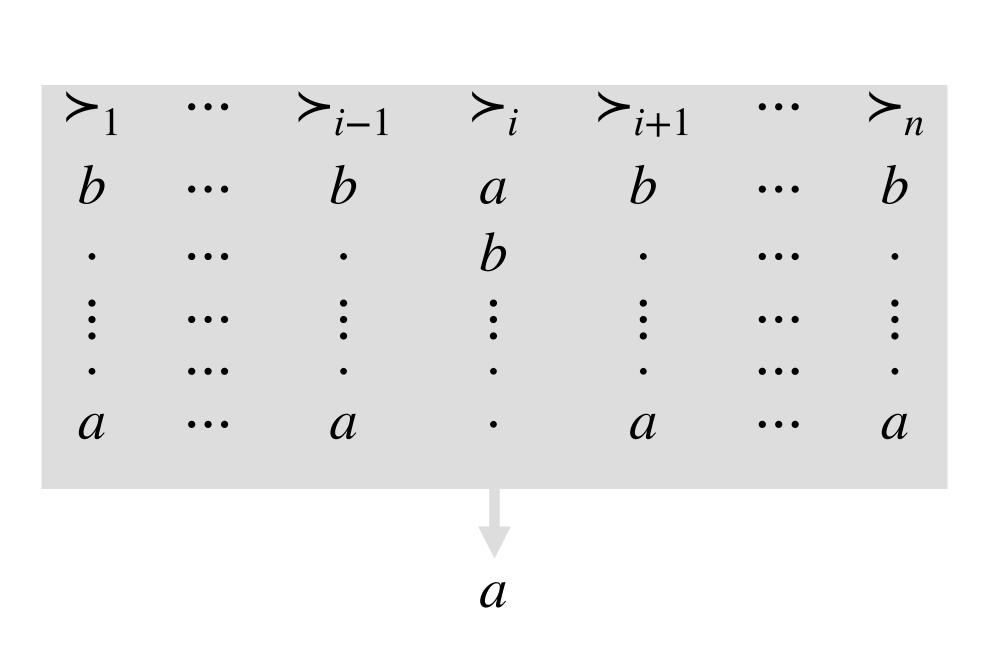
- f is strategyproof if $f(\succ) \geq_i f(\succ'_i, \succ_i)$ holds for every $\succ \in \mathscr{L}(A)^n$, $i \in V$, and $\succ'_i \in \mathscr{L}(A)$ no voter has incentives to misreport
- ► f is dictatorial if there is $i \in V$ such that $f(\succ) \succ_i a$ for every $\succ \in \mathscr{L}(A)^n$ and $a \in A \setminus f(\succ)$ top choice of *i* is always selected

\succ_1	• • •	\succ_{i-1}	\succ_i	\succ_{i+1}	• • •	\succ_{κ}
•	• • •	•	a	b	•••	•
•	•••	b	•	a	•••	b
• • •	• • •	• •	• •	• •	• • •	• • •
a	• • •	•	b	•	•••	•
b	• • •	a	•	•	•••	•
			a			

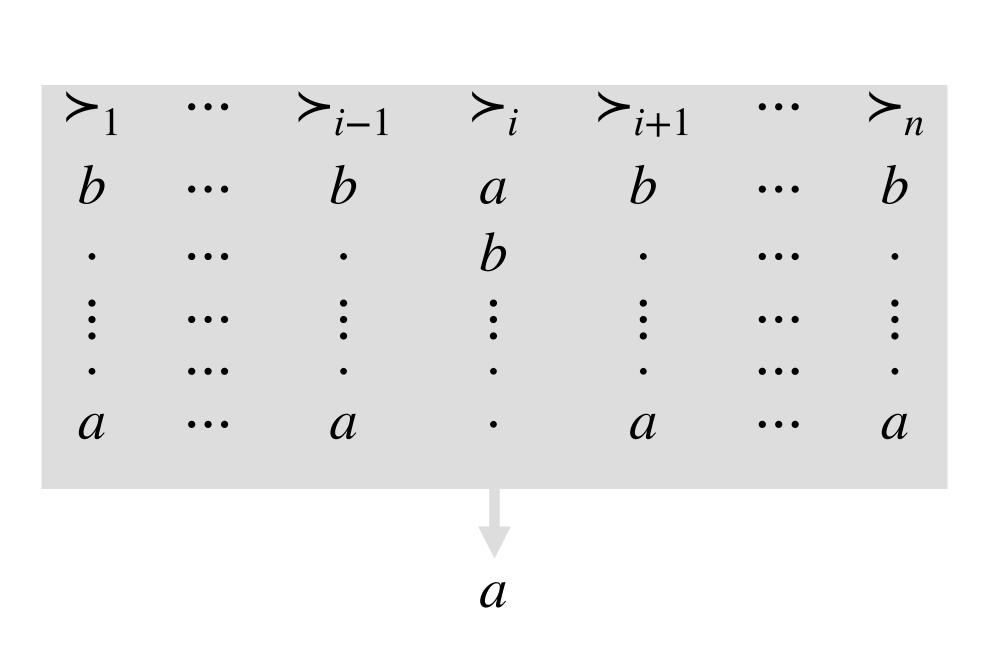
- f is strategyproof if $f(\succ) \geq_i f(\succ'_i, \succ_i)$ holds for every $\succ \in \mathscr{L}(A)^n$, $i \in V$, and $\succ'_i \in \mathscr{L}(A)$ no voter has incentives to misreport
- ► f is dictatorial if there is $i \in V$ such that $f(\succ) \succ_i a$ for every $\succ \in \mathscr{L}(A)^n$ and $a \in A \setminus f(\succ)$ top choice of *i* is always selected

\succ_1	•••	\succ_{i-1}	\succ_i	\succ_{i+1}	• • •	\succ_n
b	• • •	b	a	b	• • •	b
•	• • •	•	b	•	• • •	•
•	• • •	•	• •	•	• • •	•
•	•••	•	•	•	• • •	•
a	•••	a	•	a	• • •	a
			a			

- f is strategyproof if $f(\succ) \geq_i f(\succ'_i, \succ_{-i})$ holds for every $\succ \in \mathscr{L}(A)^n$, $i \in V$, and $\succ'_i \in \mathscr{L}(A)$ no voter has incentives to misreport
- ▶ f is dictatorial if there is $i \in V$ such that $f(\succ) \succ_i a$ for every $\succ \in \mathscr{L}(A)^n$ and $a \in A \setminus f(\succ)$ top choice of *i* is always selected
- any dictatorship is surjective and strategyproof



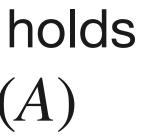
- f is strategyproof if $f(\succ) \geq_i f(\succ'_i, \succ_{-i})$ holds for every $\succ \in \mathscr{L}(A)^n$, $i \in V$, and $\succ'_i \in \mathscr{L}(A)$ no voter has incentives to misreport
- ▶ f is dictatorial if there is $i \in V$ such that $f(\succ) \succ_i a$ for every $\succ \in \mathscr{L}(A)^n$ and $a \in A \setminus f(\succ)$ top choice of *i* is always selected
- any dictatorship is surjective and strategyproof
- the converse is also true!

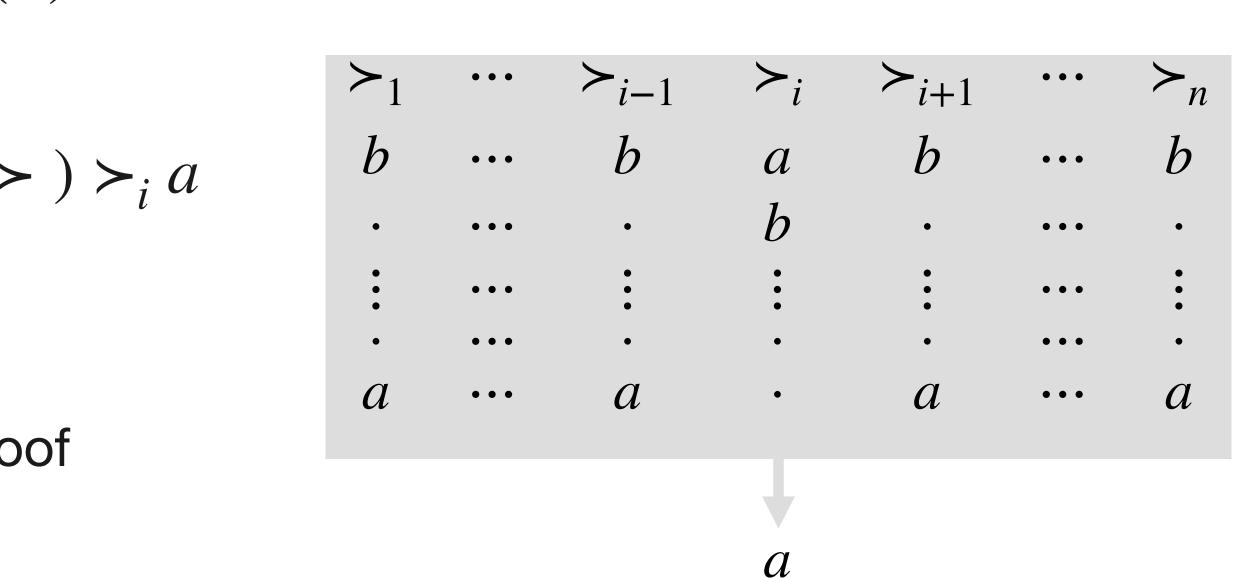


The Gibbard-Satterthwaite Theorem

- f is strategyproof if $f(\succ) \geq_i f(\succ'_i, \succ_i)$ holds for every $\succ \in \mathscr{L}(A)^n$, $i \in V$, and $\succ'_i \in \mathscr{L}(A)$ no voter has incentives to misreport
- ▶ f is dictatorial if there is $i \in V$ such that $f(\succ) \succ_i a$ for every $\succ \in \mathscr{L}(A)^n$ and $a \in A \setminus f(\succ)$ top choice of *i* is always selected
- any dictatorship is surjective and strategyproof
- the converse is also true!

Theorem [Gibbard '73, Satterthwaite '75] Let $f: \mathscr{L}(A)^n \to A$ be a surjective and strategyproof social choice function, where $|A| \geq 3$. Then, f is dictatorial.





• f is unanimous if f(>) = a whenever $a \succ_i b$ for every $i \in V$ and $b \in A \setminus \{a\}$

when all voters have the same top choice, it is selected

The Muller-Satterthwaite Theorem

• f is unanimous if $f(\succ) = a$ whenever $a \succ_i b$ for every $i \in V$ and $b \in A \setminus \{a\}$

when all voters have the same top choice, it is selected

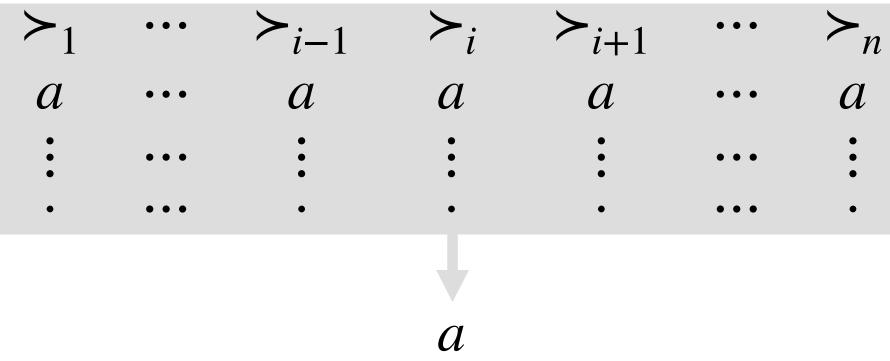
The Muller-Satterthwaite Theorem

\succ_1	• • •	\succ_{i-1}	\succ_i	\succ_{i+1}	• • •	\succ_n
a	• • •	a	a	a	• • •	a
•	• • •	•	•	•	•••	• •
•	• • •	•	•	•	• • •	•

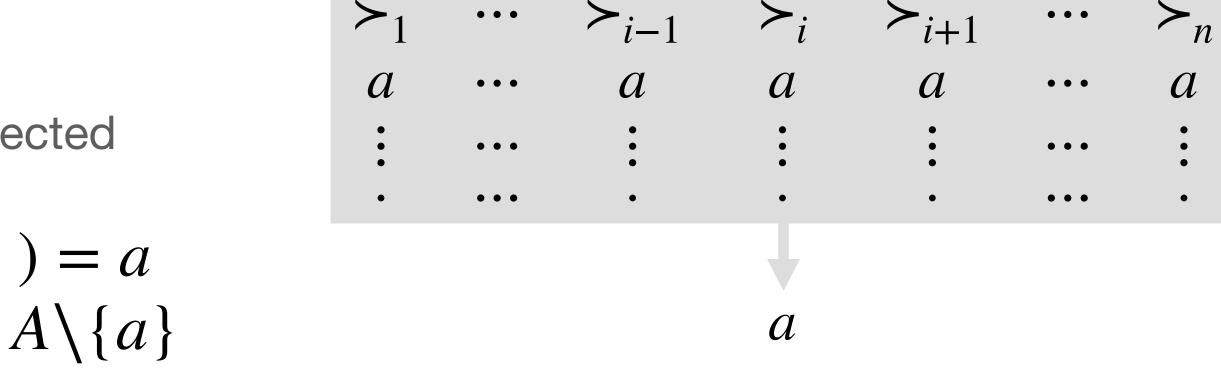
• f is unanimous if f(>) = a whenever $a \succ_i b$ for every $i \in V$ and $b \in A \setminus \{a\}$

when all voters have the same top choice, it is selected

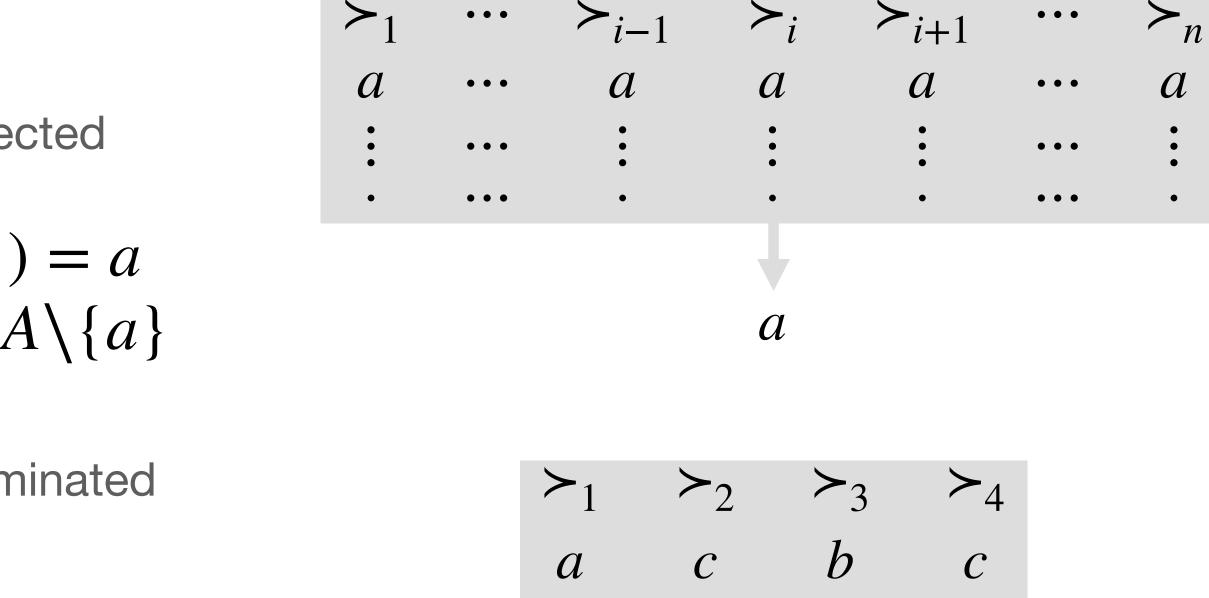
The Muller-Satterthwaite Theorem



- f is unanimous if $f(\succ) = a$ whenever $a \succ_i b$ for every $i \in V$ and $b \in A \setminus \{a\}$ when all voters have the same top choice, it is selected
- f is monotone if $f(\succ') = a$ whenever $f(\succ) = a$ and $a \succ_i b \Rightarrow a \succ'_i b$ for all $i \in V$ and $b \in A \setminus \{a\}$ a selected alternative remains selected if dominated alternatives in all rankings remain dominated



- f is unanimous if $f(\succ) = a$ whenever $a \succ_i b$ for every $i \in V$ and $b \in A \setminus \{a\}$ when all voters have the same top choice, it is selected
- f is monotone if $f(\succ') = a$ whenever $f(\succ) = a$ and $a \succ_i b \Rightarrow a \succ'_i b$ for all $i \in V$ and $b \in A \setminus \{a\}$ a selected alternative remains selected if dominated alternatives in all rankings remain dominated



b

С

d

d

a

b

 \mathcal{A}

d

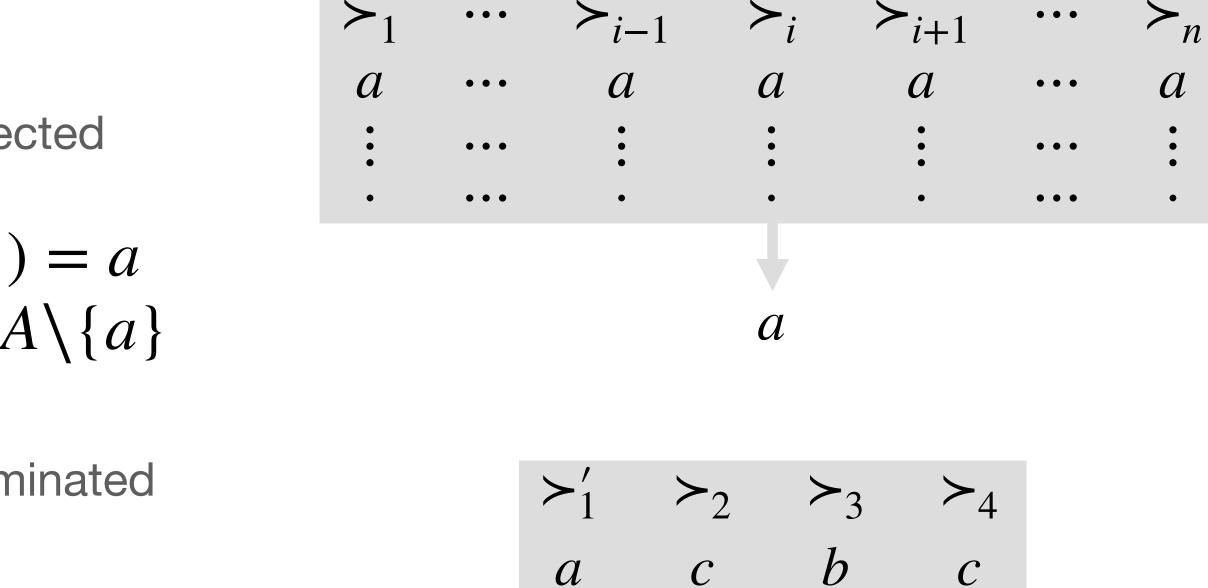
С

 \mathcal{A}

d

b

- f is unanimous if $f(\succ) = a$ whenever $a \succ_i b$ for every $i \in V$ and $b \in A \setminus \{a\}$ when all voters have the same top choice, it is selected
- f is monotone if $f(\succ') = a$ whenever $f(\succ) = a$ and $a \succ_i b \Rightarrow a \succ'_i b$ for all $i \in V$ and $b \in A \setminus \{a\}$ a selected alternative remains selected if dominated alternatives in all rankings remain dominated



a

d

b

C

d

b

a

C

 \mathcal{A}

d

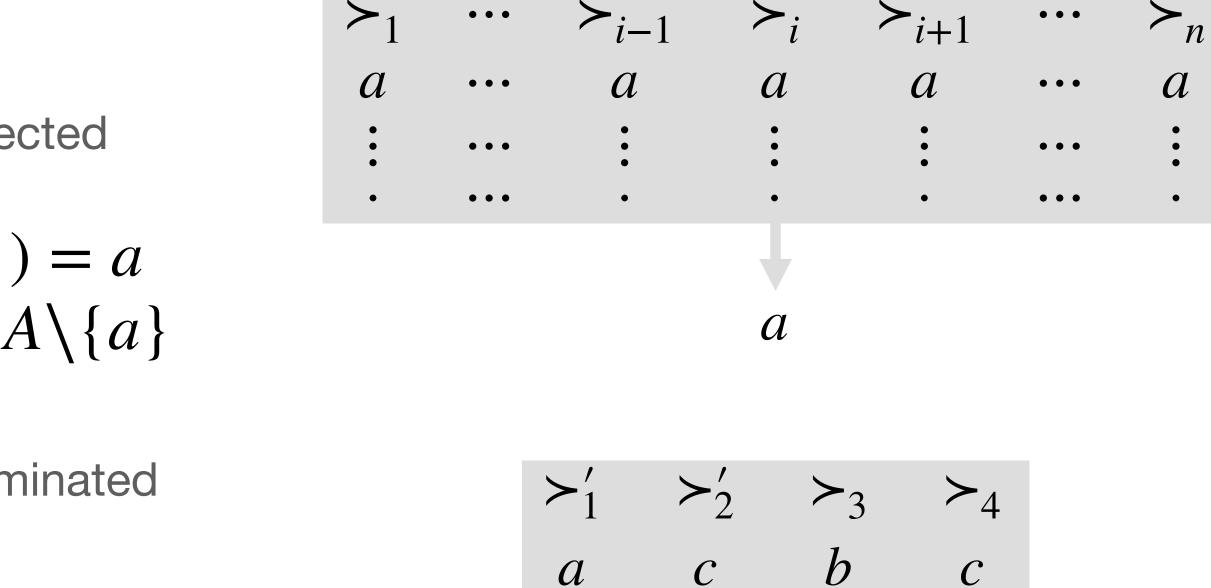
b

a

d

С

- f is unanimous if $f(\succ) = a$ whenever $a \succ_i b$ for every $i \in V$ and $b \in A \setminus \{a\}$ when all voters have the same top choice, it is selected
- f is monotone if $f(\succ') = a$ whenever $f(\succ) = a$ and $a \succ_i b \Rightarrow a \succ'_i b$ for all $i \in V$ and $b \in A \setminus \{a\}$ a selected alternative remains selected if dominated alternatives in all rankings remain dominated



d

b

C

Mechanism design without money - Gibbard-Satterthwaite - April 2025

a

d

b

 \boldsymbol{a}

d

С

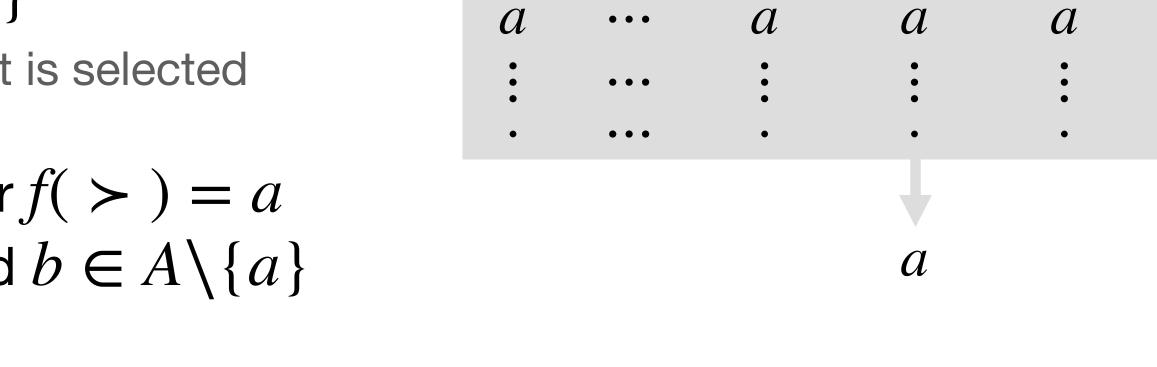
 \mathcal{A}

d

b

- f is unanimous if $f(\succ) = a$ whenever $a \succ_i b$ for every $i \in V$ and $b \in A \setminus \{a\}$ when all voters have the same top choice, it is selected
- f is monotone if $f(\succ') = a$ whenever $f(\succ) = a$ and $a \succ_i b \Rightarrow a \succ'_i b$ for all $i \in V$ and $b \in A \setminus \{a\}$ a selected alternative remains selected if dominated alternatives in all rankings remain dominated

 $>_{i-1}$



 \succ_1

\succ'_1	\succ_2'	≻'3	\succ_4
a	С	b	С
d	a	a	a
b	b	С	d
С	d	d	b
	C	l	

 \succ_i

 \succ_{i+1}

a

• • •

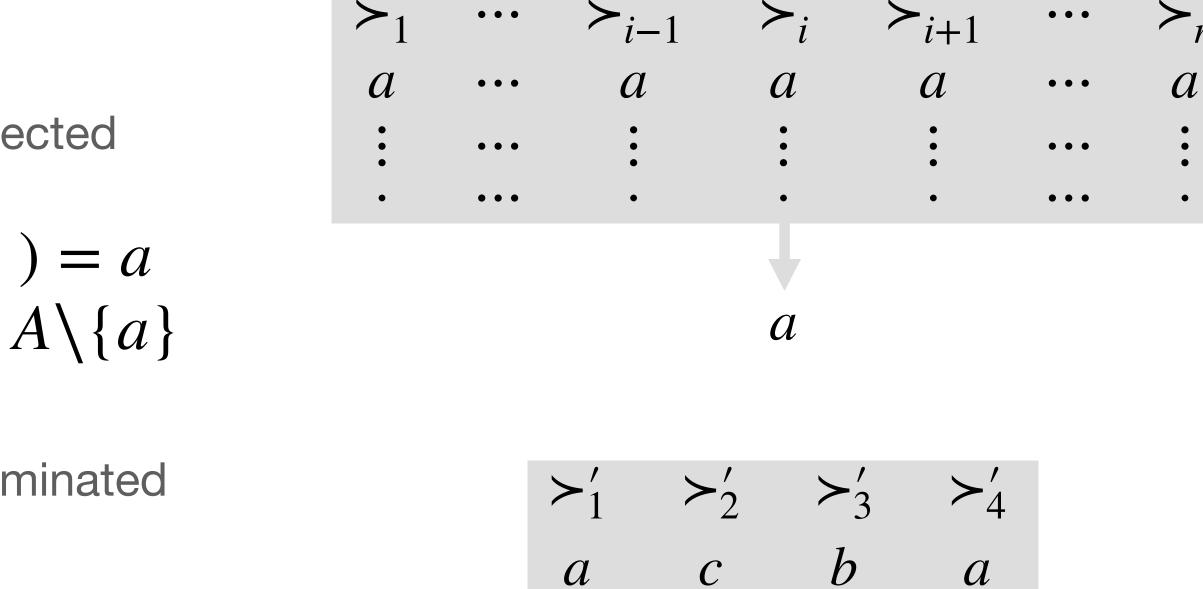
• • •

• • •

Mechanism design without money - Gibbard-Satterthwaite - April 2025

 \mathcal{A}

- f is unanimous if $f(\succ) = a$ whenever $a \succ_i b$ for every $i \in V$ and $b \in A \setminus \{a\}$ when all voters have the same top choice, it is selected
- f is monotone if $f(\succ') = a$ whenever $f(\succ) = a$ and $a \succ_i b \Rightarrow a \succ'_i b$ for all $i \in V$ and $b \in A \setminus \{a\}$ a selected alternative remains selected if dominated alternatives in all rankings remain dominated



d

b

С

Mechanism design without money - Gibbard-Satterthwaite - April 2025

a

b

d

a

С

d

b

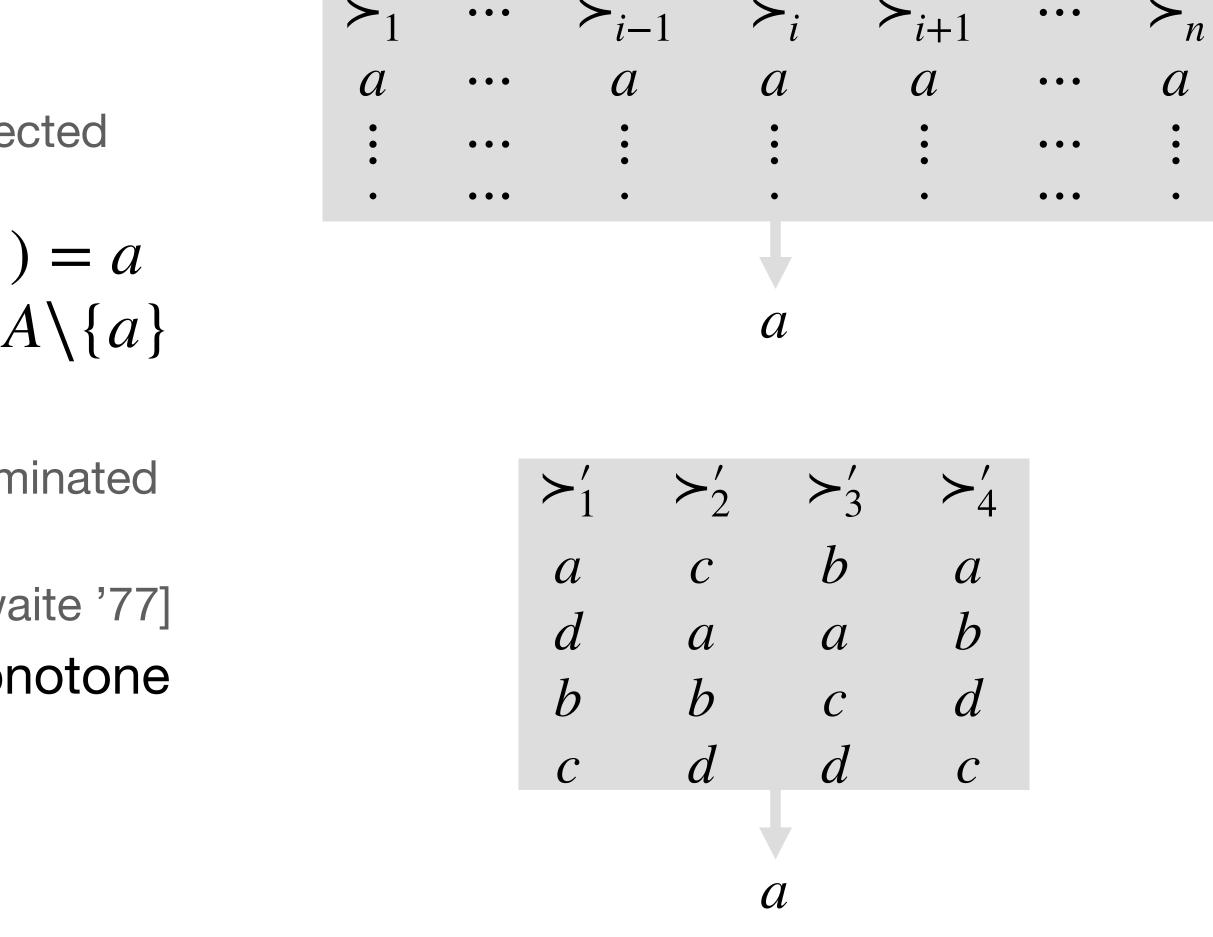
d

С

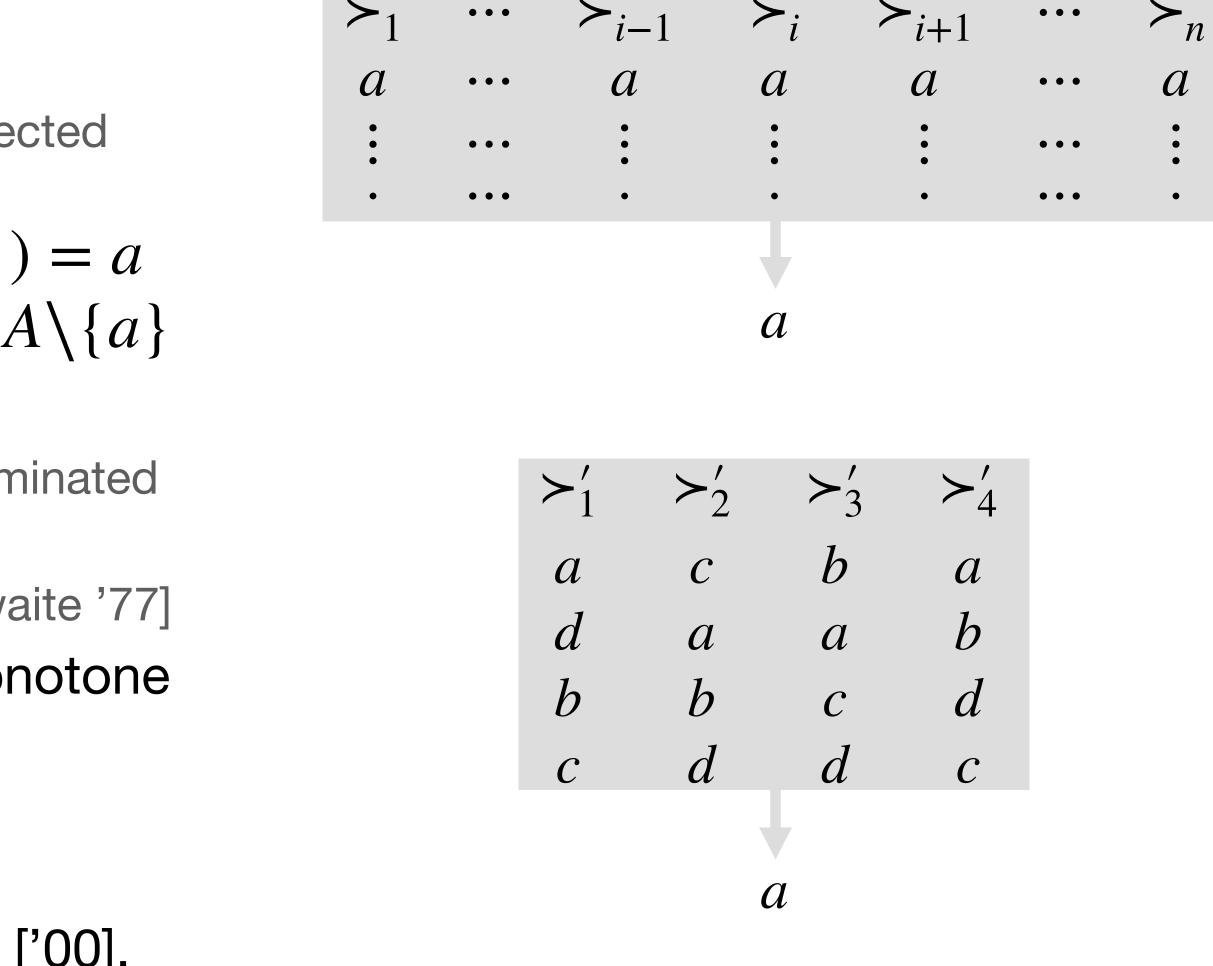
- f is unanimous if $f(\succ) = a$ whenever $a \succ_i b$ for every $i \in V$ and $b \in A \setminus \{a\}$ when all voters have the same top choice, it is selected
- f is monotone if $f(\succ') = a$ whenever $f(\succ) = a$ and $a \succ_i b \Rightarrow a \succ'_i b$ for all $i \in V$ and $b \in A \setminus \{a\}$ a selected alternative remains selected if dominated alternatives in all rankings remain dominated

Theorem [Muller, Satterthwaite '77] Let $f: \mathscr{L}(A)^n \to A$ be a unanimous and monotone social choice function, where $|A| \geq 3$. Then, f is dictatorial.

The Muller-Satterthwaite Theorem



- f is unanimous if $f(\succ) = a$ whenever $a \succ_i b$ for every $i \in V$ and $b \in A \setminus \{a\}$ when all voters have the same top choice, it is selected
- f is monotone if $f(\succ') = a$ whenever $f(\succ) = a$ and $a \succ_i b \Rightarrow a \succ'_i b$ for all $i \in V$ and $b \in A \setminus \{a\}$ a selected alternative remains selected if dominated alternatives in all rankings remain dominated
 - Theorem [Muller, Satterthwaite '77] Let $f: \mathscr{L}(A)^n \to A$ be a unanimous and monotone social choice function, where $|A| \geq 3$. Then, f is dictatorial.
- we give a proof of this theorem due to Reny ['00], so let f be as in the statement



• we consider two fixed alternatives $a, b \in A$

Pivotal Voter

- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving *b* one position at a time and one voter at a time

- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving *b* one position at a time and one voter at a time

\succ_1	• • •	\succ_{i-1}	\succ_i	\succ_{i+1}	• • •	\succ_n
a	• • •	a	a	a	• • •	a
•	• • •	•	•	•	• • •	•
•	• • •	• • •	• • •	•	• • •	• • •
•	• • •	•	•	•	• • •	•
b	• • •	b	b	b	• • •	b
			a			

- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving *b* one position at a time and one voter at a time

\succ_1	• • •	\succ_{i-1}	\succ_i	\succ_{i+1}	• • •	\succ_n
a	• • •	a	a	a	•••	a
•	• • •	•	•	•	• • •	•
•	• • •	• •	• •	• •	• • •	• • •
b	• • •	•	•	•	•••	•
•	• • •	b	b	b	• • •	b
			a			

- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving *b* one position at a time and one voter at a time

\succ_1	• • •	\succ_{i-1}	\succ_i	\succ_{i+1}	•••	\succ_n
a	• • •	a	a	a	• • •	a
b	• • •	•	•	•	• • •	•
•	• • •	•	• •	• •	• • •	•
•	• • •	•	•	٠	• • •	•
•	• • •	b	b	b	•••	b
			a			

- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving *b* one position at a time and one voter at a time

\succ_1	• • •	\succ_{i-1}	\succ_i	\succ_{i+1}	• • •	\succ_n
b	•••	a	a	a	• • •	a
a	•••	•	•	•	• • •	•
• •	•••	• • •	• • •	• • •	•••	•
•	• • •	•	•	•	•••	•
•	•••	b	b	b	• • •	b
			a			

- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving *b* one position at a time and one voter at a time

\succ_1	• • •	\succ_{i-1}	\succ_i	\succ_{i+1}	• • •	\succ_n
b	• • •	a	a	a	• • •	a
a	•••	b	•	•	•••	•
•	• • •	•	• •	• •	•••	• •
•	• • •	•	•	•	• • •	•
•	• • •	•	b	b	• • •	b
			a			

- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving *b* one position at a time and one voter at a time

\succ_1	•••	\succ_{i-1}	\succ_i	\succ_{i+1}	•••	\succ_n
b	• • •	b	a	a	• • •	a
a	• • •	a	•	•	• • •	٠
•	• • •	• •	• •	• •	•••	• •
•	• • •	•	•	•	• • •	•
•	• • •	•	b	b	• • •	b
			a			

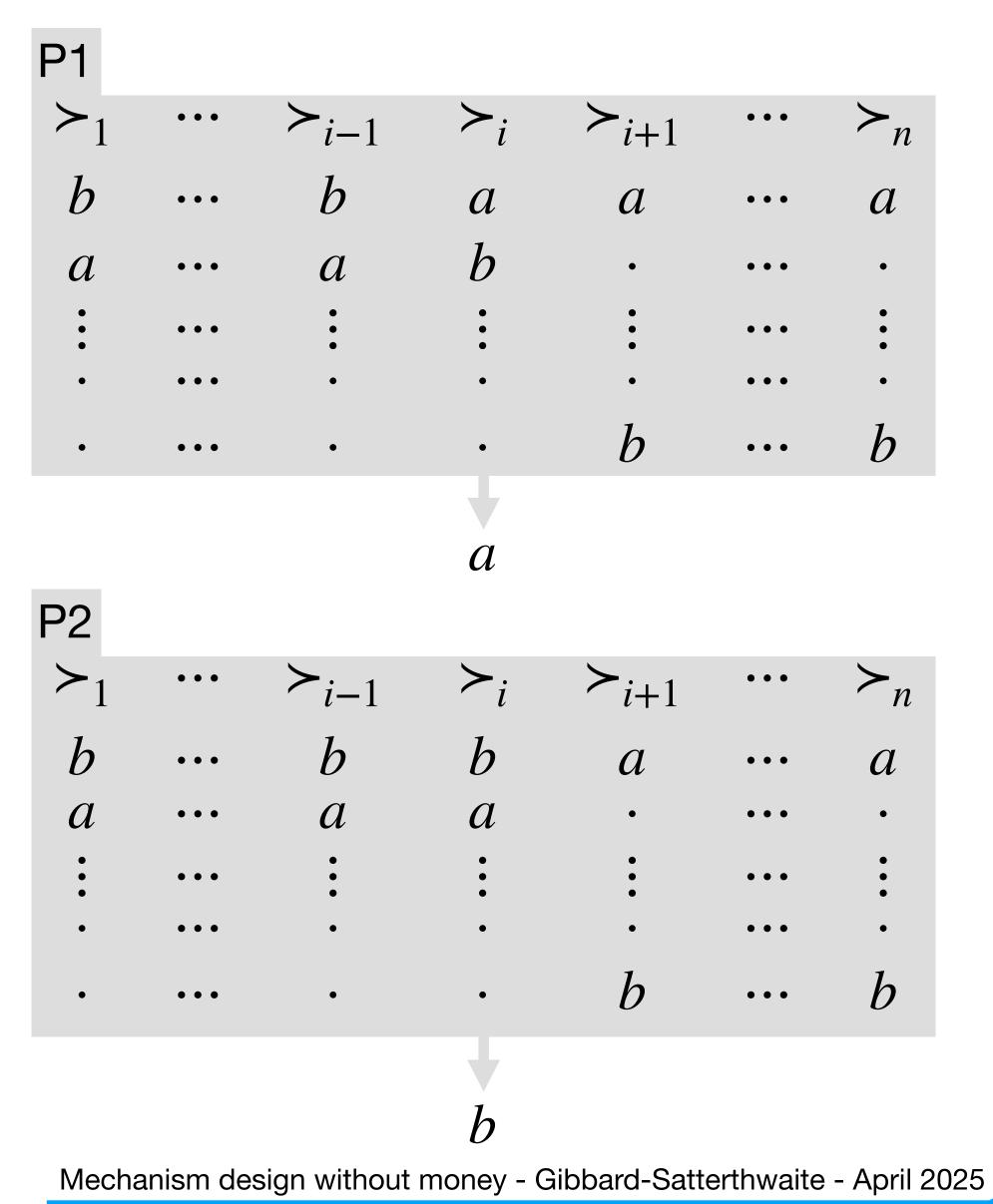
- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving *b* one position at a time and one voter at a time

\succ_1	• • •	\succ_{i-1}	\succ_i	\succ_{i+1}	• • •	\succ_n
b	•••	b	a	a	•••	a
a	•••	a	b	•	•••	•
•	• • •	• •	• •	• •	• • •	• •
•	• • •	•	•	•	• • •	•
•	•••	•	•	b	•••	b
			a			

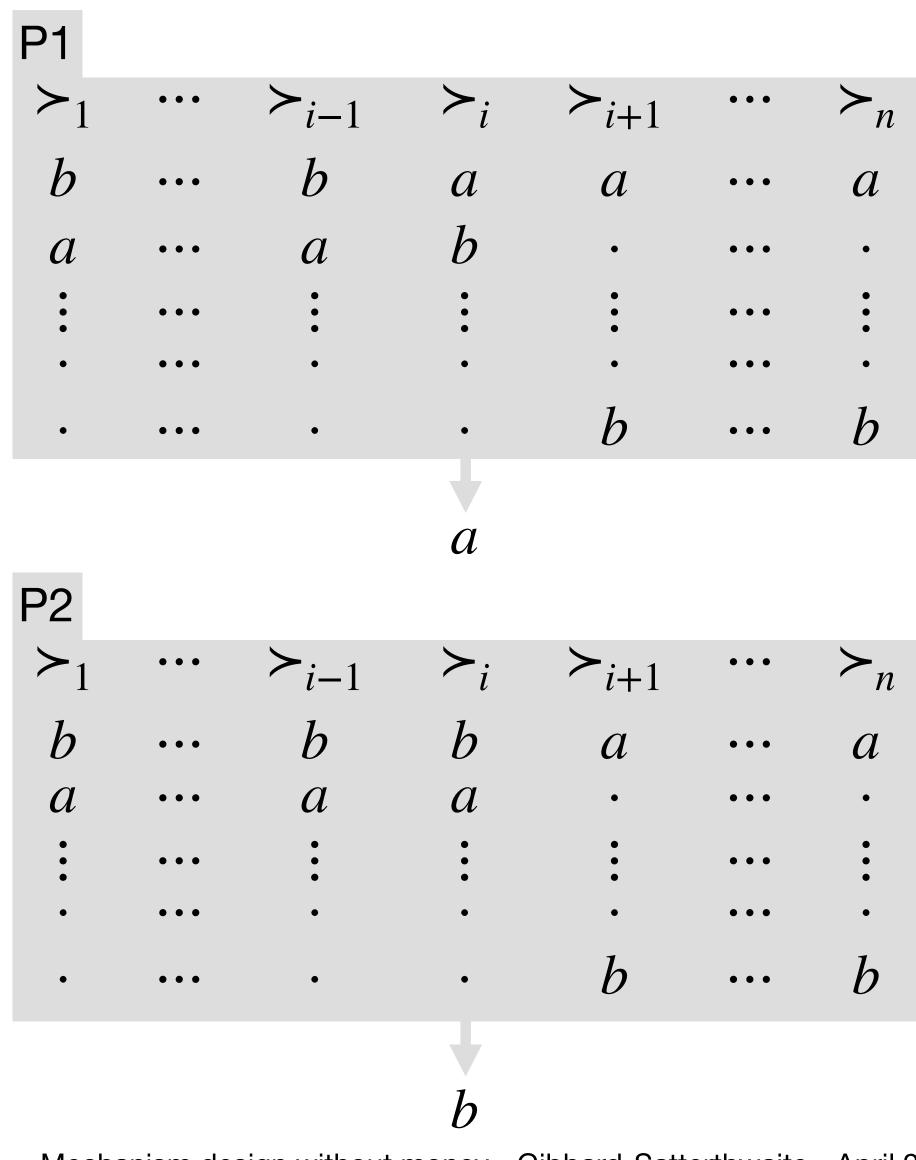
- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving *b* one position at a time and one voter at a time

\succ_1	• • •	\succ_{i-1}	\succ_i	\succ_{i+1}	• • •	\succ_n
b	•••	b	a	a	•••	a
a	•••	a	b	•	•••	٠
•	•••	• •	•	• •	•••	• •
•	•••	•	•	•	•••	•
•	•••	•	•	b	•••	b
			a			
•						
\succ_1	•••	\succ_{i-1}	\succ_i	\succ_{i+1}	• • •	\succ_n
\succ_1 b	•••		\succ_i b	\succ_{i+1}	•••	\succ_n
1	•••	<i>i</i> -1		$\iota + 1$	•••	11
b	•••	b	b	$\iota + 1$	•••	11
b	•••	b	b	$\iota + 1$	•••	π
b	•••	b	b	$\iota + 1$	•••	π
b	•••	b	b	$\iota + 1$	•••	11
b	•••	b	b	$\iota + 1$	•••	11

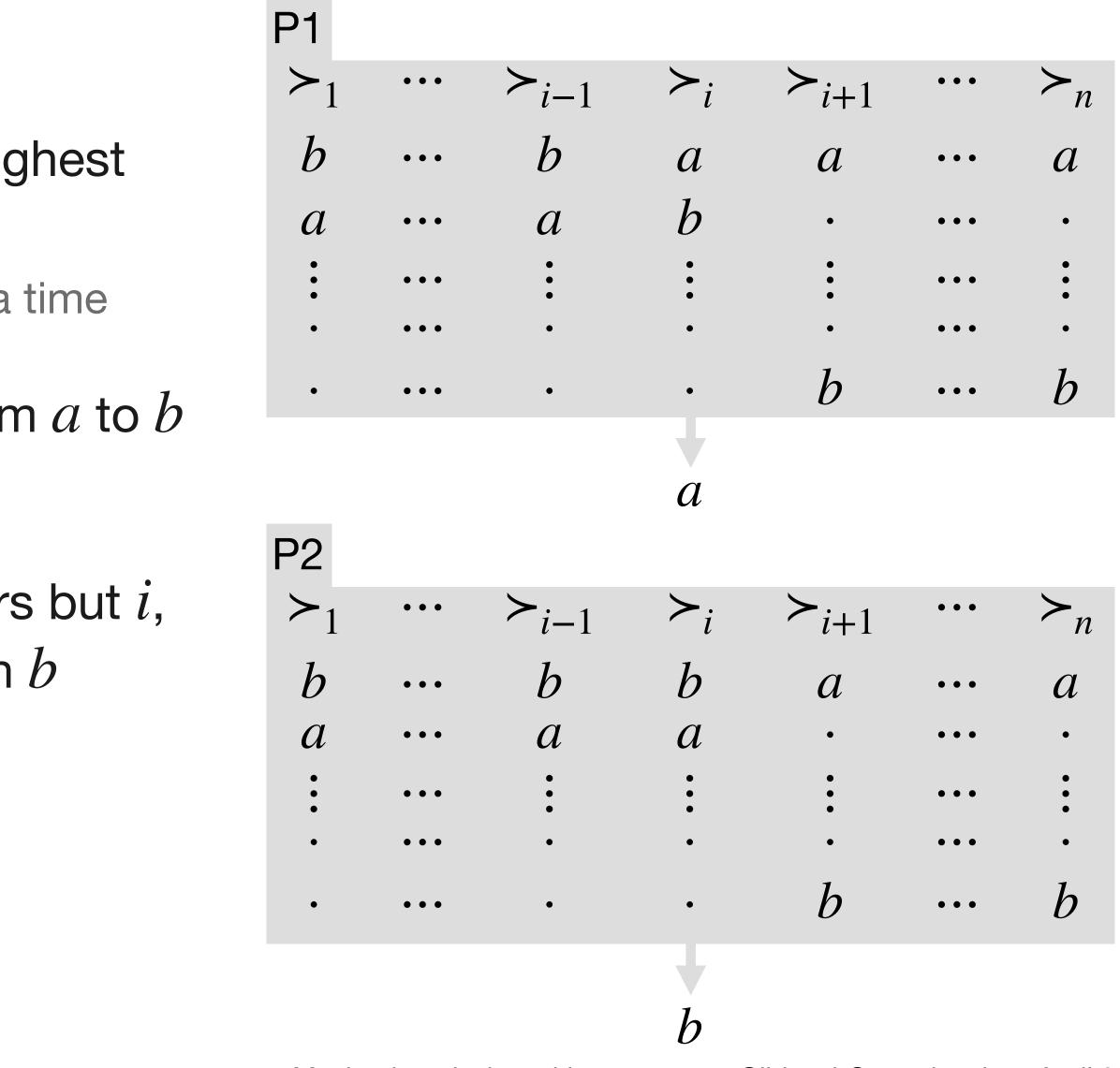
- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving b one position at a time and one voter at a time



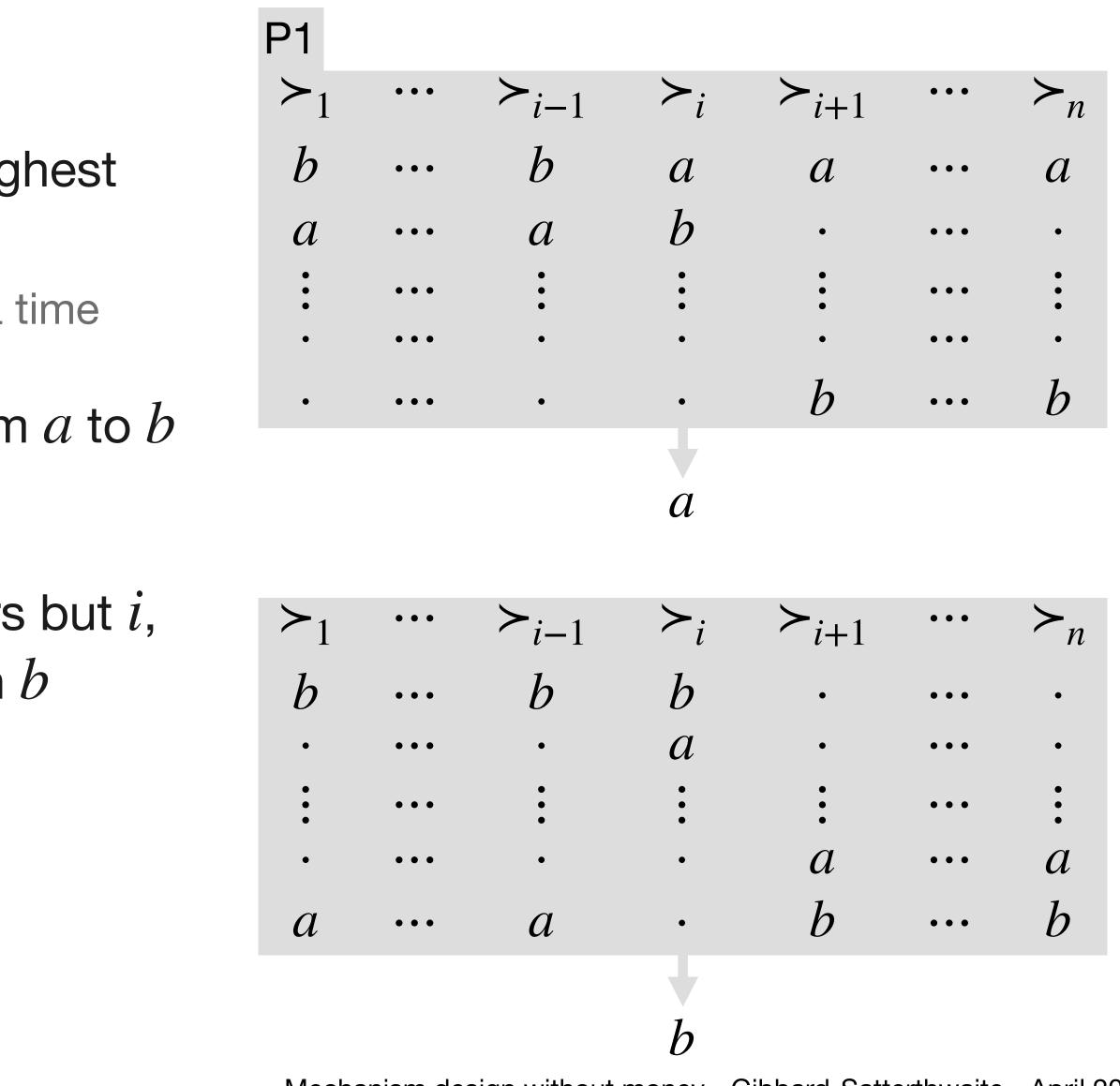
- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving b one position at a time and one voter at a time
- by unanimity, the outcome must change from a to b voter *i* changes profile P1 to P2



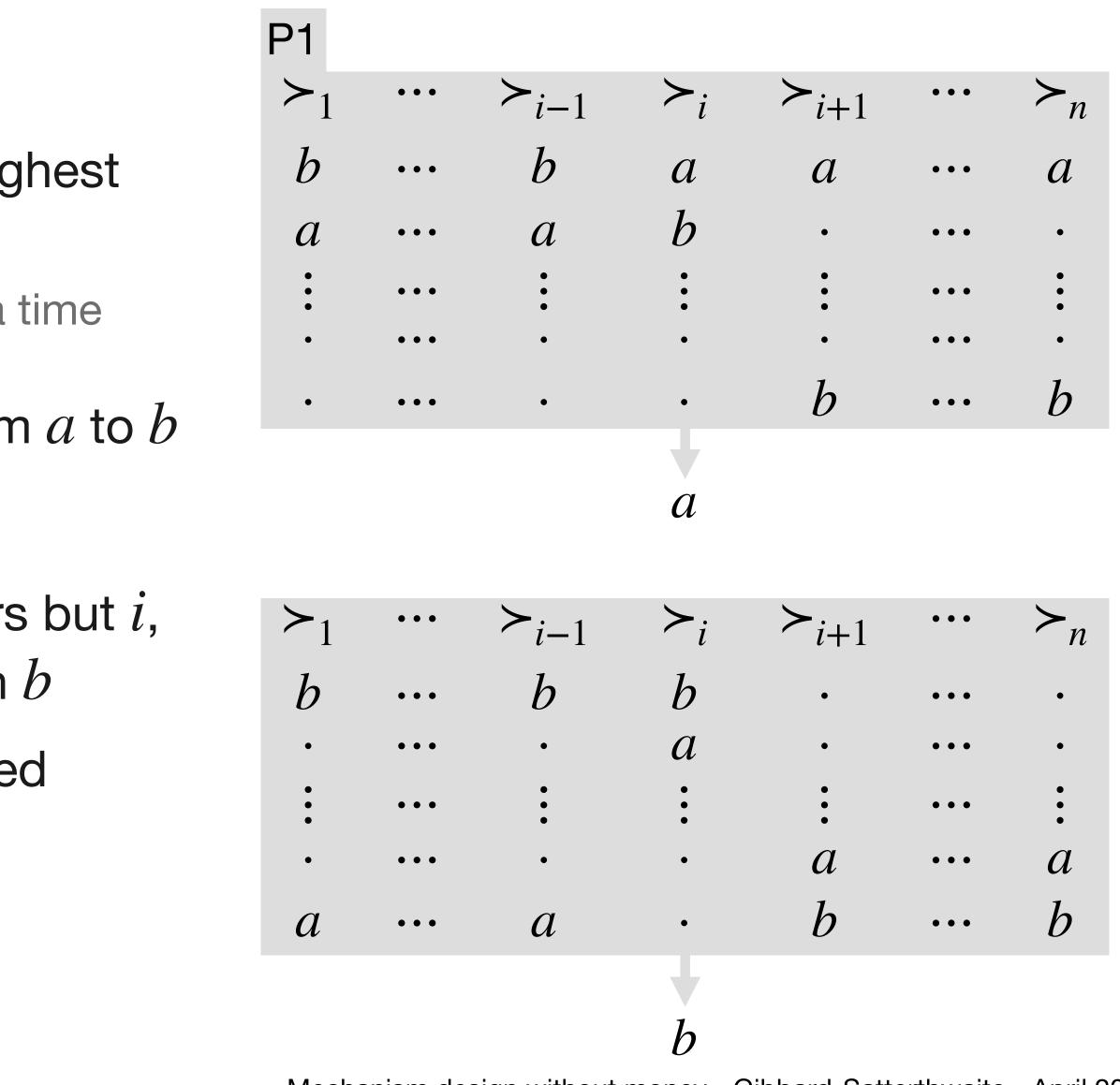
- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving b one position at a time and one voter at a time
- by unanimity, the outcome must change from a to b voter *i* changes profile P1 to P2
- start from P2 and move a below for all voters but i, without changing pairwise relationships with b



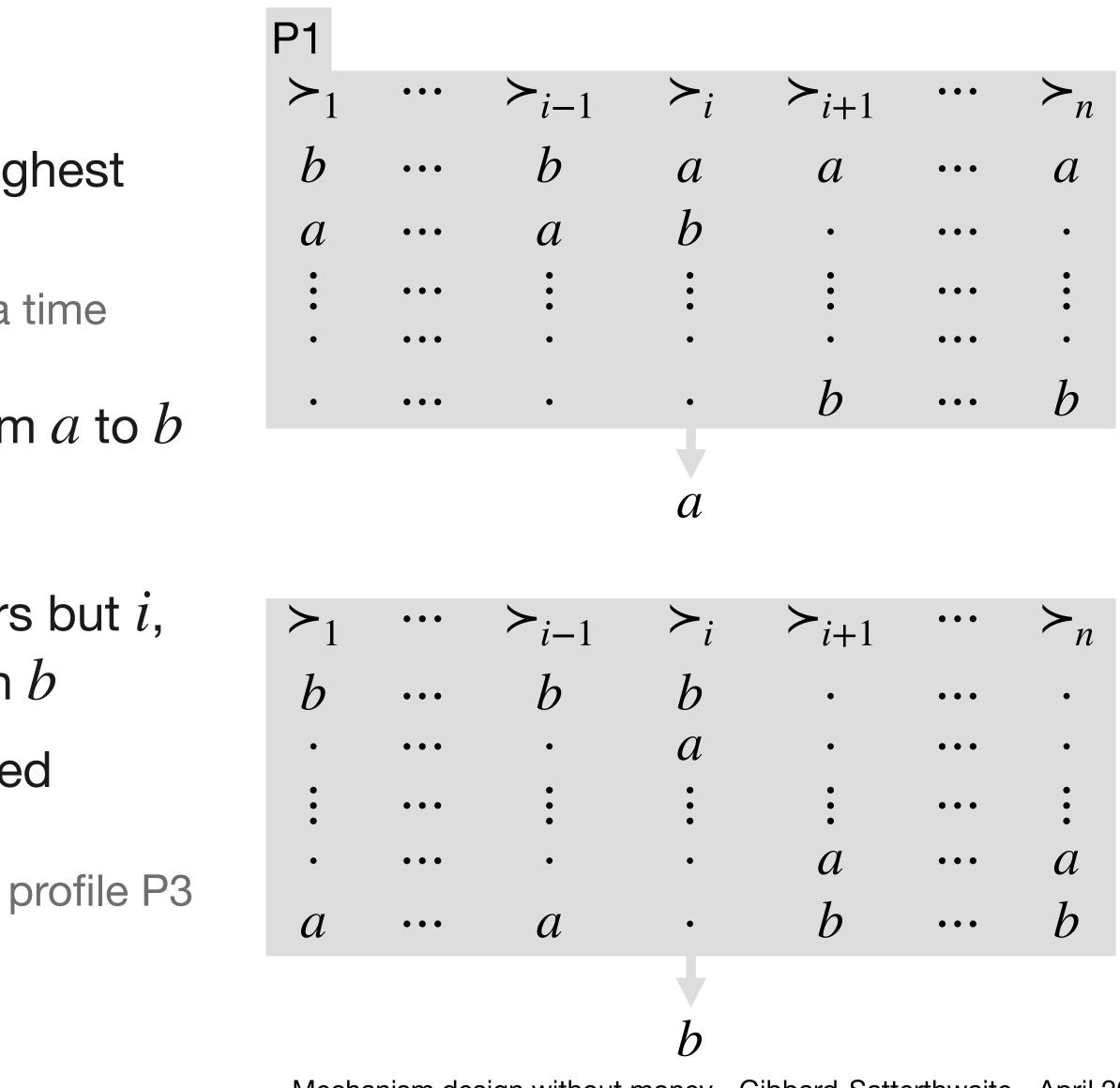
- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving b one position at a time and one voter at a time
- by unanimity, the outcome must change from a to b voter *i* changes profile P1 to P2
- start from P2 and move a below for all voters but i, without changing pairwise relationships with b



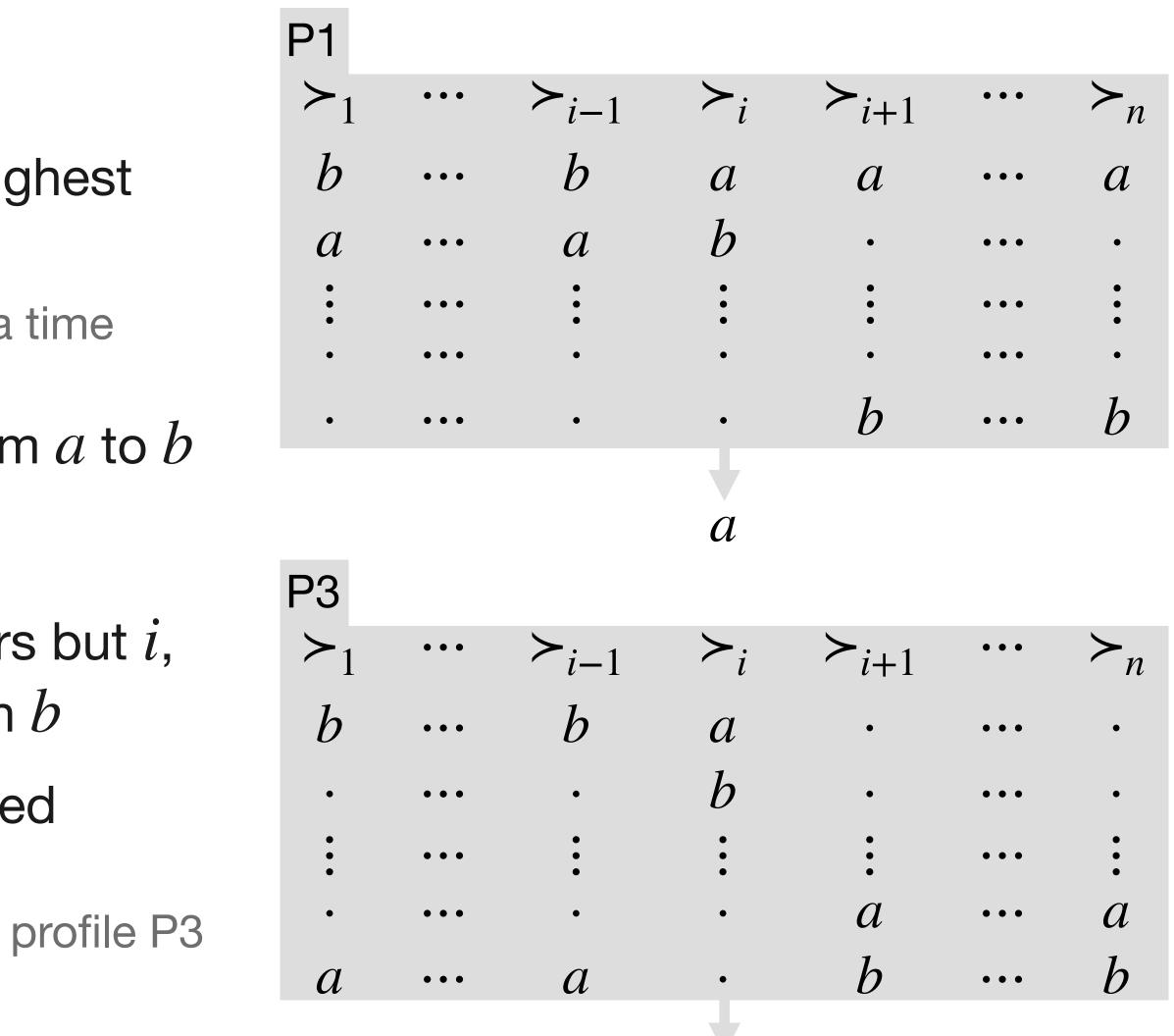
- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving b one position at a time and one voter at a time
- by unanimity, the outcome must change from a to bvoter *i* changes profile P1 to P2
- start from P2 and move a below for all voters but i, without changing pairwise relationships with b
 - by monotonicity, b must remain selected



- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving b one position at a time and one voter at a time
- by unanimity, the outcome must change from a to bvoter *i* changes profile P1 to P2
- start from P2 and move a below for all voters but i, without changing pairwise relationships with b
 - by monotonicity, b must remain selected
- flip a and b in i's ranking and call the resulting profile P3



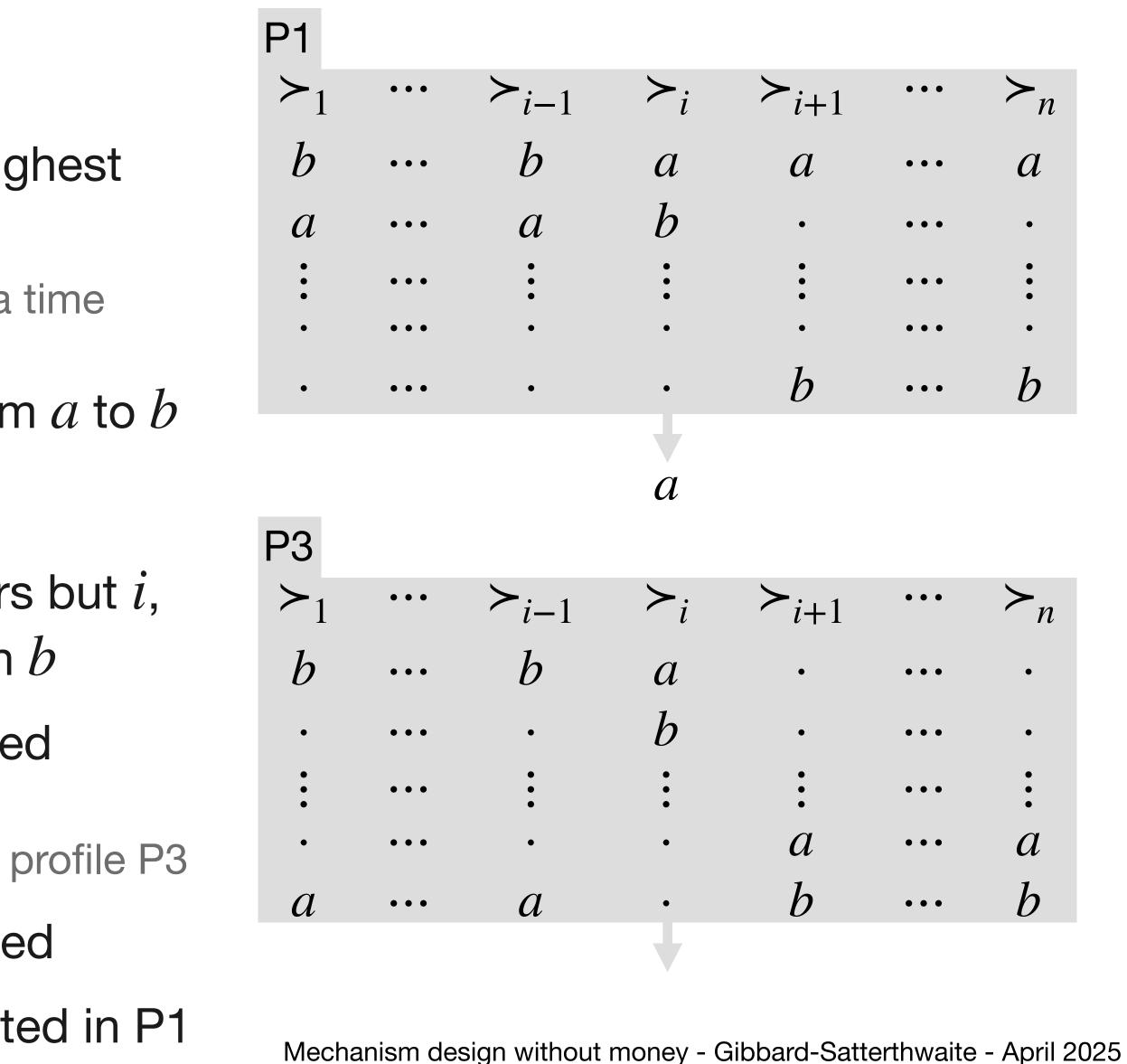
- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving b one position at a time and one voter at a time
- by unanimity, the outcome must change from a to bvoter *i* changes profile P1 to P2
- start from P2 and move a below for all voters but i, without changing pairwise relationships with b
 - by monotonicity, b must remain selected
- flip a and b in i's ranking and call the resulting profile P3



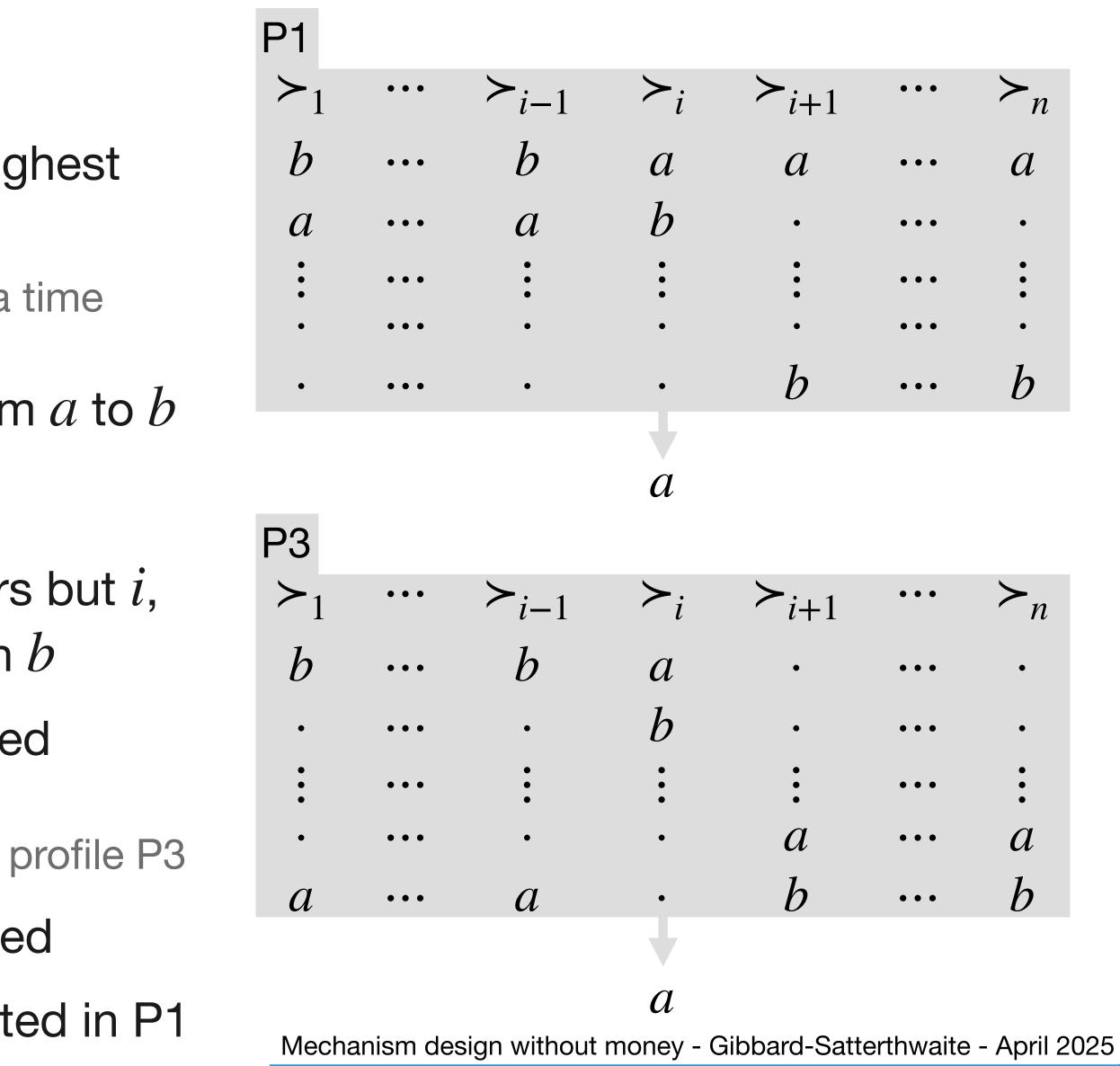
- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving b one position at a time and one voter at a time
- by unanimity, the outcome must change from a to bvoter *i* changes profile P1 to P2
- start from P2 and move a below for all voters but i, without changing pairwise relationships with b
 - by monotonicity, b must remain selected
- flip a and b in i's ranking and call the resulting profile P3 by monotonicity, either a or b is selected



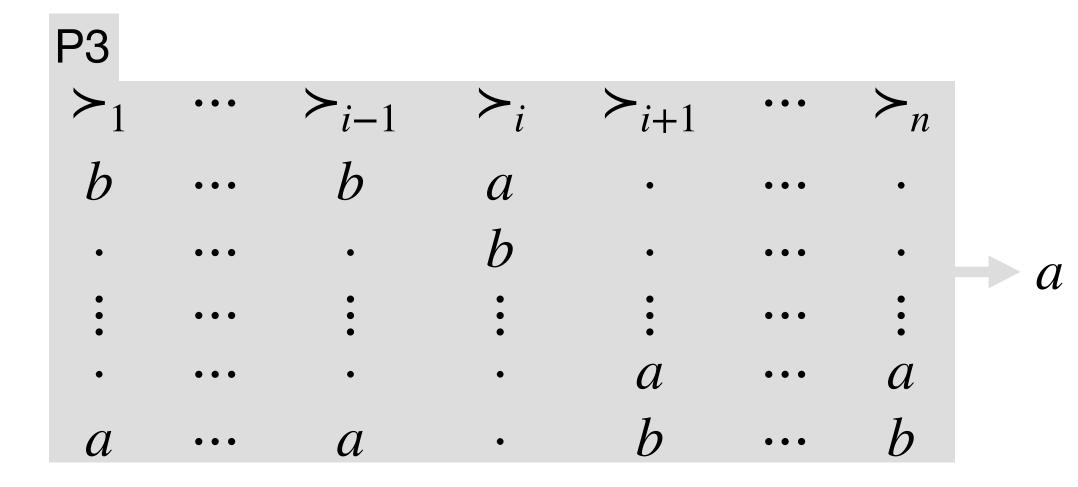
- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving b one position at a time and one voter at a time
- by unanimity, the outcome must change from a to bvoter *i* changes profile P1 to P2
- start from P2 and move a below for all voters but i, without changing pairwise relationships with b
 - by monotonicity, b must remain selected
- flip a and b in i's ranking and call the resulting profile P3
 - by monotonicity, either a or b is selected
 - selecting b would imply that b is selected in P1

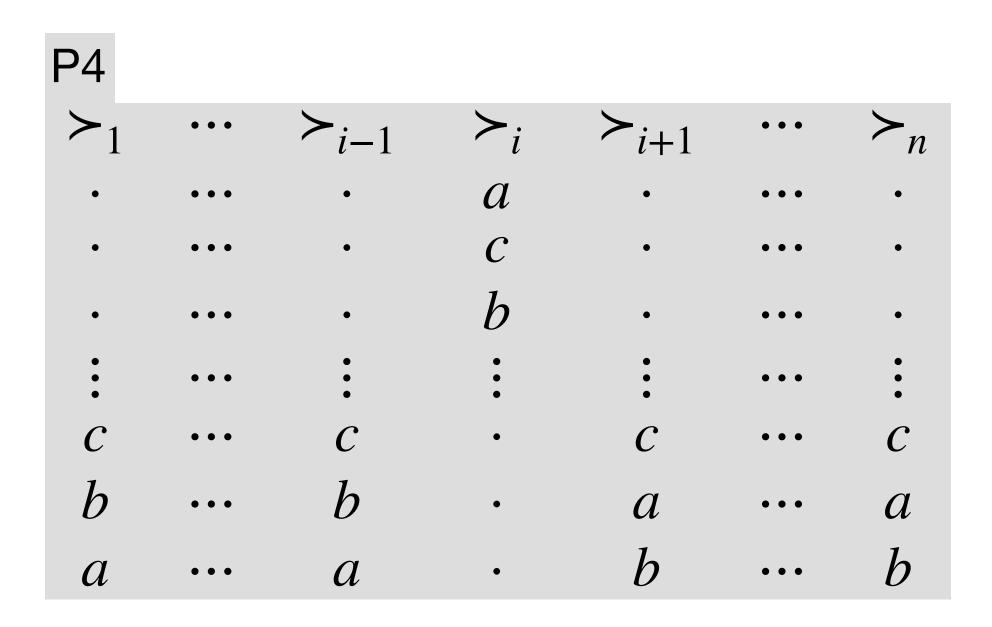


- we consider two fixed alternatives $a, b \in A$
- we move from a profile where *a* is ranked highest by all voters to a profile where b is moving b one position at a time and one voter at a time
- by unanimity, the outcome must change from a to bvoter *i* changes profile P1 to P2
- start from P2 and move a below for all voters but i, without changing pairwise relationships with b
 - by monotonicity, b must remain selected
- flip a and b in i's ranking and call the resulting profile P3
 - by monotonicity, either a or b is selected
 - selecting b would imply that b is selected in P1



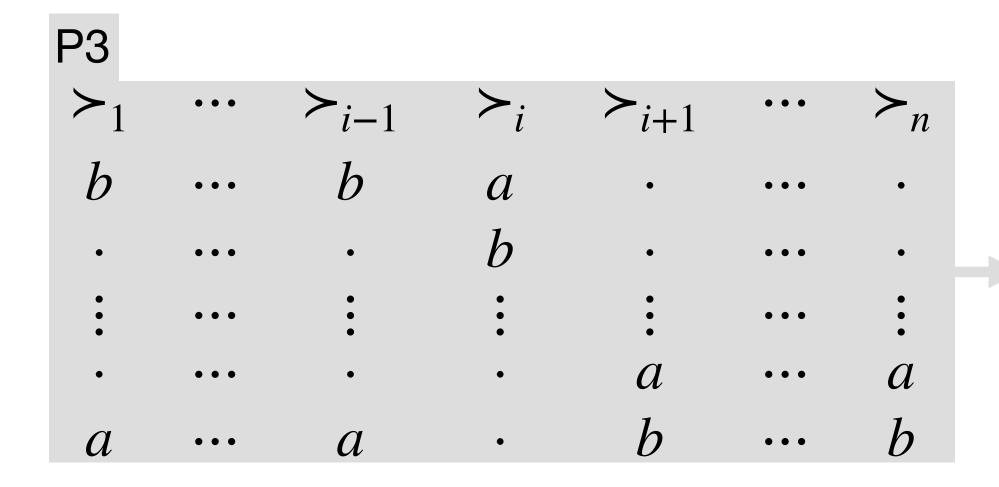
From Pivotal to Dictator

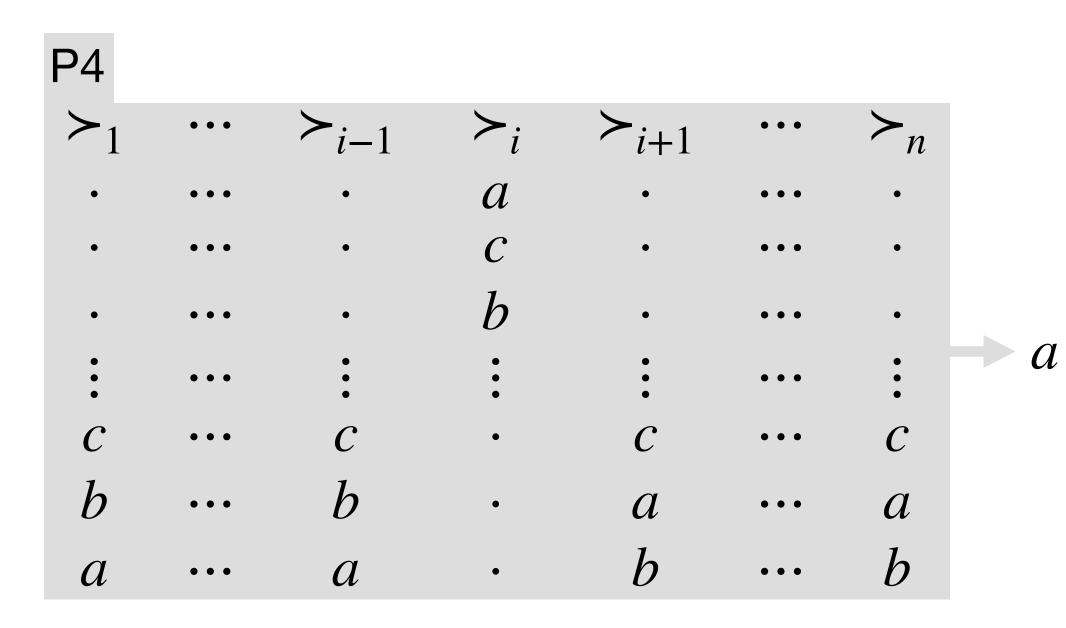




• by monotonicity, *a* remains selected

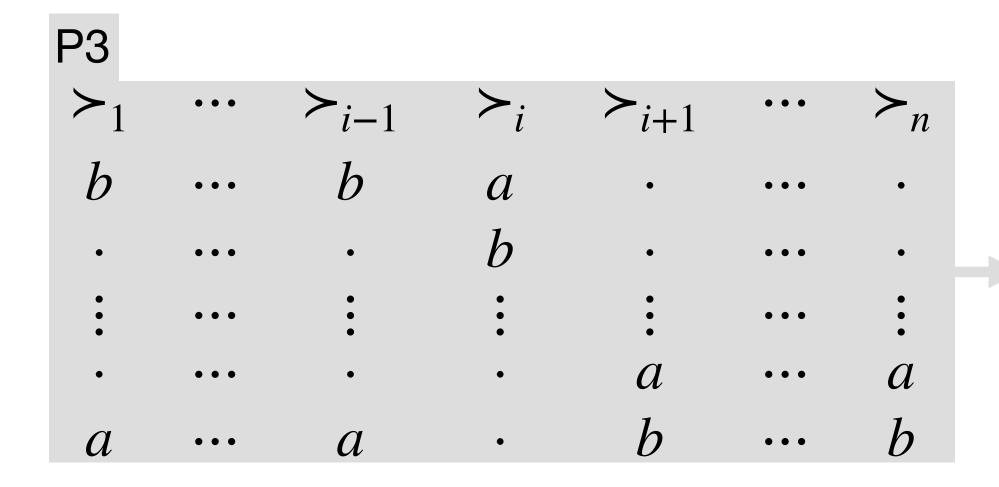
From Pivotal to Dictator

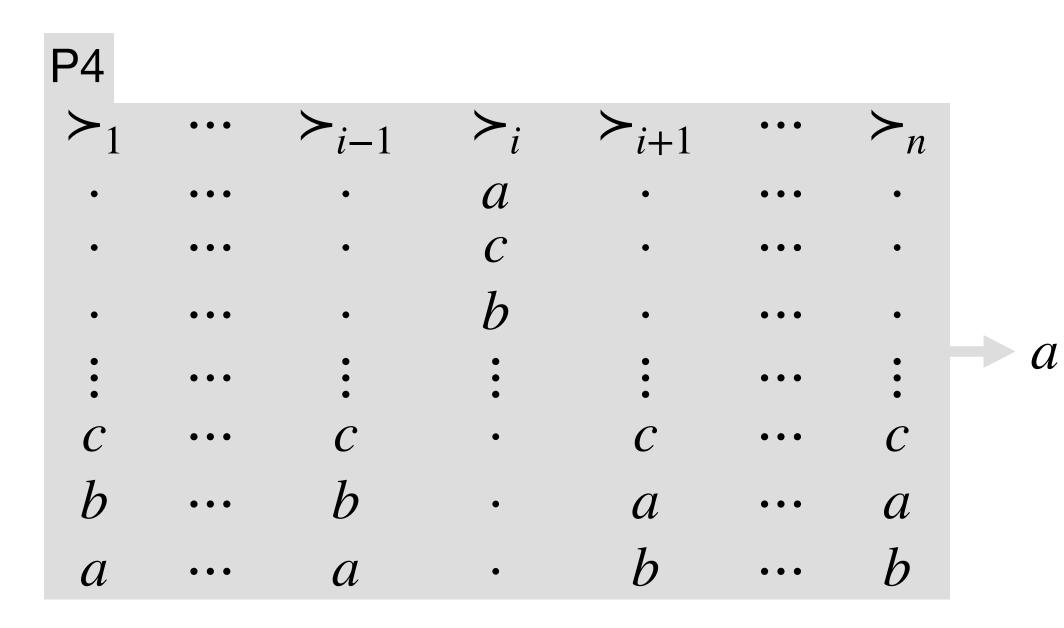




- by monotonicity, *a* remains selected
- Fip a and b in the ranking of all voters j > i

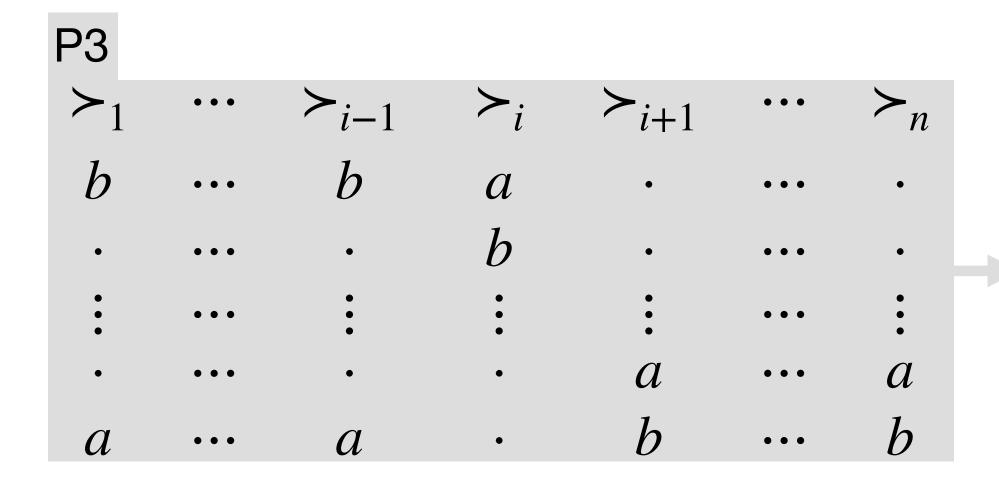
From Pivotal to Dictator





- by monotonicity, *a* remains selected
- Fip a and b in the ranking of all voters j > i

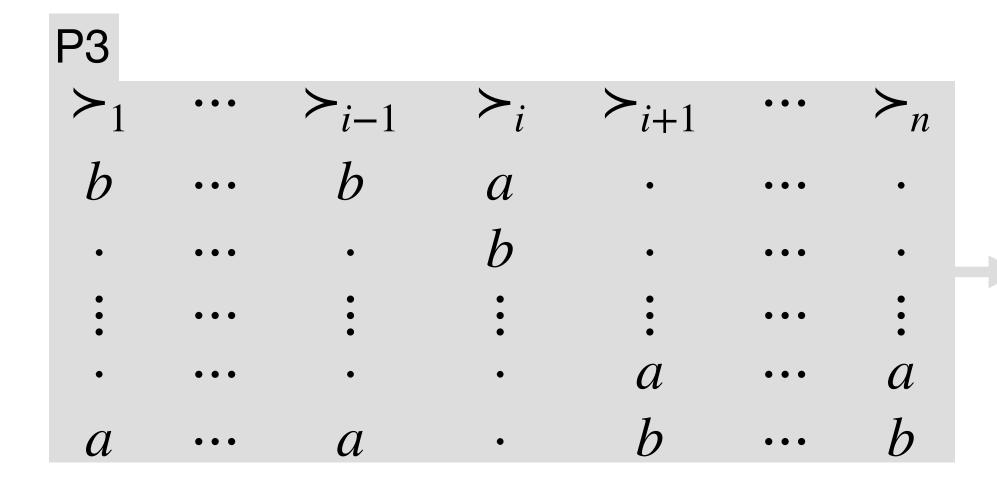
From Pivotal to Dictator



\succ_1	• • •	\succ_{i-1}	\succ_i	\succ_{i+1}	•••	\succ_n
•	• • •	•	a	•	• • •	•
•	• • •	•	С	•	• • •	•
•	• • •	•	b	•	• • •	•
•	• • •	• •	•	• •	•••	•
С	• • •	С	•	С	•••	С
b	• • •	b	•	b	• • •	b
a	• • •	a	•	a	•••	a

- by monotonicity, *a* remains selected
- Fip a and b in the ranking of all voters j > i
 - by monotonicity, either *a* or *b* is selected

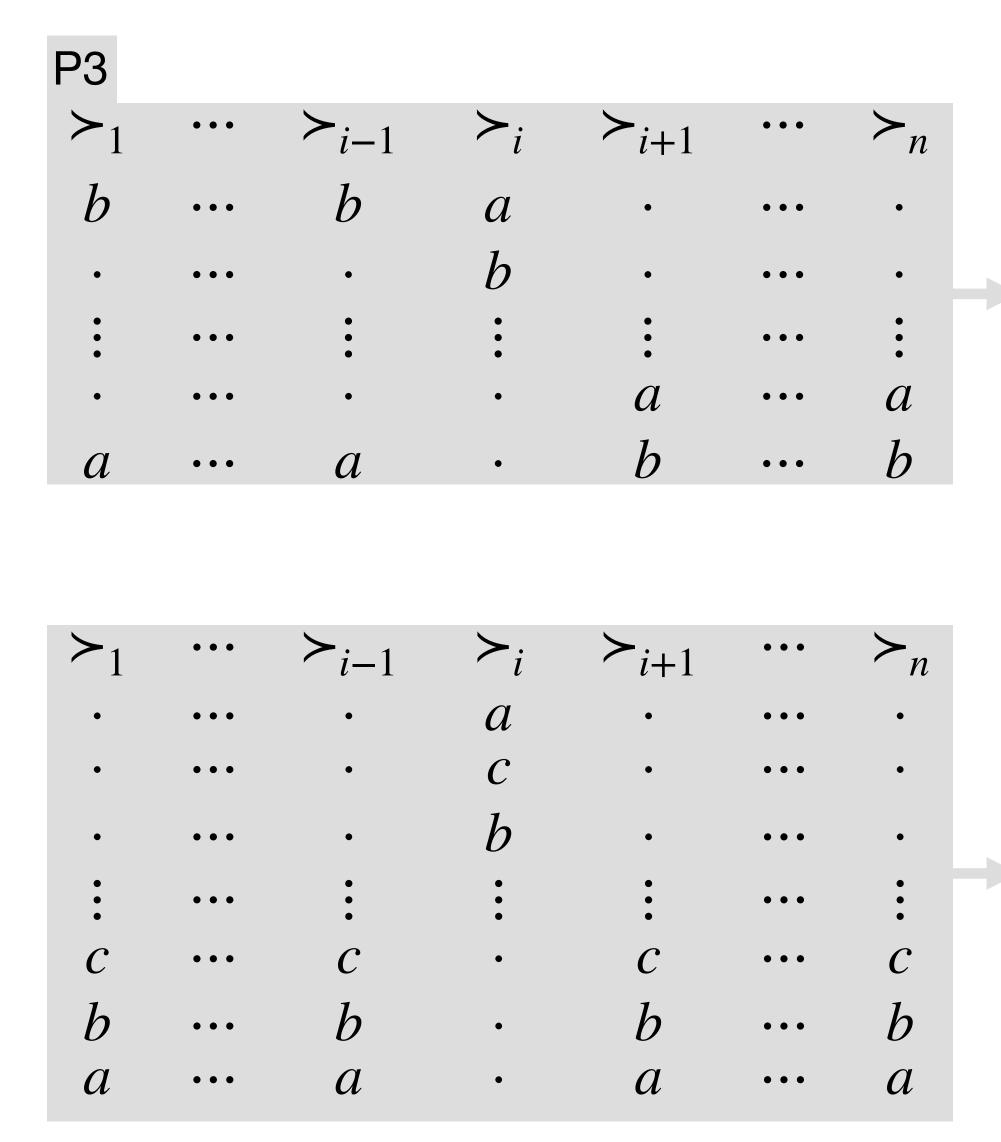
From Pivotal to Dictator



\succ_1	• • •	\succ_{i-1}	\succ_i	\succ_{i+1}	• • •	\succ_n
•	• • •	•	a	٠	• • •	•
•	• • •	•	С	•	• • •	•
•	• • •	•	b	•	• • •	•
•	• • •	• •	• •	• •	• • •	•
С	• • •	С	•	С	•••	С
b	• • •	b	•	b	• • •	b
a	• • •	a	•	a	•••	a

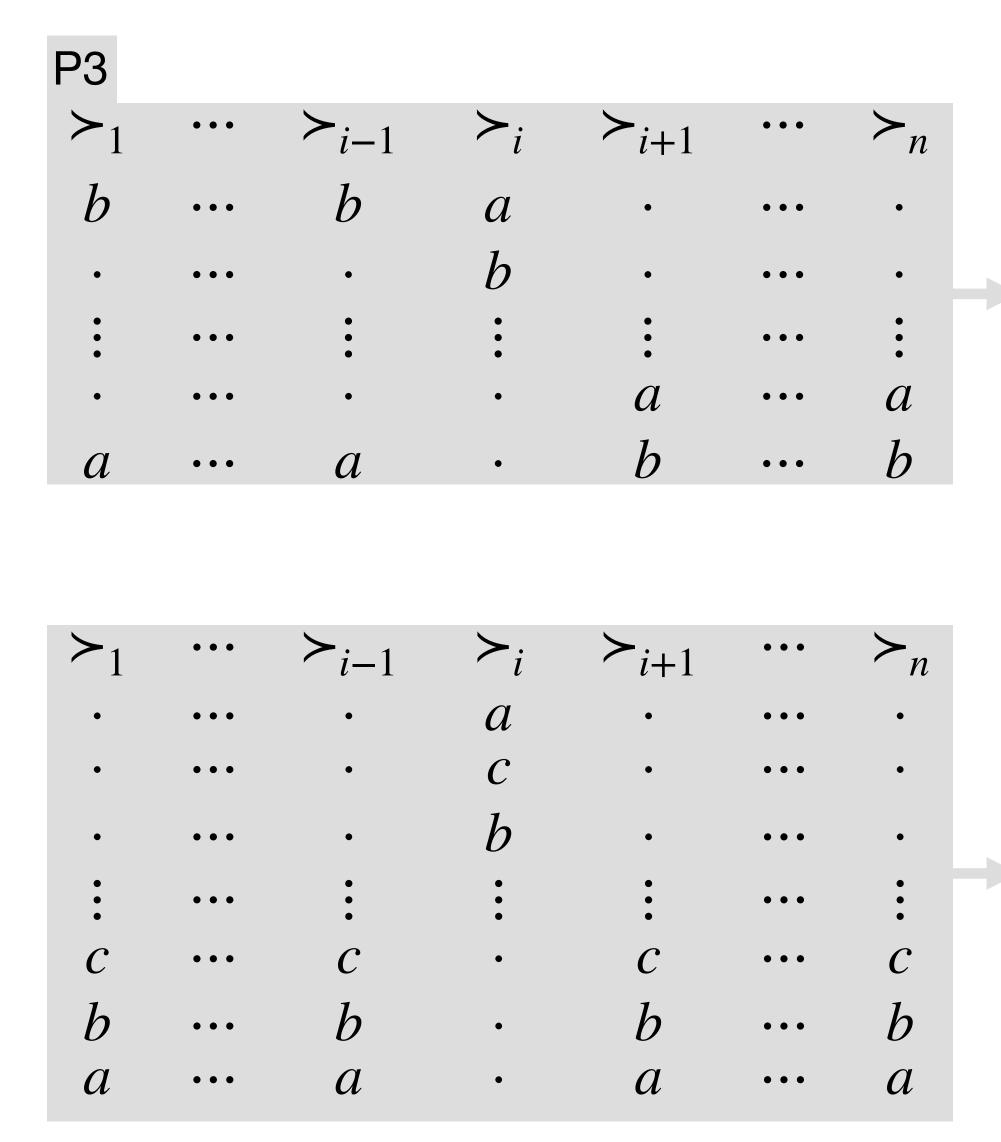
- by monotonicity, *a* remains selected
- Fip a and b in the ranking of all voters j > i
 - by monotonicity, either a or b is selected
 - selecting b would imply that b is selected when c moves to the top of all rankings, contradicting unanimity

From Pivotal to Dictator



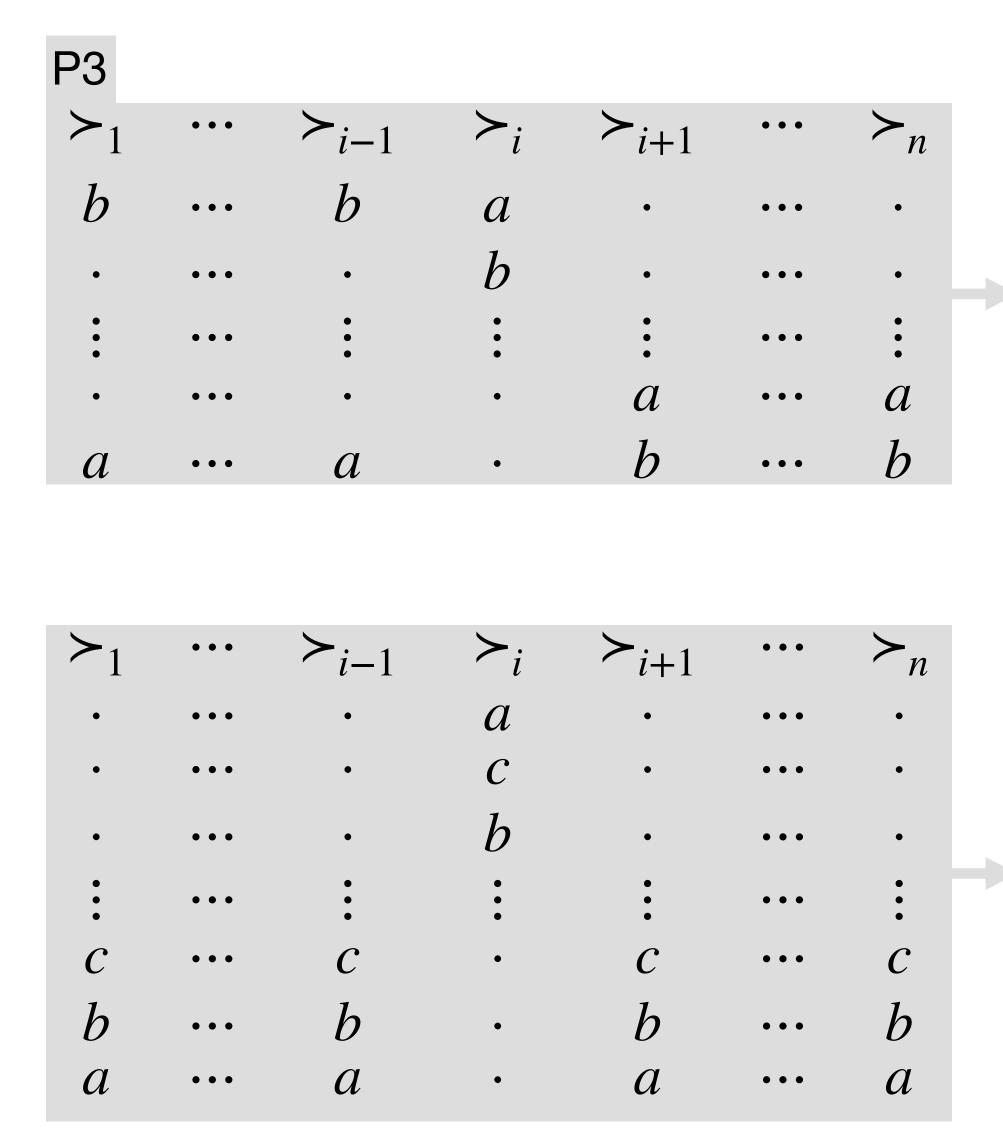
- by monotonicity, *a* remains selected
- Fip a and b in the ranking of all voters j > i
 - by monotonicity, either a or b is selected
 - selecting b would imply that b is selected when c moves to the top of all rankings, contradicting unanimity

From Pivotal to Dictator



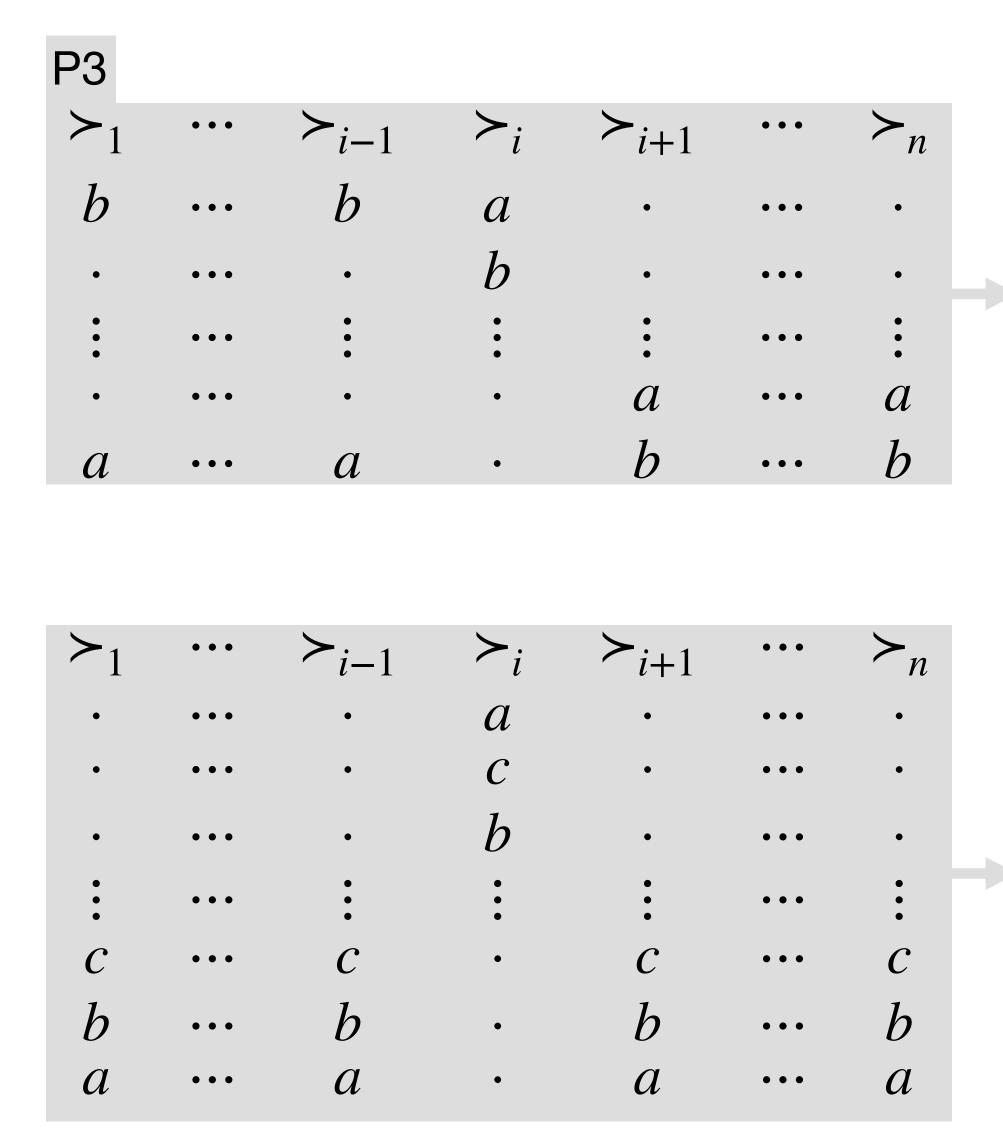
- by monotonicity, *a* remains selected
- Fip a and b in the ranking of all voters j > i
 - by monotonicity, either a or b is selected
 - selecting b would imply that b is selected when c moves to the top of all rankings, contradicting unanimity
- by monotonicity, *a* is selected for any profile where it is at the top of i's ranking

From Pivotal to Dictator



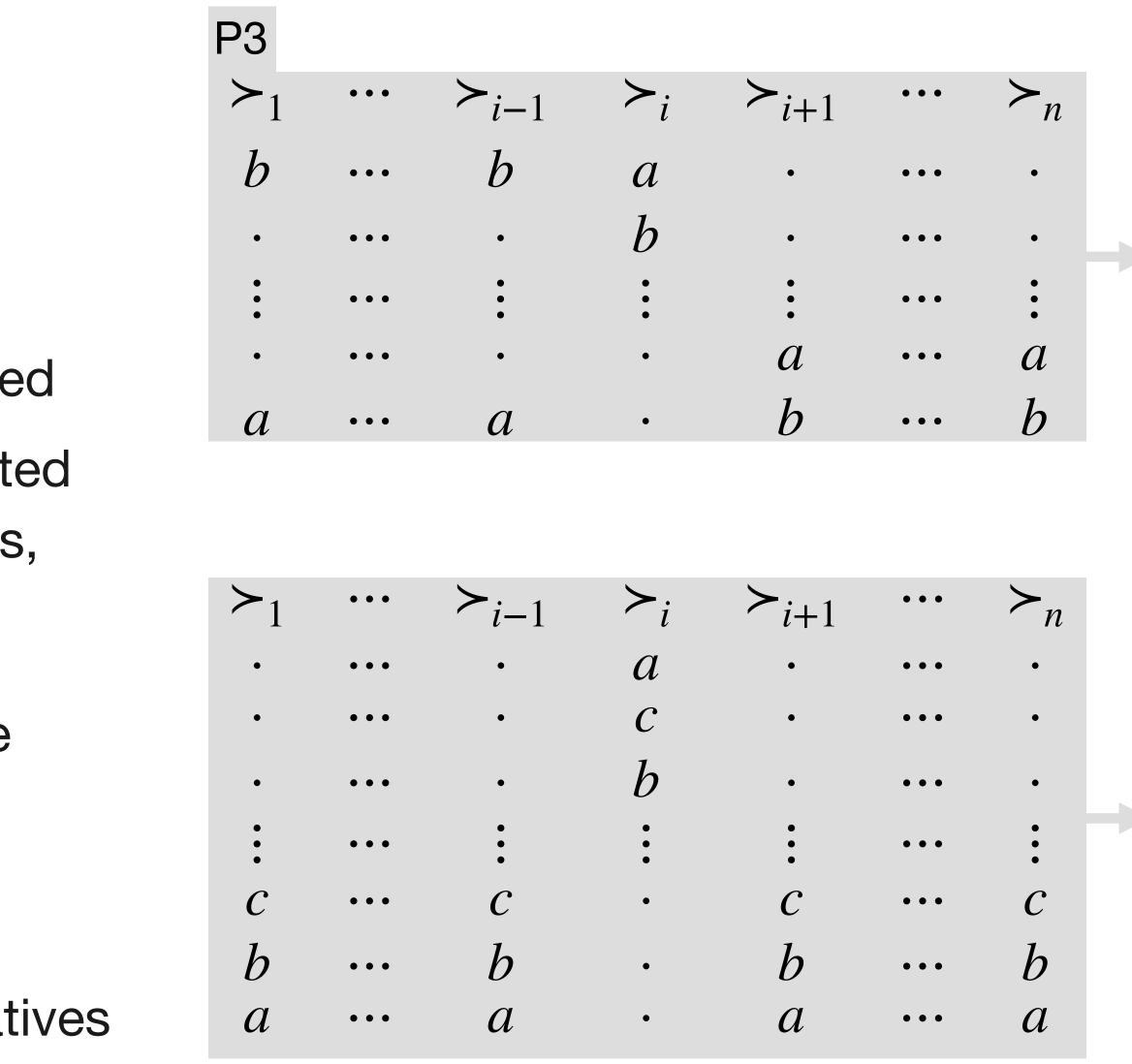
- by monotonicity, *a* remains selected
- Fip a and b in the ranking of all voters j > i
 - by monotonicity, either *a* or *b* is selected
 - selecting b would imply that b is selected when c moves to the top of all rankings, contradicting unanimity
- by monotonicity, *a* is selected for any profile where it is at the top of i's ranking
- there is a dictator for any alternative

From Pivotal to Dictator



- by monotonicity, *a* remains selected
- Fip a and b in the ranking of all voters j > i
 - by monotonicity, either a or b is selected
 - selecting b would imply that b is selected when c moves to the top of all rankings, contradicting unanimity
- by monotonicity, *a* is selected for any profile where it is at the top of *i*'s ranking
- there is a dictator for any alternative
 - there is a unique dictator for all alternatives

From Pivotal to Dictator



Lemma If $f: \mathscr{L}(A)^n \to A$ is surjective and strategyproof, then it is unanimous and monotone.

From Muller-Satterthwaite to Gibbard-Satterthwaite

[Muller, Satterthwaite '77]

- If $f: \mathscr{L}(A)^n \to A$ is surjective and strategyproof, then it is unanimous and monotone.
- monotonicity:

From Muller-Satterthwaite to Gibbard-Satterthwaite

[Muller, Satterthwaite '77]

If $f: \mathscr{L}(A)^n \to A$ is surjective and strategyproof, then it is unanimous and monotone.

- monotonicity:

From Muller-Satterthwaite to Gibbard-Satterthwaite

[Muller, Satterthwaite '77]

• let $\succ \in \mathscr{L}(A)^n$, $\succ'_i \in \mathscr{L}(A)$ and $a \in A$ be s.t. $f(\succ) = a$ and $a \succ'_i b$ whenever $a \succ_i b$

If $f: \mathscr{L}(A)^n \to A$ is surjective and strategyproof, then it is unanimous and monotone.

- monotonicity:

 - suppose $f(\succ_i', \succ_{-i}) = b \neq a$

From Muller-Satterthwaite to Gibbard-Satterthwaite

[Muller, Satterthwaite '77]

• let $\succ \in \mathscr{L}(A)^n$, $\succ'_i \in \mathscr{L}(A)$ and $a \in A$ be s.t. $f(\succ) = a$ and $a \succ'_i b$ whenever $a \succ_i b$

If $f: \mathscr{L}(A)^n \to A$ is surjective and strategyproof, then it is unanimous and monotone.

monotonicity:

- let $\succ \in \mathscr{L}(A)^n$, $\succ'_i \in \mathscr{L}(A)$ and $a \in$
- suppose $f(\succ_i', \succ_{-i}) = b \neq a$

- From Muller-Satterthwaite to Gibbard-Satterthwaite

[Muller, Satterthwaite '77]

A be s.t.
$$f(\succ) = a$$
 and $a \succ'_i b$ whenever $a \succ_i b$

• by strategy-proofness, $a \succ_i b$ (otherwise *i* would deviate from \succ_i to \succ'_i and improve)

If $f: \mathscr{L}(A)^n \to A$ is surjective and strategyproof, then it is unanimous and monotone.

monotonicity:

- let $\succ \in \mathscr{L}(A)^n$, $\succ'_i \in \mathscr{L}(A)$ and $a \in$
- suppose $f(\succ_i', \succ_i) = b \neq a$
- analogously, $b >_i' a$ (otherwise *i* would deviate from $>_i'$ to $>_i$ and improve), a contradiction

– From Muller-Satterthwaite to Gibbard-Satterthwaite

[Muller, Satterthwaite '77]

A be s.t.
$$f(\succ) = a$$
 and $a \succ'_i b$ whenever $a \succ_i b$

If $f: \mathscr{L}(A)^n \to A$ is surjective and strategyproof, then it is unanimous and monotone.

monotonicity:

- let $\succ \in \mathscr{L}(A)^n$, $\succ'_i \in \mathscr{L}(A)$ and $a \in$
- suppose $f(\succ'_i, \succ_i) = b \neq a$
- analogously, $b >_i' a$ (otherwise i would deviate from $>_i'$ to $>_i$ and improve), a contradiction
- we conclude monotonicity by changing the rankings one agent at a time

From Muller-Satterthwaite to Gibbard-Satterthwaite

[Muller, Satterthwaite '77]

A be s.t.
$$f(\succ) = a$$
 and $a \succ'_i b$ whenever $a \succ_i b$

If $f: \mathscr{L}(A)^n \to A$ is surjective and strategyproof, then it is unanimous and monotone.

monotonicity:

- let $\succ \in \mathscr{L}(A)^n$, $\succ'_i \in \mathscr{L}(A)$ and $a \in$
- suppose $f(\succ'_i, \succ_i) = b \neq a$
- analogously, $b >_i' a$ (otherwise i would deviate from $>_i'$ to $>_i$ and improve), a contradiction
- we conclude monotonicity by changing the rankings one agent at a time
- unanimity

From Muller-Satterthwaite to Gibbard-Satterthwaite

[Muller, Satterthwaite '77]

A be s.t.
$$f(\succ) = a$$
 and $a \succ'_i b$ whenever $a \succ_i b$

If $f: \mathscr{L}(A)^n \to A$ is surjective and strategyproof, then it is unanimous and monotone.

monotonicity:

- let $\succ \in \mathscr{L}(A)^n$, $\succ'_i \in \mathscr{L}(A)$ and $a \in$
- suppose $f(\succ_i', \succ_{-i}) = b \neq a$
- analogously, $b >_i' a$ (otherwise i would deviate from $>_i'$ to $>_i$ and improve), a contradiction
- we conclude monotonicity by changing the rankings one agent at a time
- unanimity
 - fix $a \in A$; by surjectivity, $f(\succ) = a$ for some $\succ \in \mathscr{L}(A)^n$

From Muller-Satterthwaite to Gibbard-Satterthwaite

[Muller, Satterthwaite '77]

A be s.t.
$$f(\succ) = a$$
 and $a \succ'_i b$ whenever $a \succ_i b$

If $f: \mathscr{L}(A)^n \to A$ is surjective and strategyproof, then it is unanimous and monotone.

monotonicity:

- let $\succ \in \mathscr{L}(A)^n$, $\succ'_i \in \mathscr{L}(A)$ and $a \in$
- suppose $f(\succ_i', \succ_{-i}) = b \neq a$

- we conclude monotonicity by changing the rankings one agent at a time
- unanimity
 - fix $a \in A$; by surjectivity, $f(\succ) = a$ for some $\succ \in \mathscr{L}(A)^n$

From Muller-Satterthwaite to Gibbard-Satterthwaite

[Muller, Satterthwaite '77]

A be s.t.
$$f(\succ) = a$$
 and $a \succ'_i b$ whenever $a \succ_i b$

• by strategy-proofness, $a \succ_i b$ (otherwise *i* would deviate from \succ_i to \succ_i' and improve)

• analogously, $b >_i' a$ (otherwise i would deviate from $>_i'$ to $>_i$ and improve), a contradiction

by monotonicity, this holds when we move a to the top of all rankings and shuffle the rest

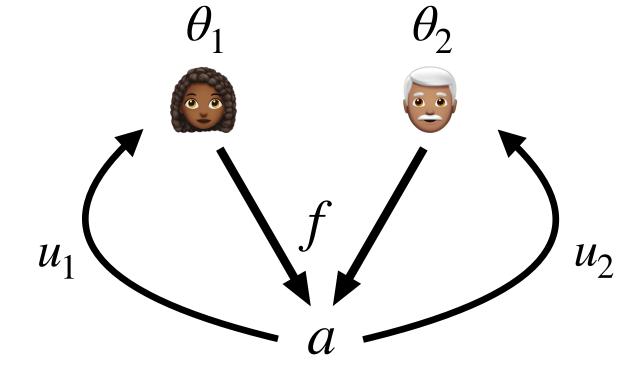


▶ player $i \in V$ has type $\theta_i \in \Theta_i$ and utility $u_i : A \times \Theta_i \to \mathbb{R}$

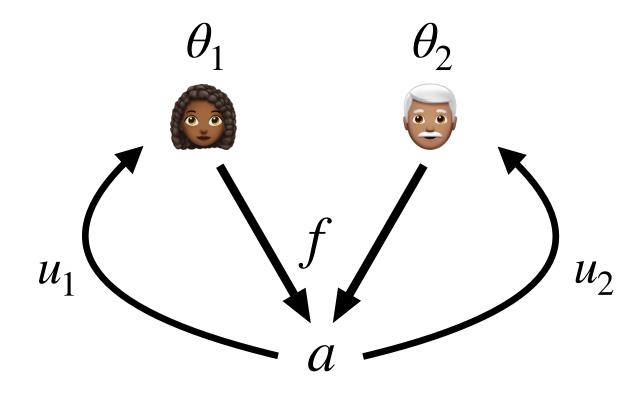
General Mechanisms

- ▶ player $i \in V$ has type $\theta_i \in \Theta_i$ and utility $u_i : A \times \Theta_i \to \mathbb{R}$
- a social choice function is a function $f: \Theta \to A$ $\Theta = \Theta_1 \times \cdots \times \Theta_n$ is the set of possible types

- ▶ player $i \in V$ has type $\theta_i \in \Theta_i$ and utility $u_i : A \times \Theta_i \to \mathbb{R}$
- a social choice function is a function $f: \Theta \to A$ $\Theta = \Theta_1 \times \cdots \times \Theta_n$ is the set of possible types

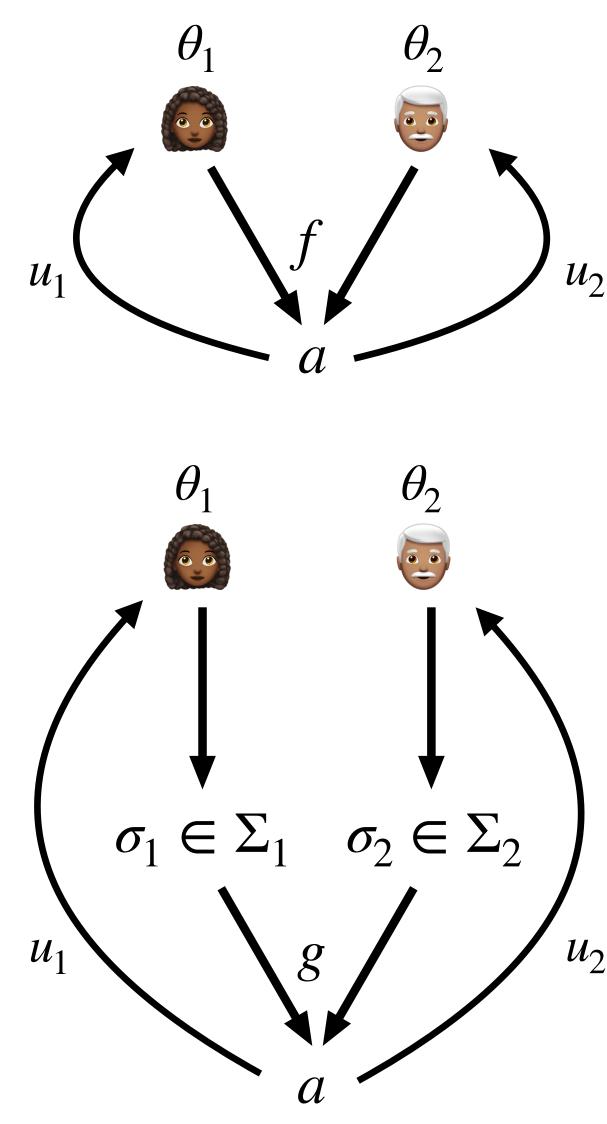


- ▶ player $i \in V$ has type $\theta_i \in \Theta_i$ and utility $u_i : A \times \Theta_i \to \mathbb{R}$
- a social choice function is a function $f: \Theta \to A$ $\Theta = \Theta_1 \times \cdots \times \Theta_n$ is the set of possible types
- a mechanism is a tuple (Σ, g) , where $\Sigma = \Sigma_1 \times \cdots \times \Sigma_n$ is a message space and $g: \Sigma \to A$ is an outcome function



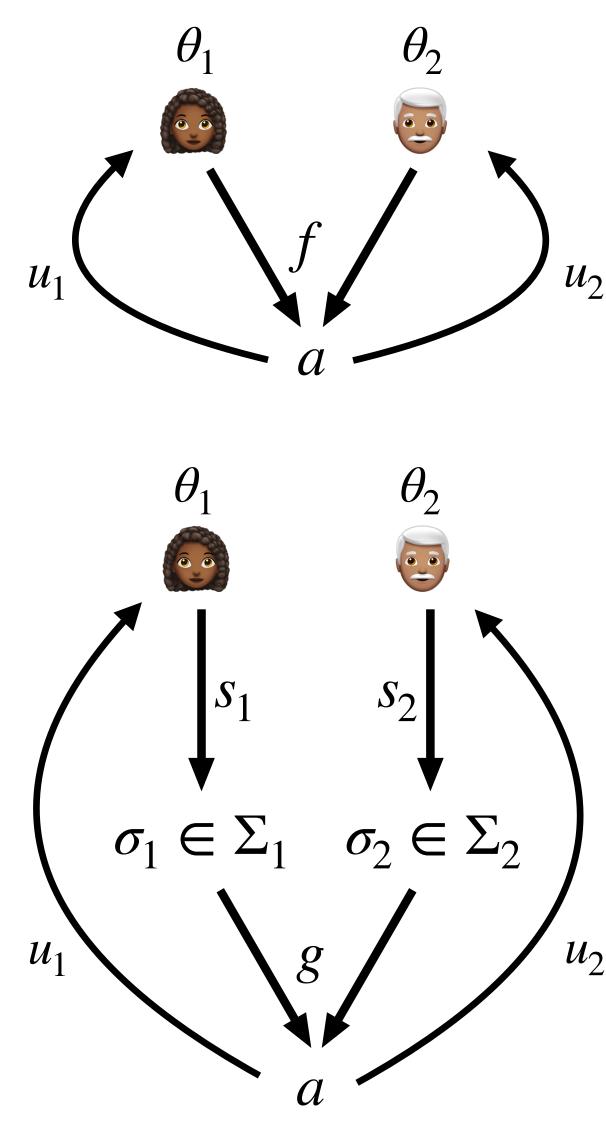
- ▶ player $i \in V$ has type $\theta_i \in \Theta_i$ and utility $u_i : A \times \Theta_i \to \mathbb{R}$
- a social choice function is a function $f: \Theta \to A$ $\Theta = \Theta_1 \times \cdots \times \Theta_n$ is the set of possible types
- a mechanism is a tuple (Σ, g) , where $\Sigma = \Sigma$ is a message space and $g: \Sigma \to A$ is an ou

$$\Sigma_1 \times \cdots \times \Sigma_n$$

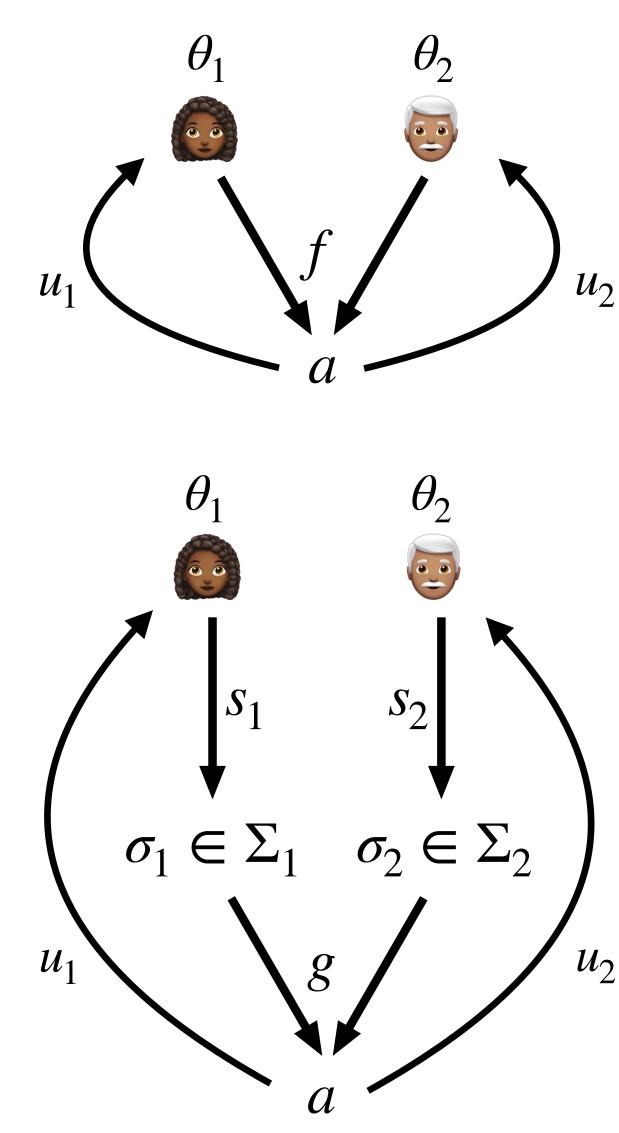


- ▶ player $i \in V$ has type $\theta_i \in \Theta_i$ and utility $u_i : A \times \Theta_i \to \mathbb{R}$
- a social choice function is a function $f: \Theta \to A$ $\Theta = \Theta_1 \times \cdots \times \Theta_n$ is the set of possible types
- a mechanism is a tuple (Σ, g) , where $\Sigma =$ is a message space and $g: \Sigma \to A$ is an ou
- a strategy of player *i* is a function $s_i: \Theta_i \to \Sigma_i$

$$\Sigma_1 \times \cdots \times \Sigma_n$$

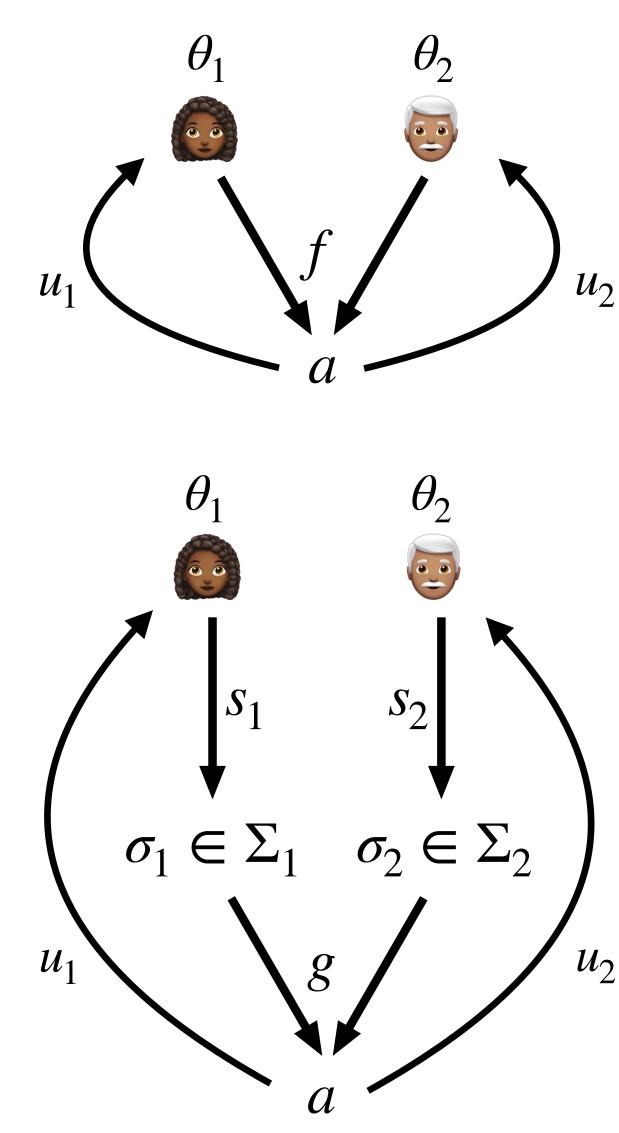


- ▶ player $i \in V$ has type $\theta_i \in \Theta_i$ and utility $u_i : A \times \Theta_i \to \mathbb{R}$
- a social choice function is a function $f: \Theta \to A$ $\Theta = \Theta_1 \times \cdots \times \Theta_n$ is the set of possible types
- a mechanism is a tuple (Σ, g) , where $\Sigma = \Sigma_1 \times \cdots \times \Sigma_n$ is a message space and $g: \Sigma \to A$ is an outcome function
- a strategy of player *i* is a function $s_i: \Theta_i \to \Sigma_i$
- mechanism (Σ, g) implements the social choice function fif there are strategies $s_i \colon \Theta_i \to \Sigma_i$ for each player *i* such that, for every $\theta \in \Theta$,

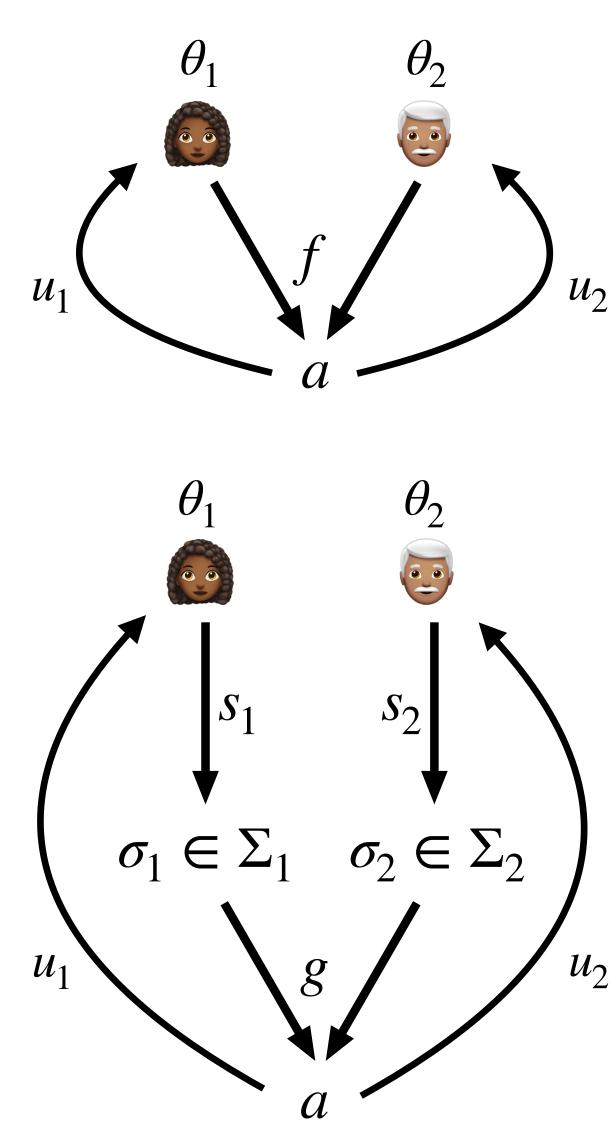


- ▶ player $i \in V$ has type $\theta_i \in \Theta_i$ and utility $u_i : A \times \Theta_i \to \mathbb{R}$
- a social choice function is a function $f: \Theta \to A$ $\Theta = \Theta_1 \times \cdots \times \Theta_n$ is the set of possible types
- a mechanism is a tuple (Σ, g) , where $\Sigma = \Sigma_1 \times \cdots \times \Sigma_n$ is a message space and $g: \Sigma \to A$ is an outcome function
- a strategy of player *i* is a function $s_i: \Theta_i \to \Sigma_i$
- mechanism (Σ, g) implements the social choice function fif there are strategies $s_i \colon \Theta_i \to \Sigma_i$ for each player *i* such that, for every $\theta \in \Theta$,

•
$$g(s_1(\theta_1), \dots, s_n(\theta_n)) = f(\theta)$$
, and



- ▶ player $i \in V$ has type $\theta_i \in \Theta_i$ and utility $u_i : A \times \Theta_i \to \mathbb{R}$
- a social choice function is a function $f: \Theta \to A$ $\Theta = \Theta_1 \times \cdots \times \Theta_n$ is the set of possible types
- a mechanism is a tuple (Σ, g) , where $\Sigma = \Sigma_1 \times \cdots \times \Sigma_n$ is a message space and $g: \Sigma \to A$ is an outcome function
- a strategy of player *i* is a function $s_i : \Theta_i \to \Sigma_i$
- mechanism (Σ , g) implements the social choice function fif there are strategies $s_i \colon \Theta_i \to \Sigma_i$ for each player *i* such that, for every $\theta \in \Theta$,
 - $g(s_1(\theta_1), \dots, s_n(\theta_n)) = f(\theta)$, and
 - $u_i(g(s_i(\theta_i), \sigma_i), \theta_i) \ge u_i(g(\sigma), \theta_i)$ for all $i \in V$ and $\sigma \in \Sigma$ S_i is a dominant strategy for every player i



• a mechanism is **direct** if $\Sigma = \Theta$

The Revelation Principle

• a mechanism is direct if $\Sigma = \Theta$ and is thus fully given by its outcome function $g : \Theta \to A$

The Revelation Principle

- a mechanism is direct if $\Sigma = \Theta$ and is thus fully given by its outcome function $g : \Theta \to A$
- a direct mechanism g is strategyproof if $u_i(g(\theta), \theta_i) \ge u_i(g(\theta'_i, \theta_{-i}), \theta_i)$ for all $\theta \in \Theta$, $i \in V$ and $\theta'_i \in \Theta_i$

- a direct mechanism g is strategyproof if $u_i(g(\theta), \theta_i) \ge u_i(g(\theta'_i, \theta_{-i}), \theta_i)$ for all $\theta \in \Theta$, $i \in V$ and $\theta'_i \in \Theta_i$
 - **Theorem** (Revelation Principle) a strategyproof direct mechanism.

a mechanism is direct if $\Sigma = \Theta$ and is thus fully given by its outcome function $g \colon \Theta \to A$

A social choice function is implemented by some mechanism if and only if it is implemented by

- a direct mechanism g is strategyproof if $u_i(g(\theta), \theta_i) \ge u_i(g(\theta'_i, \theta_{-i}), \theta_i)$ for all $\theta \in \Theta$, $i \in V$ and $\theta'_i \in \Theta_i$
 - **Theorem** (Revelation Principle) a strategyproof direct mechanism.
- proof idea:

a mechanism is direct if $\Sigma = \Theta$ and is thus fully given by its outcome function $g \colon \Theta \to A$

A social choice function is implemented by some mechanism if and only if it is implemented by

let f be a social choice function implemented by (Σ, g) with strategies s_i for each agent i

- a direct mechanism g is strategyproof if $u_i(g(\theta), \theta_i) \ge u_i(g(\theta'_i, \theta_{-i}), \theta_i)$ for all $\theta \in \Theta$, $i \in V$ and $\theta'_i \in \Theta_i$
 - **Theorem** (Revelation Principle) a strategyproof direct mechanism.
- proof idea:

• a mechanism is direct if $\Sigma = \Theta$ and is thus fully given by its outcome function $g \colon \Theta \to A$

A social choice function is implemented by some mechanism if and only if it is implemented by

let f be a social choice function implemented by (Σ, g) with strategies s_i for each agent i • the direct mechanism (Θ, h) where $h(\theta) := g(s_1(\theta_1), \dots, s_n(\theta_n))$ implements f:

- a mechanism is direct if $\Sigma = \Theta$ and is thus fully given by its outcome function $g \colon \Theta \to A$
- a direct mechanism g is strategyproof if $u_i(g(\theta), \theta_i) \ge u_i(g(\theta'_i, \theta_{-i}), \theta_i)$ for all $\theta \in \Theta$, $i \in V$ and $\theta'_i \in \Theta_i$
 - **Theorem** (Revelation Principle) a strategyproof direct mechanism.
- proof idea:

 - $u_i(h(\theta), \theta_i) = u_i(g(s_1(\theta_1), \dots, s_n(\theta_n)), \theta_i)$

A social choice function is implemented by some mechanism if and only if it is implemented by

let f be a social choice function implemented by (Σ, g) with strategies s_i for each agent i • the direct mechanism (Θ, h) where $h(\theta) := g(s_1(\theta_1), \dots, s_n(\theta_n))$ implements f:

- a mechanism is direct if $\Sigma = \Theta$ and is thus fully given by its outcome function $g \colon \Theta \to A$
- a direct mechanism g is strategyproof if $u_i(g(\theta), \theta_i) \ge u_i(g(\theta'_i, \theta_{-i}), \theta_i)$ for all $\theta \in \Theta$, $i \in V$ and $\theta'_i \in \Theta_i$
 - **Theorem** (Revelation Principle) a strategyproof direct mechanism.
- proof idea:

 - $u_i(h(\theta), \theta_i) = u_i(g(s_1(\theta_1), \dots, s_n(\theta_n)), \theta_i)$ $\geq u_i(g(s_1(\theta_1),\ldots,s_i(\theta_i')$

A social choice function is implemented by some mechanism if and only if it is implemented by

let f be a social choice function implemented by (Σ, g) with strategies s_i for each agent i • the direct mechanism (Θ, h) where $h(\theta) := g(s_1(\theta_1), \dots, s_n(\theta_n))$ implements f:

$$., s_n(\theta_n)), \theta_i) = u_i(h(\theta'_i, \theta_{-i}), \theta_i)$$

Revelation Principle: any implementable social choice function can be obtained from a strategyproof direct mechanism

Takeaways

- Revelation Principle: any implementable social choice function can be obtained from a strategyproof direct mechanism
 - this is why most works in the area restrict to direct mechanisms

- Revelation Principle: any implementable social choice function can be obtained from a strategyproof direct mechanism
 - this is why most works in the area restrict to direct mechanisms
- the only surjective social choice functions that can be implemented are dictatorships

G-S: when $|A| \ge 3$, $\Theta = \mathscr{L}(A)^n$, and $u_i \colon A \times \Theta_i \to \mathbb{R}$ is s.t. $u_i(a, \theta_i) > u_i(b, \theta_i) \iff a \succ_i b$,

- Revelation Principle: any implementable social choice function can be obtained from a strategyproof direct mechanism
 - this is why most works in the area restrict to direct mechanisms
- G-S: when $|A| \ge 3$, $\Theta = \mathscr{L}(A)^n$, and $u_i \colon A \times \Theta_i \to \mathbb{R}$ is s.t. $u_i(a, \theta_i) > u_i(b, \theta_i) \iff a \succ_i b$, the only surjective social choice functions that can be implemented are dictatorships
- stronger assumptions on Θ_i and/or u_i are required to obtain positive results

- Revelation Principle: any implementable social choice function can be obtained from a strategyproof direct mechanism
 - this is why most works in the area restrict to direct mechanisms
- G-S: when $|A| \ge 3$, $\Theta = \mathscr{L}(A)^n$, and $u_i \colon A \times \Theta_i \to \mathbb{R}$ is s.t. $u_i(a, \theta_i) > u_i(b, \theta_i) \iff a \succ_i b$, the only surjective social choice functions that can be implemented are dictatorships
- stronger assumptions on Θ_i and/or u_i are required to obtain positive results

The G-S theorem seems to quash any hope of designing incentive-compatible social-choice functions. The whole field of Mechanism Design attempts escaping from this impossibility result using various modifications in the model. [Nisan '07]

- the Econometric Society, 587-601.
- Cambridge University Press.
- Satterthwaite, M. A. (1975). Strategy-proofness and Arrow's conditions: Existence and economic theory, 10(2), 187-217.
- strategy-proofness. Journal of Economic Theory, 14(2), 412-418.
- Reny, P. J. (2001). Arrow's theorem and the Gibbard-Satterthwaite theorem: a unified approach. *Economics letters*, 70(1), 99-105.

References

Gibbard, A. (1973). Manipulation of voting schemes: a general result. Econometrica: journal of

Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory.

correspondence theorems for voting procedures and social welfare functions. Journal of

Muller, E., & Satterthwaite, M. A. (1977). The equivalence of strong positive association and

