

Stable Matching

May 13, 2025

Several proofs and examples of this lecture are taken from Thomas Kesselheim's lecture notes

Mechanism Design Without Money

Kurt Mehlhorn, Javier Cembrano, Golnoosh Shahkarami

\blacktriangleright job applicants A, companies X

Matching Markets and Stability

- \blacktriangleright job applicants A, companies X
- applicant $a \in A$ has strict preferences $\succ_a \in \mathscr{L}(X)$

 $\mathscr{L}(X)$: set of binary relations > satisfying

- either $x \succ y$ or $y \succ x$
 - for every $x, y \in X$ with $x \neq y$
- $x \succ z$ whenever $x \succ y$ and $y \succ z$

- \blacktriangleright job applicants A, companies X
- applicant $a \in A$ has strict preferences $\succ_a \in \mathscr{L}(X)$ and company $x \in X$ has strict preferences $\succ_x \in \mathscr{L}(A)$

 $\mathscr{L}(X)$: set of binary relations > satisfying

- either x > y or y > x
 - for every $x, y \in X$ with $x \neq y$
- $x \succ z$ whenever $x \succ y$ and $y \succ z$

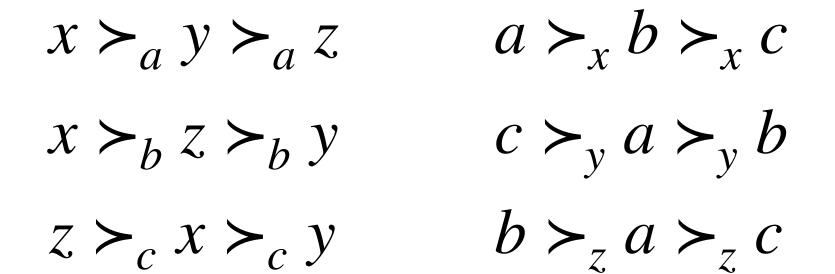
- \blacktriangleright job applicants A, companies X
- ▶ applicant $a \in A$ has strict preferences $\succ_a \in \mathscr{L}(X)$ and company $x \in X$ has strict preferences $\succ_x \in \mathscr{L}(A)$

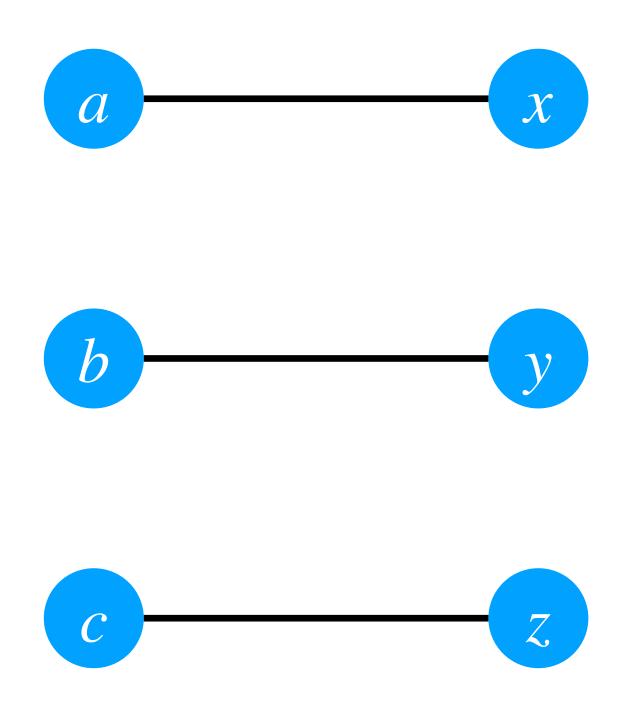
 $a \succ_x b \succ_x c$ $x \succ_a y \succ_a z$ $c \succ_y a \succ_y b$ $x \succ_b z \succ_b y$ $b \succ_z a \succ_z c$ $z \succ_c x \succ_c y$

- \blacktriangleright job applicants A, companies X
- ▶ applicant $a \in A$ has strict preferences $\succ_a \in \mathscr{L}(X)$ and company $x \in X$ has strict preferences $\succ_x \in \mathscr{L}(A)$
- **goal:** match applicants and companies

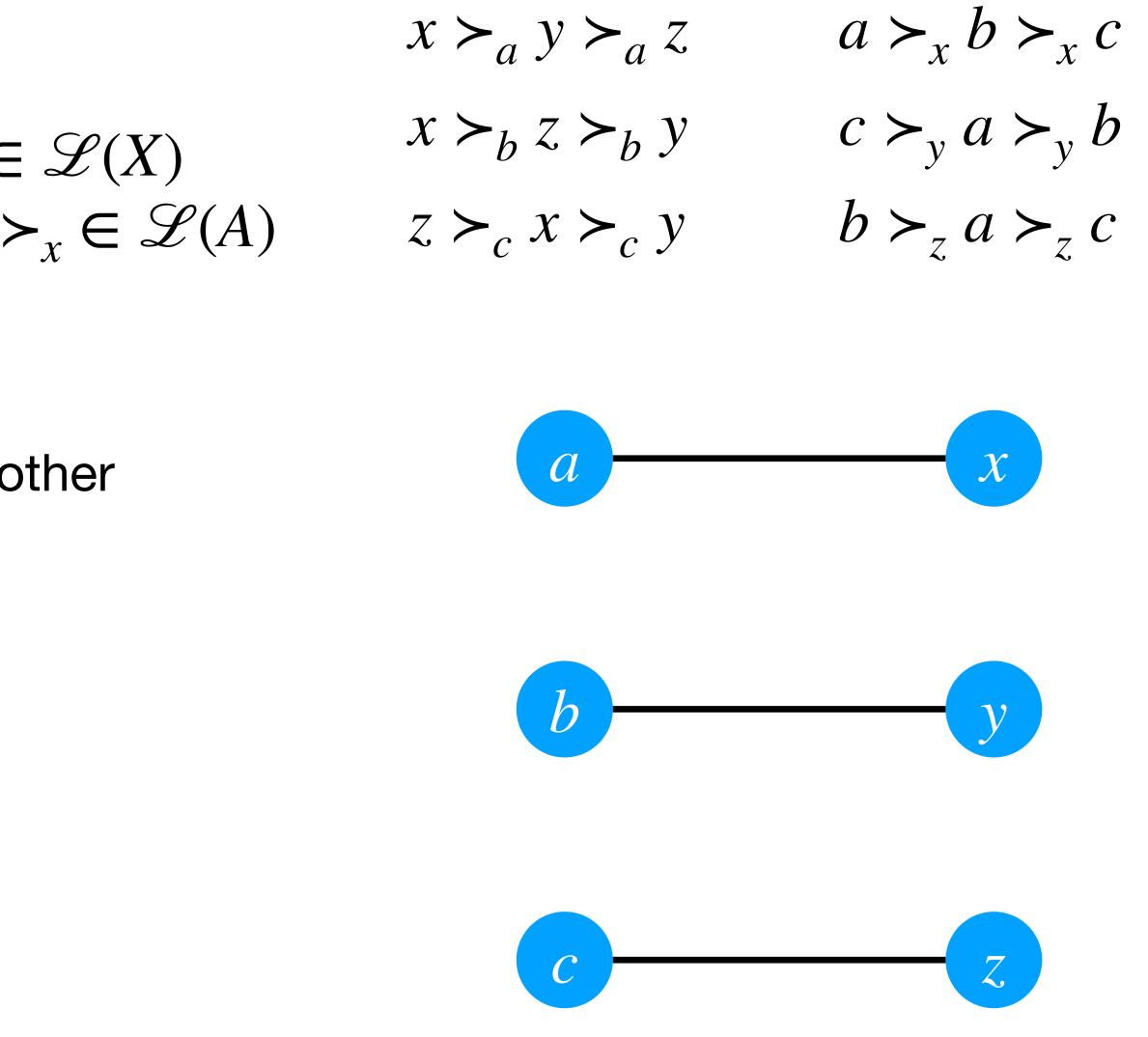
 $a \succ_x b \succ_x c$ $x \succ_a y \succ_a z$ $c \succ_y a \succ_y b$ $x \succ_b z \succ_b y$ $b \succ_z a \succ_z c$ $z \succ_c x \succ_c y$

- \blacktriangleright job applicants A, companies X
- ▶ applicant $a \in A$ has strict preferences $\succ_a \in \mathscr{L}(X)$ and company $x \in X$ has strict preferences $\succ_x \in \mathscr{L}(A)$
- **goal:** match applicants and companies

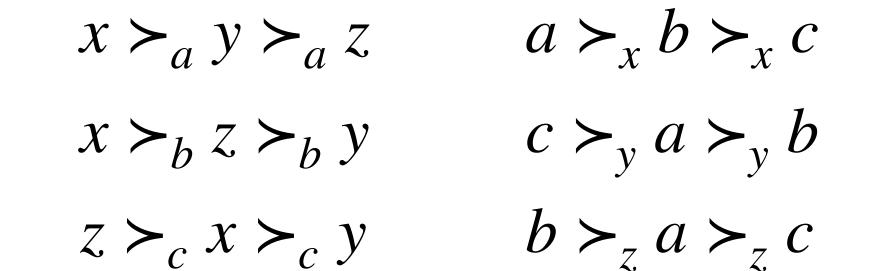


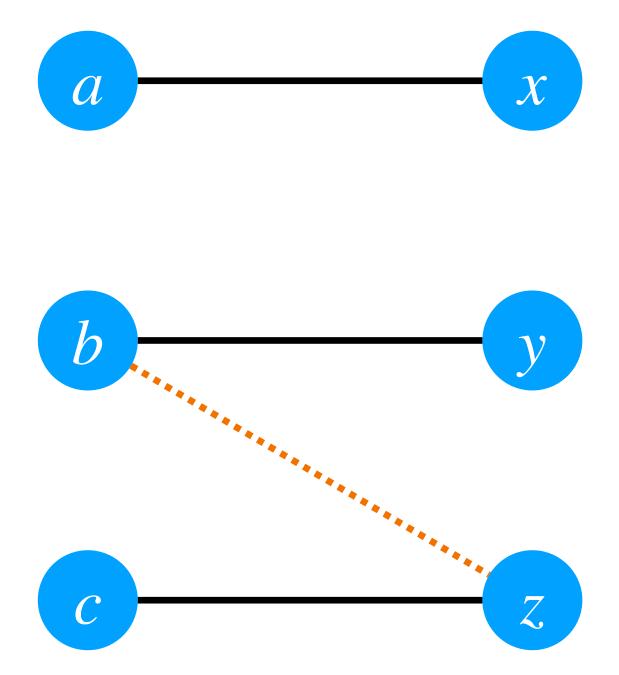


- \blacktriangleright job applicants A, companies X
- ▶ applicant $a \in A$ has strict preferences $\succ_a \in \mathscr{L}(X)$ and company $x \in X$ has strict preferences $\succ_x \in \mathscr{L}(A)$
- goal: match applicants and companies
- (a, x) is a blocking pair if they prefer each other over their current assignment

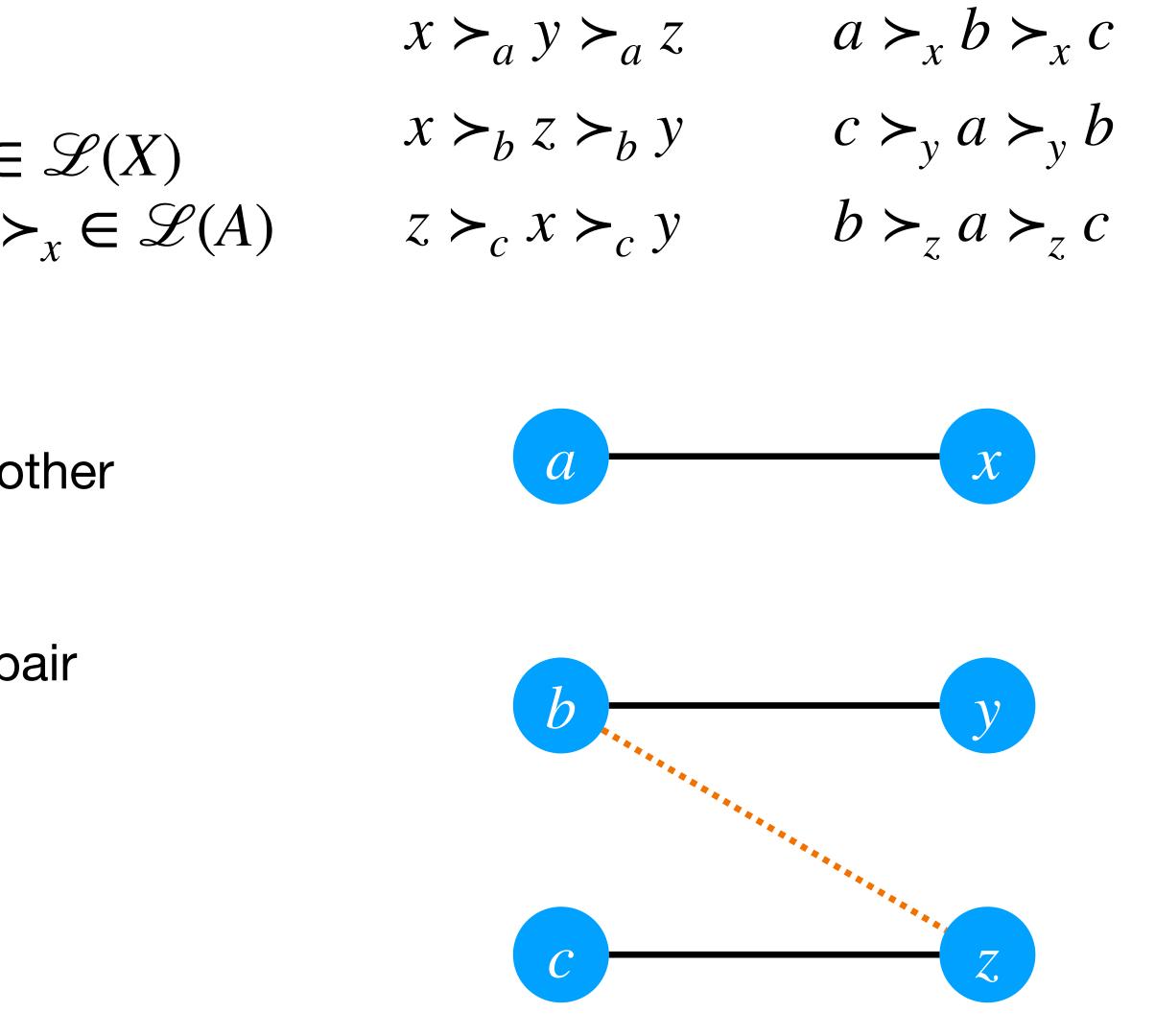


- \blacktriangleright job applicants A, companies X
- ▶ applicant $a \in A$ has strict preferences $\succ_a \in \mathscr{L}(X)$ and company $x \in X$ has strict preferences $\succ_x \in \mathscr{L}(A)$
- goal: match applicants and companies
- (a, x) is a blocking pair if they prefer each other over their current assignment

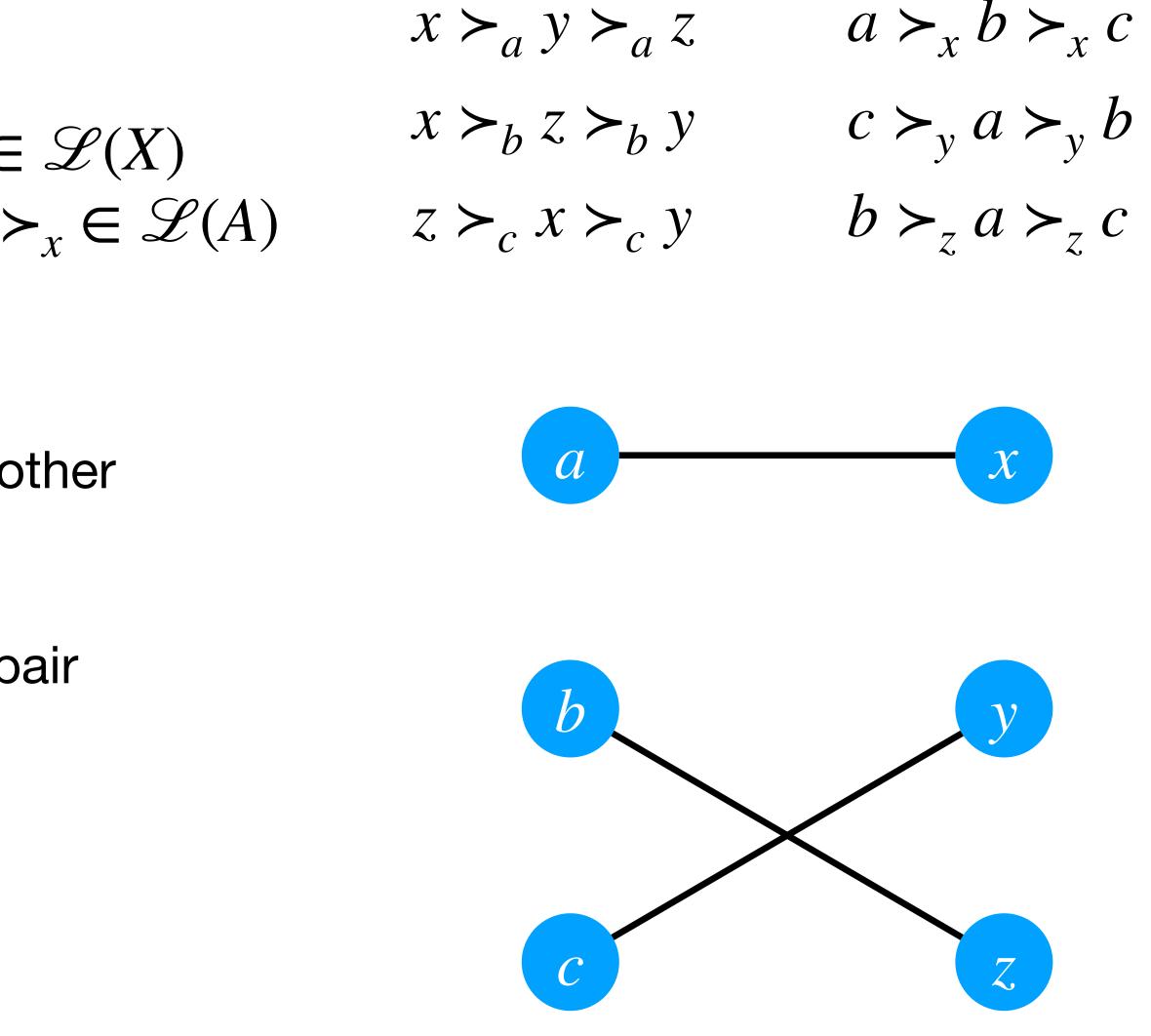




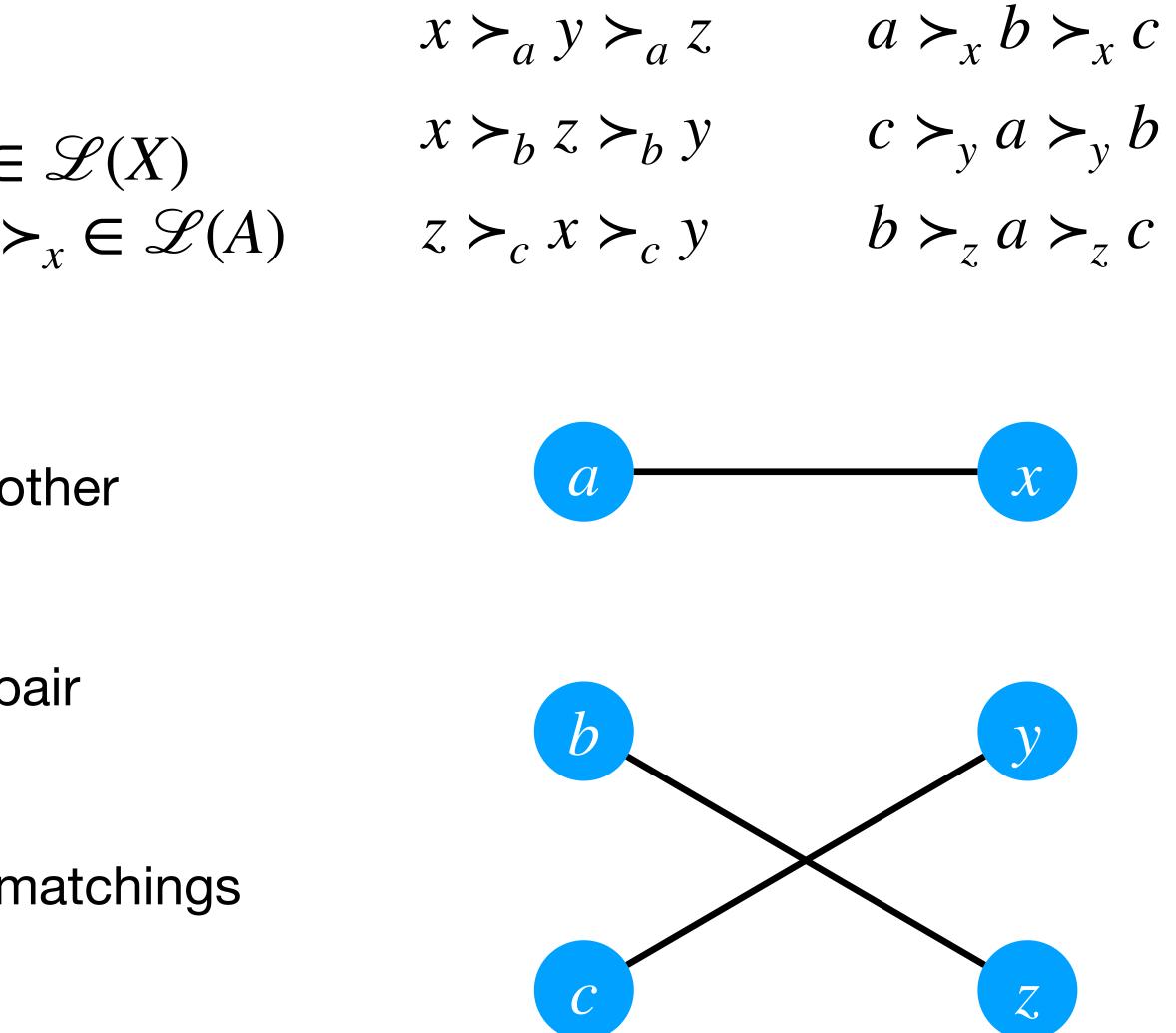
- \blacktriangleright job applicants A, companies X
- ▶ applicant $a \in A$ has strict preferences $\succ_a \in \mathscr{L}(X)$ and company $x \in X$ has strict preferences $\succ_x \in \mathscr{L}(A)$
- goal: match applicants and companies
- (a, x) is a blocking pair if they prefer each other over their current assignment
- a matching is stable if there is no blocking pair a.k.a. no justified envy



- \blacktriangleright job applicants A, companies X
- ▶ applicant $a \in A$ has strict preferences $\succ_a \in \mathscr{L}(X)$ and company $x \in X$ has strict preferences $\succ_x \in \mathscr{L}(A)$
- goal: match applicants and companies
- (a, x) is a blocking pair if they prefer each other over their current assignment
- a matching is stable if there is no blocking pair a.k.a. no justified envy



- \blacktriangleright job applicants A, companies X
- ▶ applicant $a \in A$ has strict preferences $\succ_a \in \mathscr{L}(X)$ and company $x \in X$ has strict preferences $\succ_x \in \mathscr{L}(A)$
- goal: match applicants and companies
- (a, x) is a blocking pair if they prefer each other over their current assignment
- a matching is stable if there is no blocking pair a.k.a. no justified envy
- a mechanism is stable if it produces stable matchings analogously for other properties



Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

proof is constructive and given by the **Deferred Acceptance (DA)** mechanism

Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

- proof is constructive and given by the **Deferred Acceptance (DA)** mechanism
- repeat the following until no rejections occur at that point return the provisional matching

Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

- proof is constructive and given by the **Deferred Acceptance (DA)** mechanism
- repeat the following until no rejections occur at that point return the provisional matching
 - each $a \in A$ proposes to their most preferred company that has not yet rejected them

Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

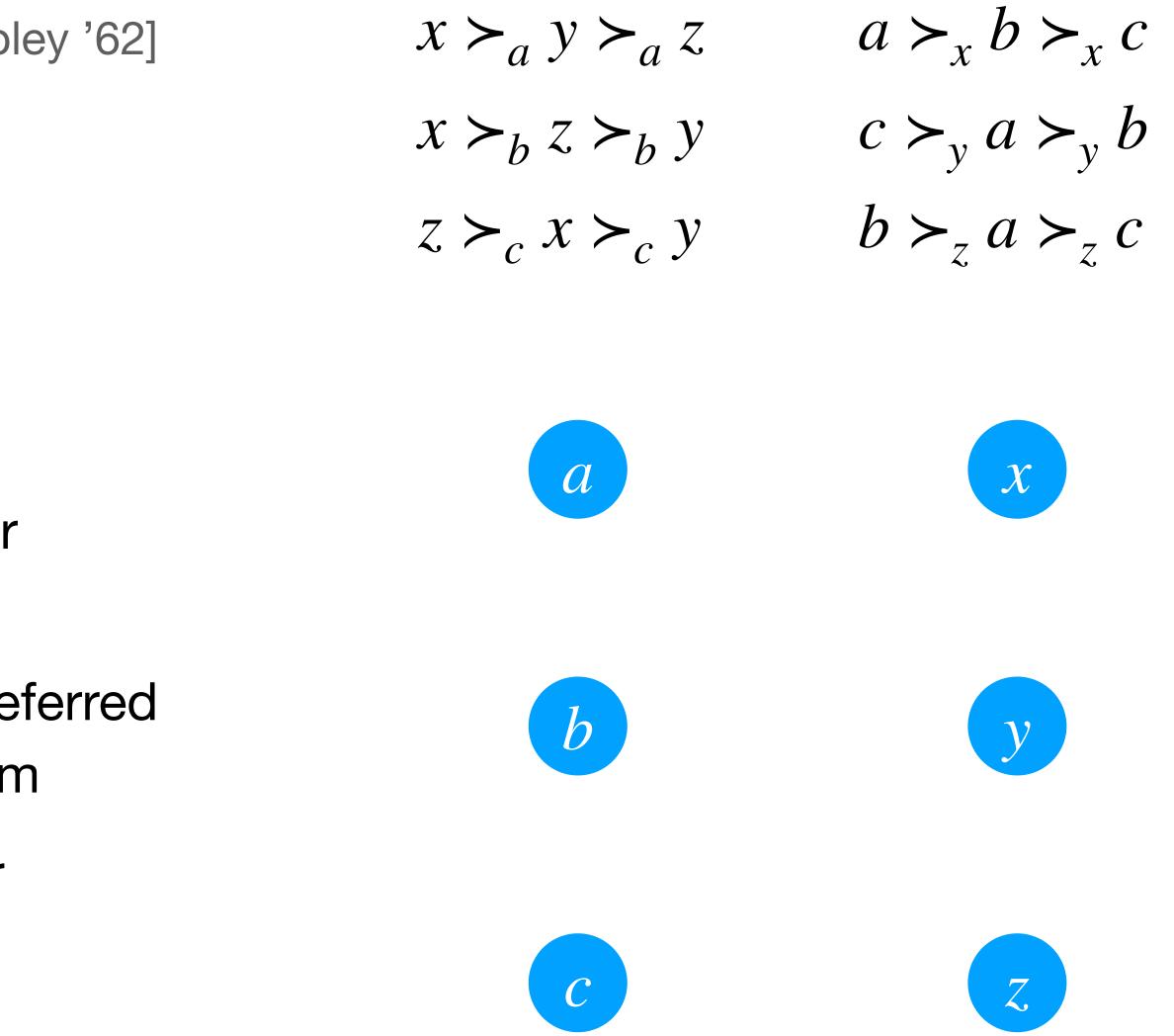
- proof is constructive and given by the **Deferred Acceptance (DA)** mechanism
- repeat the following until no rejections occur at that point return the provisional matching
 - each $a \in A$ proposes to their most preferred company that has not yet rejected them
 - each $x \in X$ provisionally accepts their favorite proposer and rejects the rest

Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

- proof is constructive and given by the **Deferred Acceptance (DA)** mechanism
- repeat the following until no rejections occur at that point return the provisional matching
 - each $a \in A$ proposes to their most preferred company that has not yet rejected them
 - each $x \in X$ provisionally accepts their favorite proposer and rejects the rest

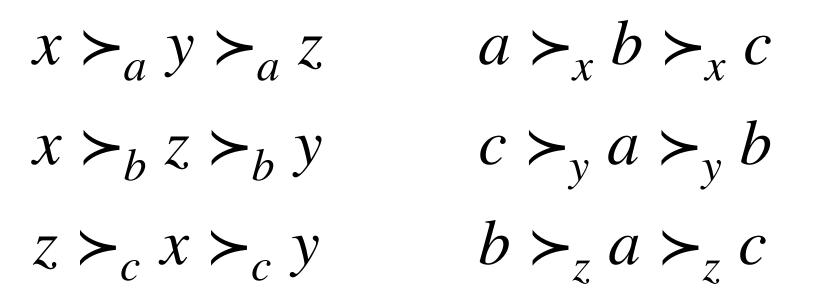


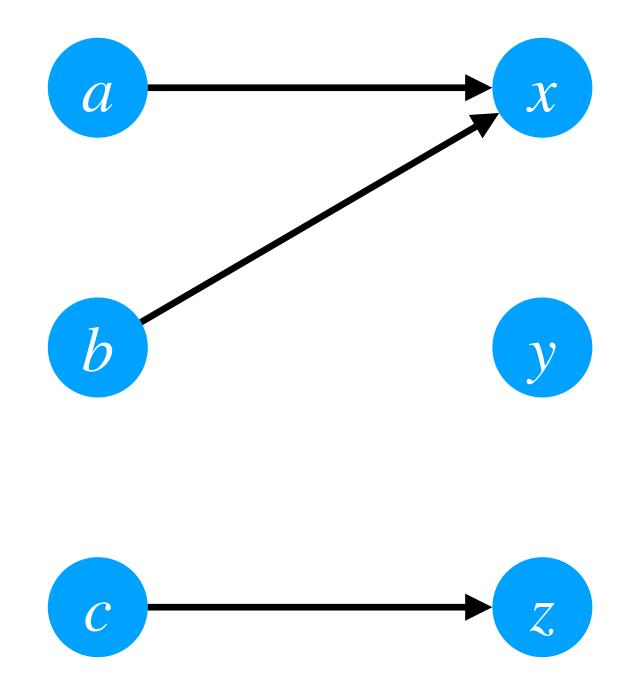
Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

- proof is constructive and given by the **Deferred Acceptance (DA)** mechanism
- repeat the following until no rejections occur at that point return the provisional matching
 - each $a \in A$ proposes to their most preferred company that has not yet rejected them
 - each $x \in X$ provisionally accepts their favorite proposer and rejects the rest



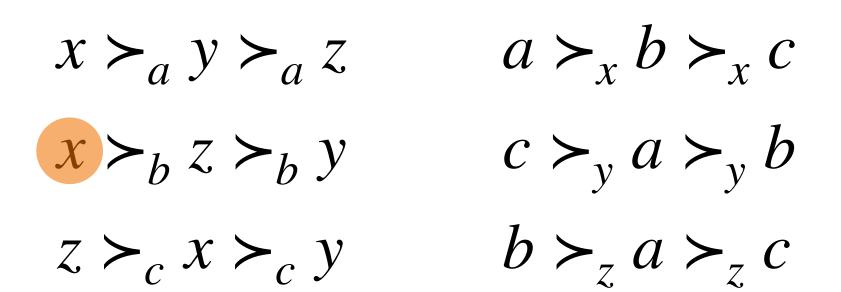


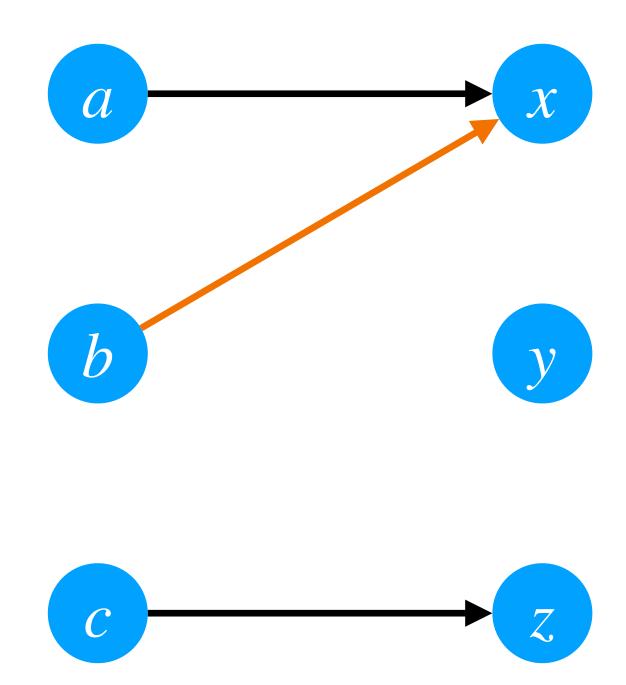
Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

- proof is constructive and given by the **Deferred Acceptance (DA)** mechanism
- repeat the following until no rejections occur at that point return the provisional matching
 - each $a \in A$ proposes to their most preferred company that has not yet rejected them
 - each $x \in X$ provisionally accepts their favorite proposer and rejects the rest



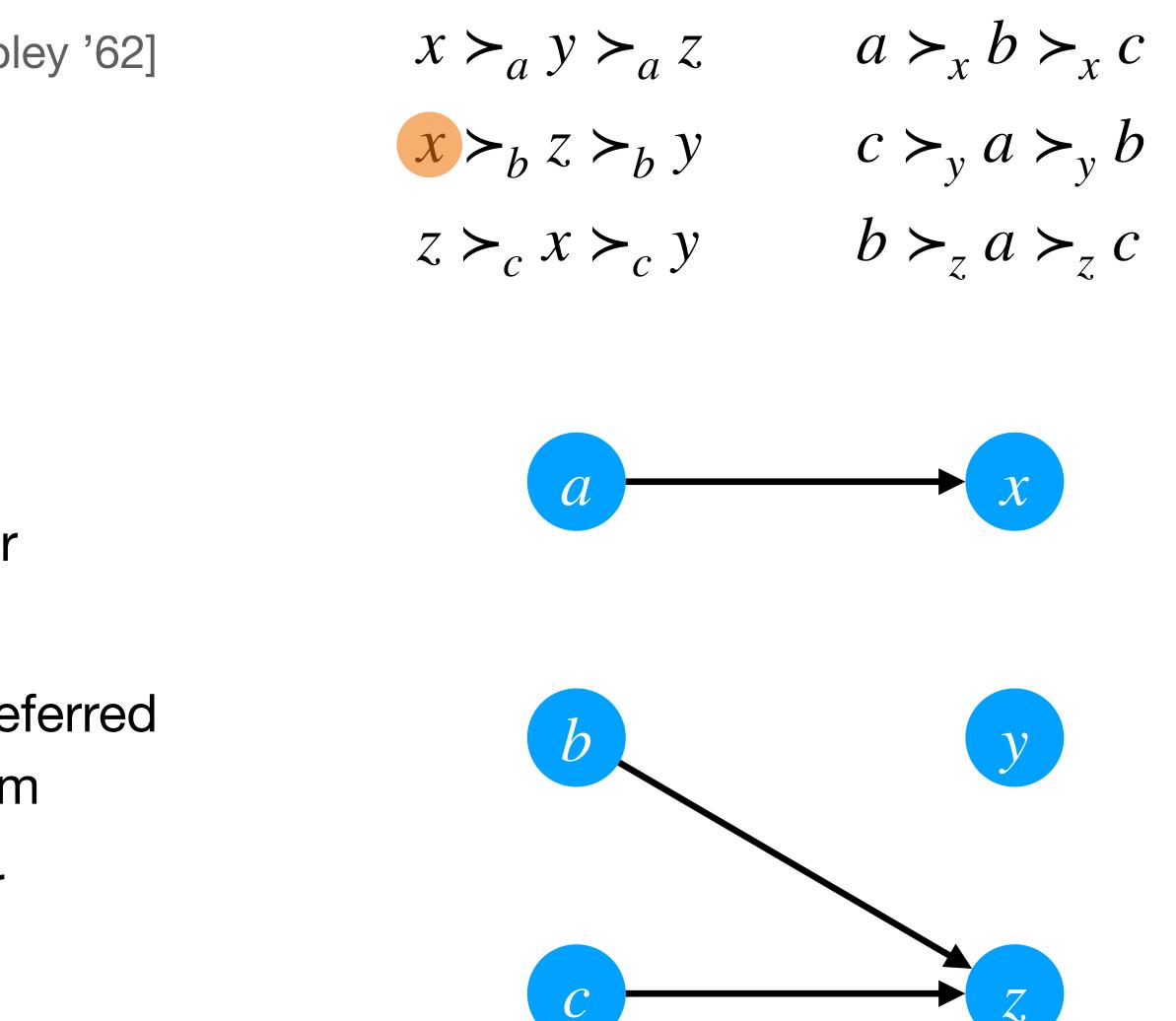


Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

- proof is constructive and given by the **Deferred Acceptance (DA)** mechanism
- repeat the following until no rejections occur at that point return the provisional matching
 - each $a \in A$ proposes to their most preferred company that has not yet rejected them
 - each $x \in X$ provisionally accepts their favorite proposer and rejects the rest

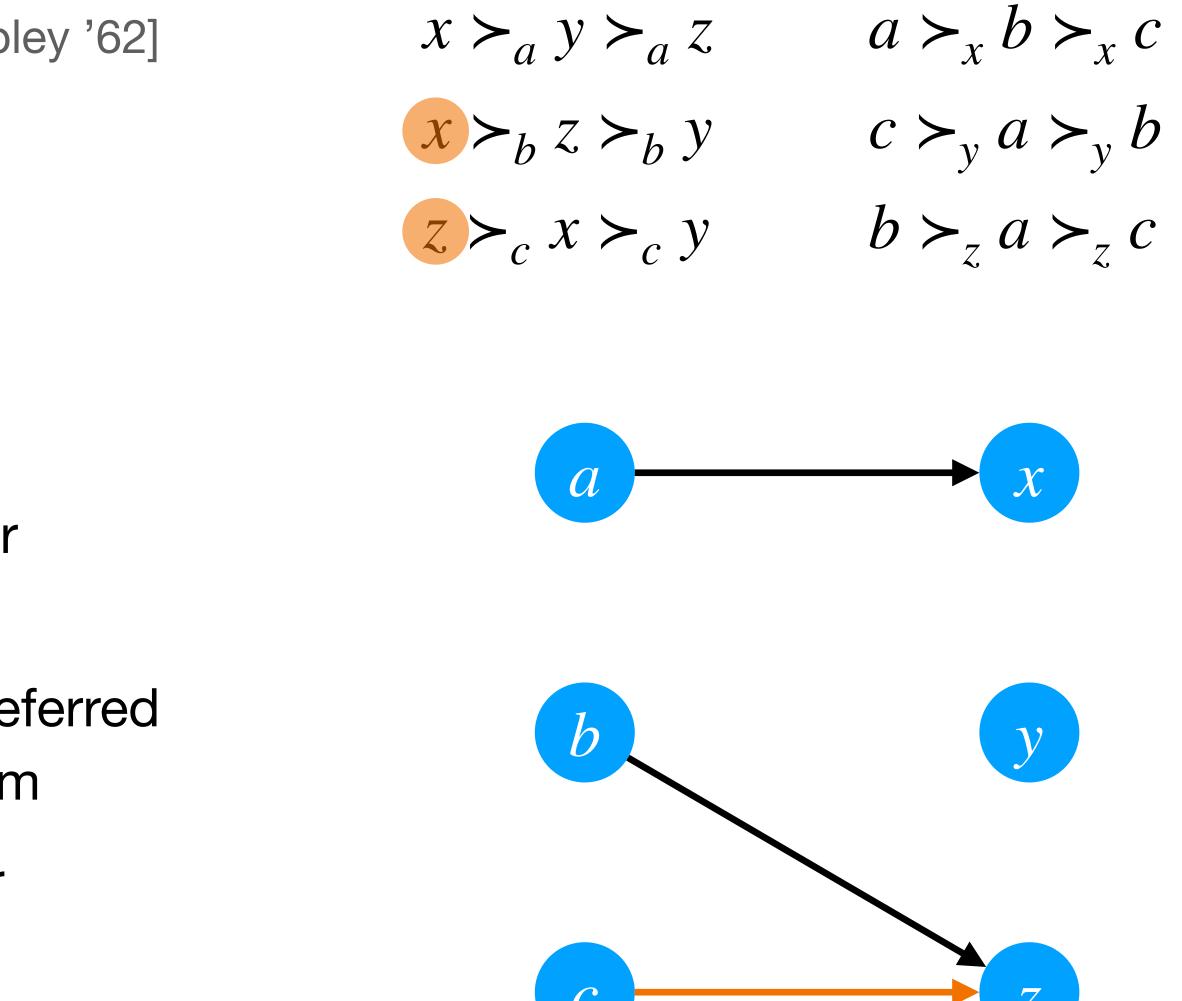


Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

- proof is constructive and given by the **Deferred Acceptance (DA)** mechanism
- repeat the following until no rejections occur at that point return the provisional matching
 - each $a \in A$ proposes to their most preferred company that has not yet rejected them
 - each $x \in X$ provisionally accepts their favorite proposer and rejects the rest

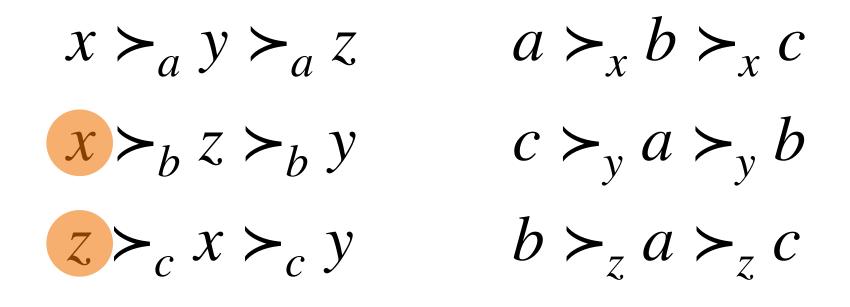


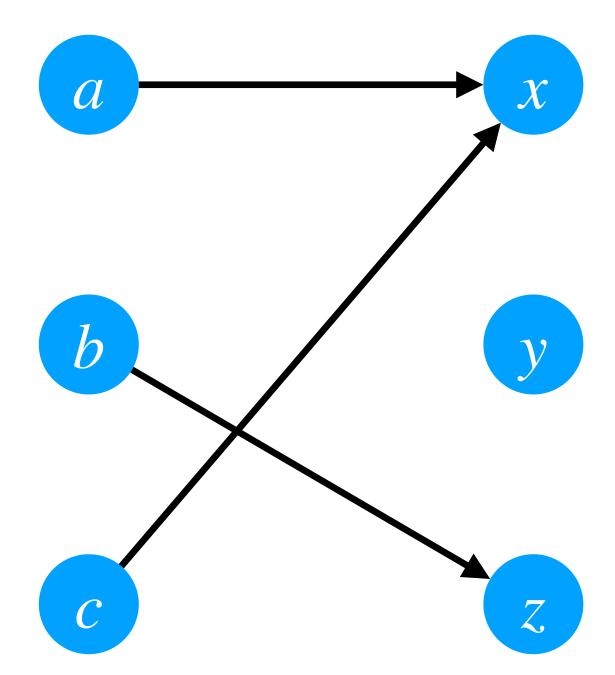
Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

- proof is constructive and given by the **Deferred Acceptance (DA)** mechanism
- repeat the following until no rejections occur at that point return the provisional matching
 - each $a \in A$ proposes to their most preferred company that has not yet rejected them
 - each $x \in X$ provisionally accepts their favorite proposer and rejects the rest



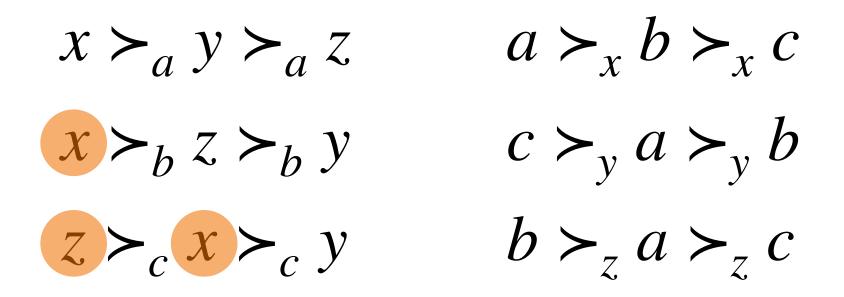


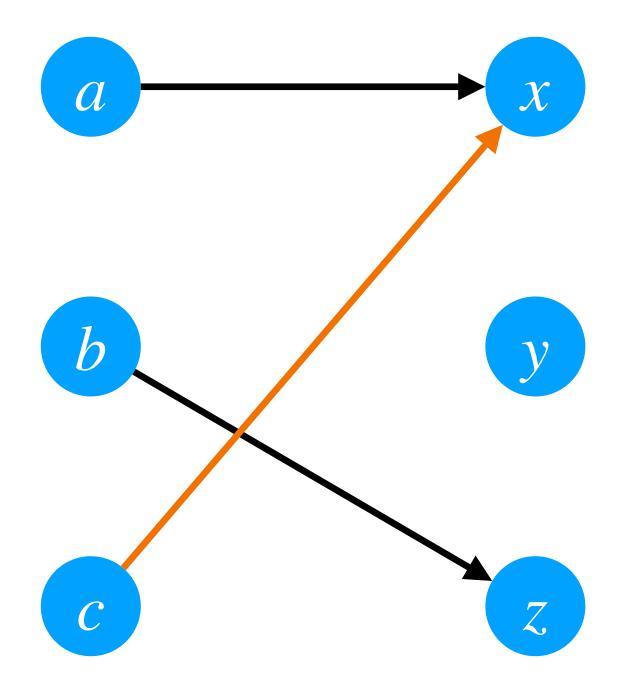
Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

- proof is constructive and given by the **Deferred Acceptance (DA)** mechanism
- repeat the following until no rejections occur at that point return the provisional matching
 - each $a \in A$ proposes to their most preferred company that has not yet rejected them
 - each $x \in X$ provisionally accepts their favorite proposer and rejects the rest



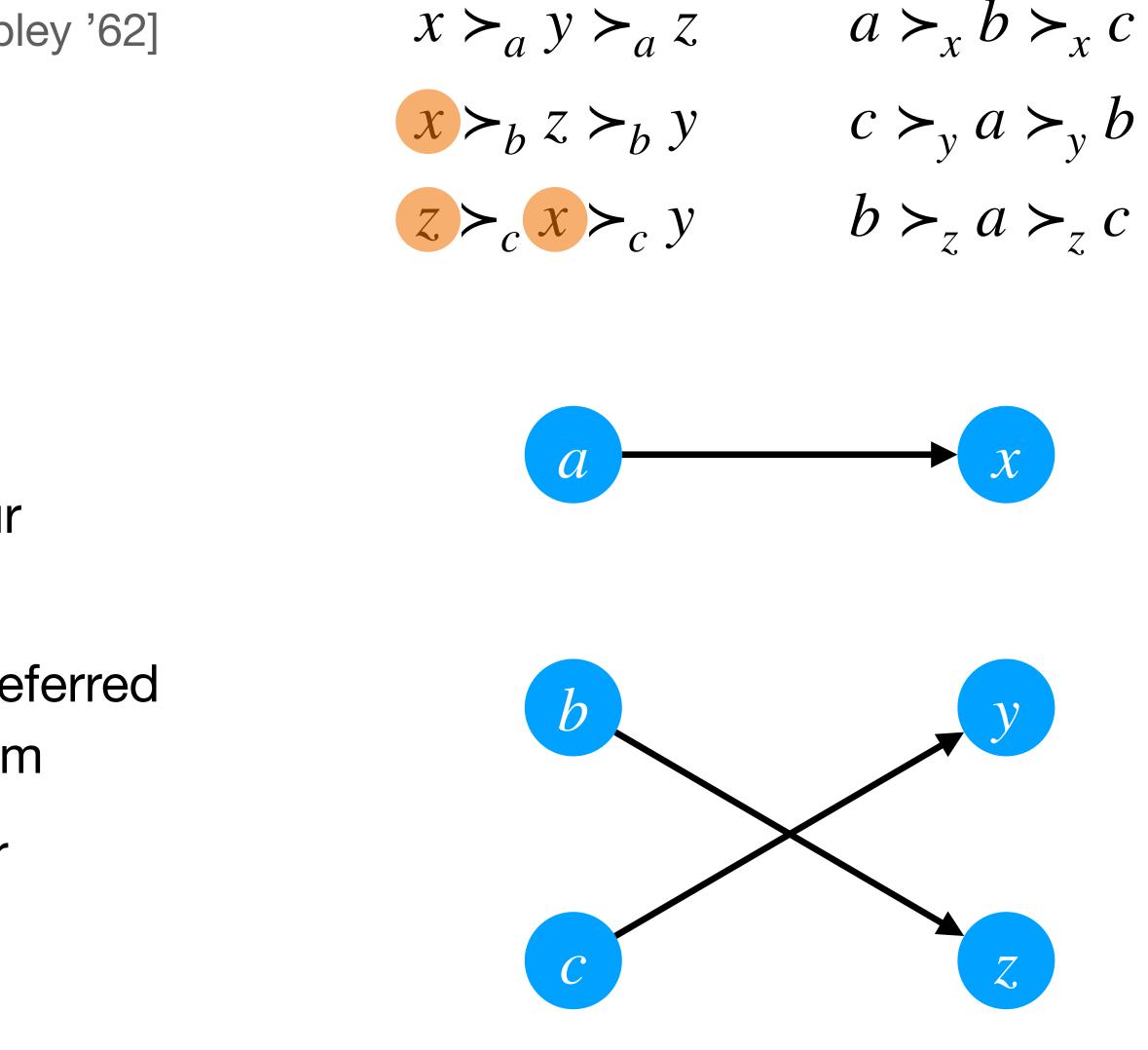


Theorem

[Gale, Shapley '62]

A stable matching always exists and can be found efficiently.

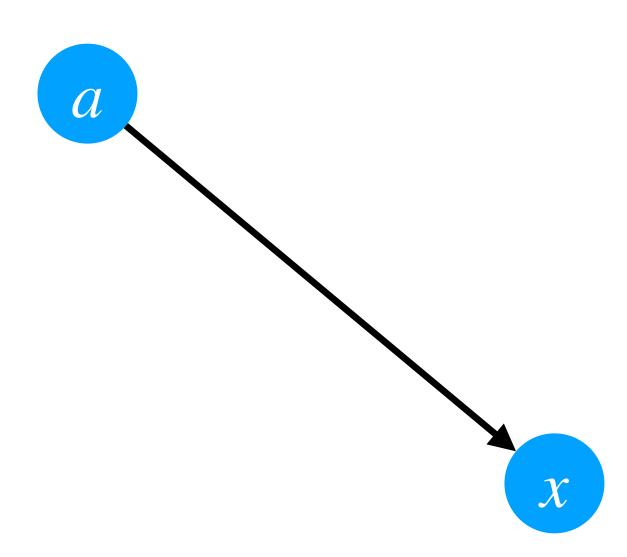
- proof is constructive and given by the **Deferred Acceptance (DA)** mechanism
- repeat the following until no rejections occur at that point return the provisional matching
 - each $a \in A$ proposes to their most preferred company that has not yet rejected them
 - each $x \in X$ provisionally accepts their favorite proposer and rejects the rest



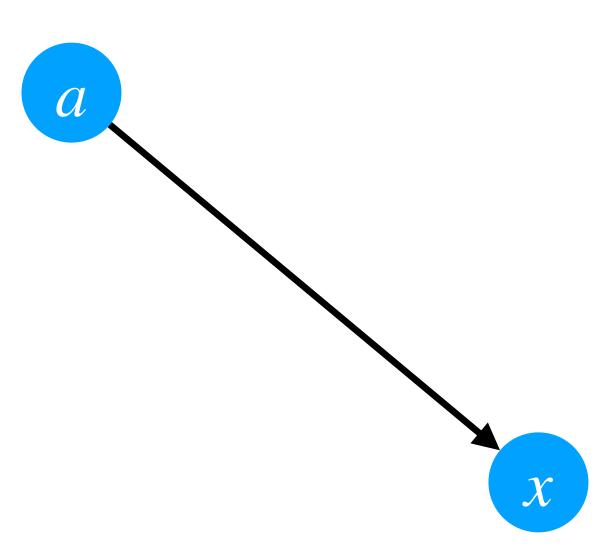
suppose DA terminates with matching Mand (a, x) prefer each other over M

- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - a must have proposed to x at some point

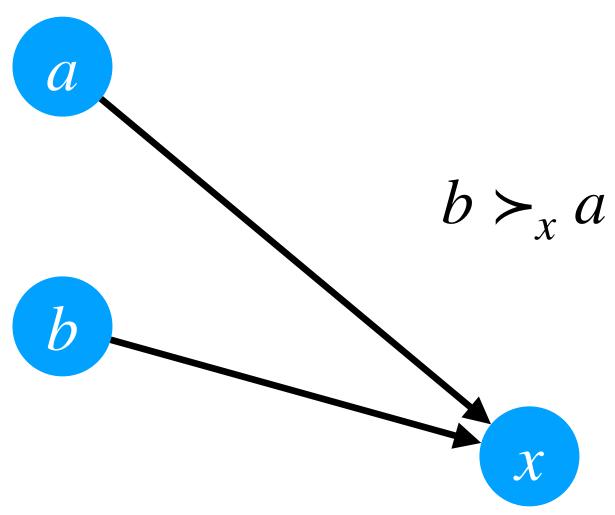
- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - a must have proposed to x at some point



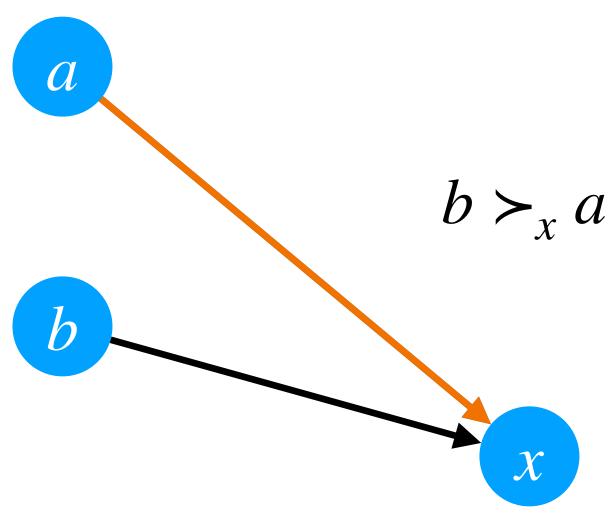
- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - a must have proposed to x at some point
 - x rejected a and got matched to a more preferred applicant



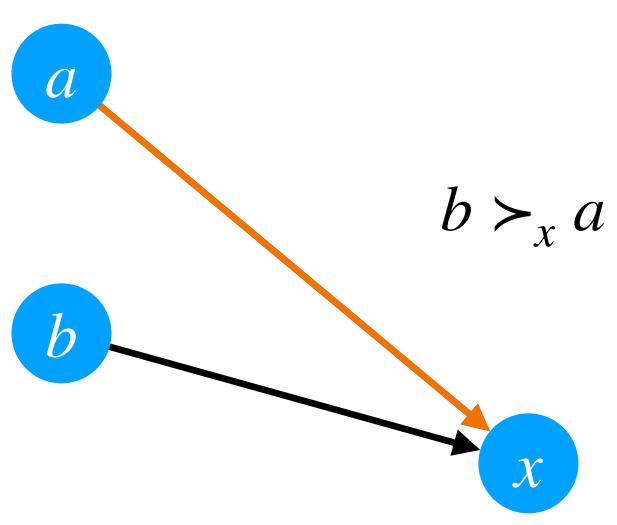
- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - a must have proposed to x at some point
 - x rejected a and got matched to a more preferred applicant



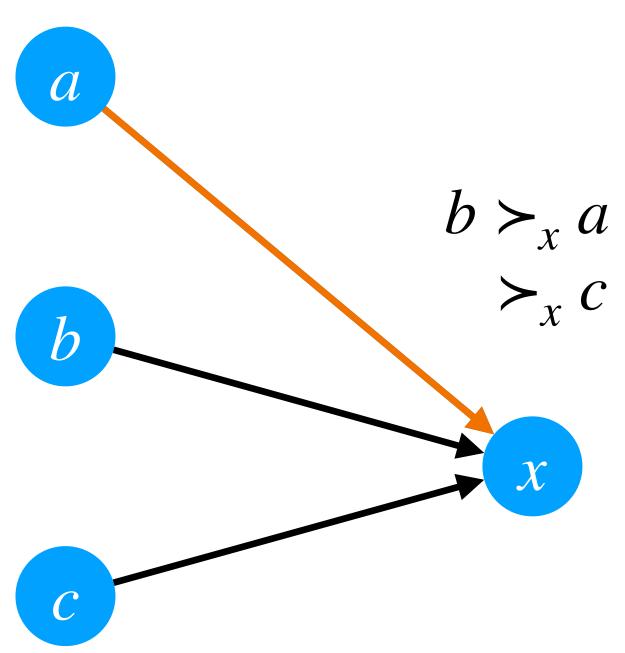
- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - a must have proposed to x at some point
 - x rejected a and got matched to a more preferred applicant



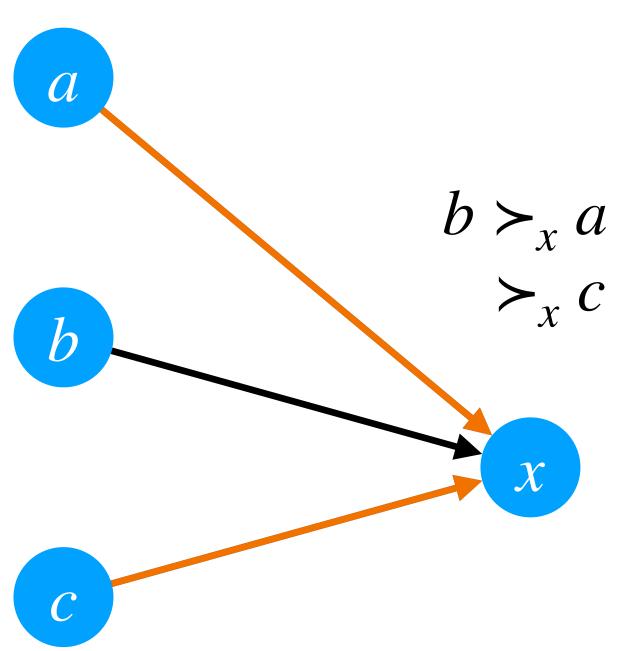
- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - a must have proposed to x at some point
 - x rejected a and got matched to a more preferred applicant
 - in later iterations, x can only be matched to a yet more preferred applicant



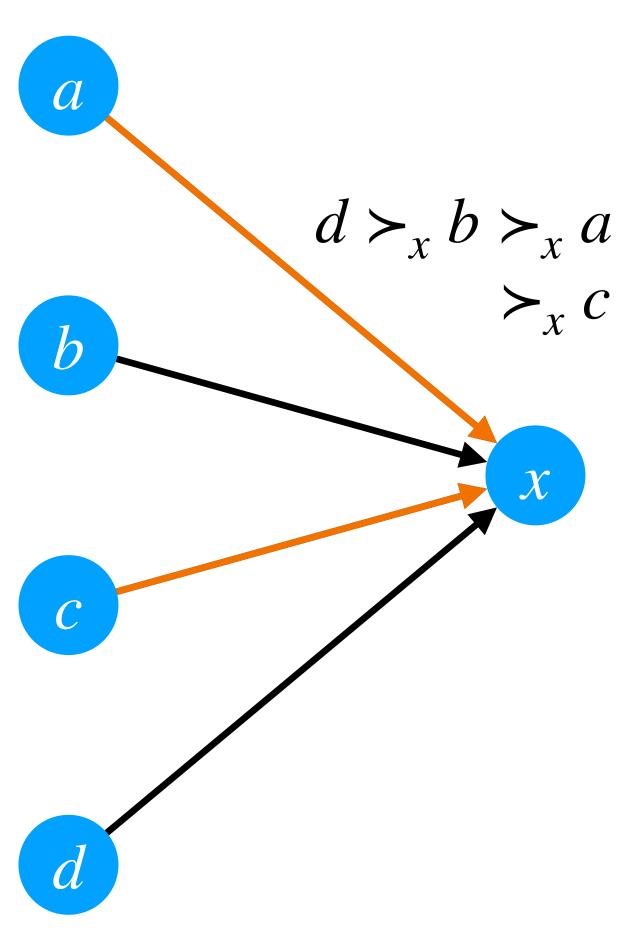
- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - a must have proposed to x at some point
 - x rejected a and got matched to a more preferred applicant
 - in later iterations, x can only be matched to a yet more preferred applicant



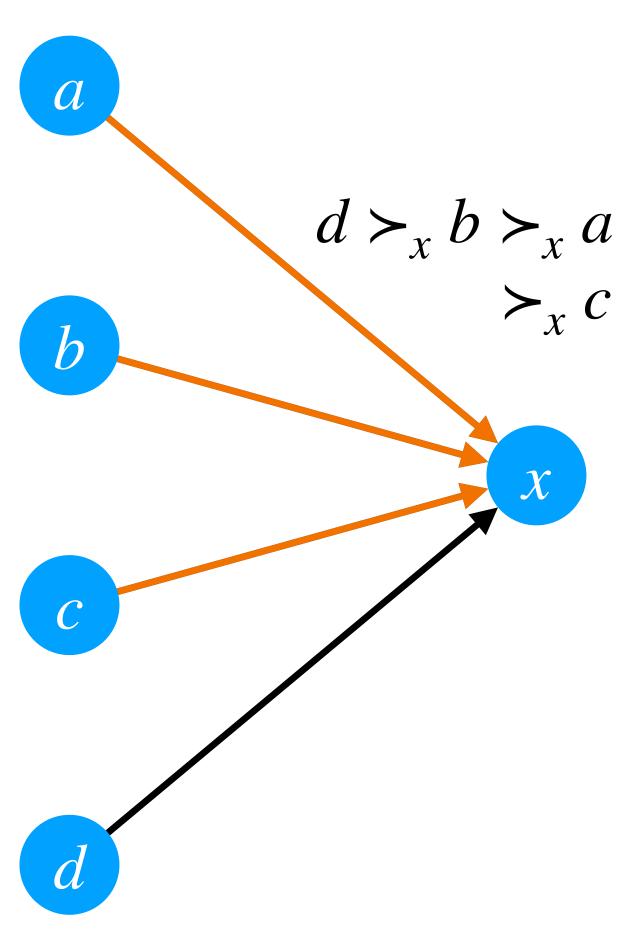
- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - a must have proposed to x at some point
 - x rejected a and got matched to a more preferred applicant
 - in later iterations, x can only be matched to a yet more preferred applicant



- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - a must have proposed to x at some point
 - x rejected a and got matched to a more preferred applicant
 - in later iterations, x can only be matched to a yet more preferred applicant

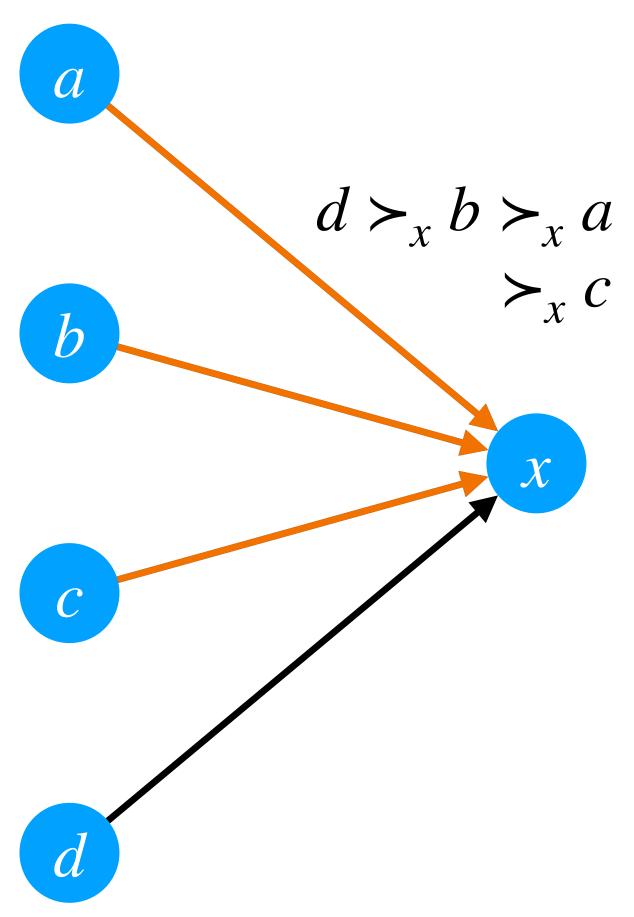


- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - a must have proposed to x at some point
 - x rejected a and got matched to a more preferred applicant
 - in later iterations, x can only be matched to a yet more preferred applicant



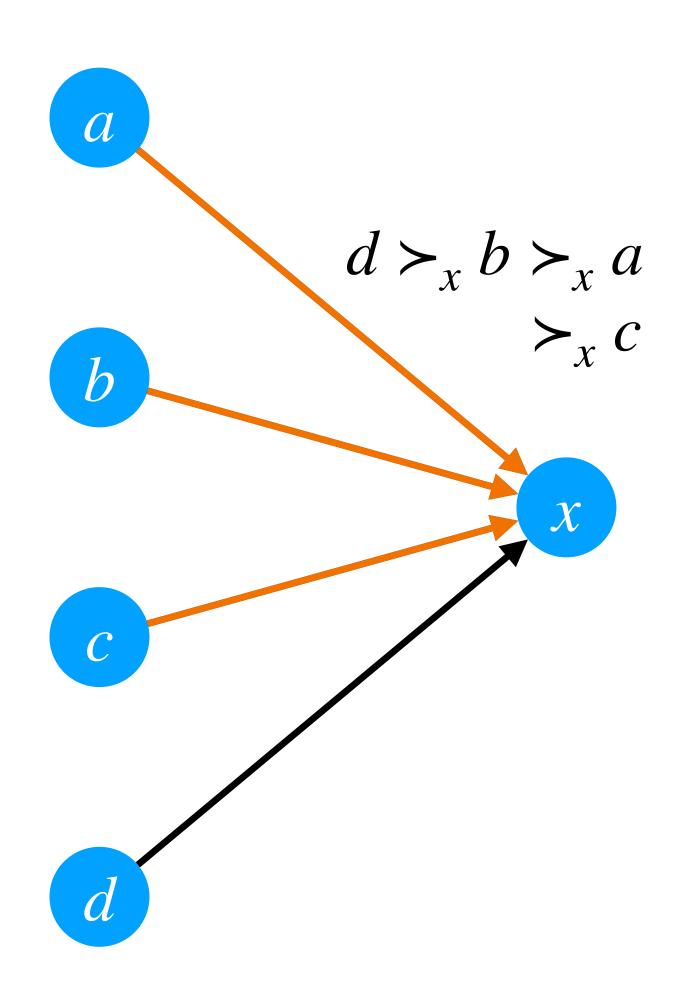
Deferred Acceptance: Stability and Running Time

- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - a must have proposed to x at some point
 - x rejected a and got matched to a more preferred applicant
 - in later iterations, x can only be matched to a yet more preferred applicant
 - in the end, x is matched to an applicant they prefer over a



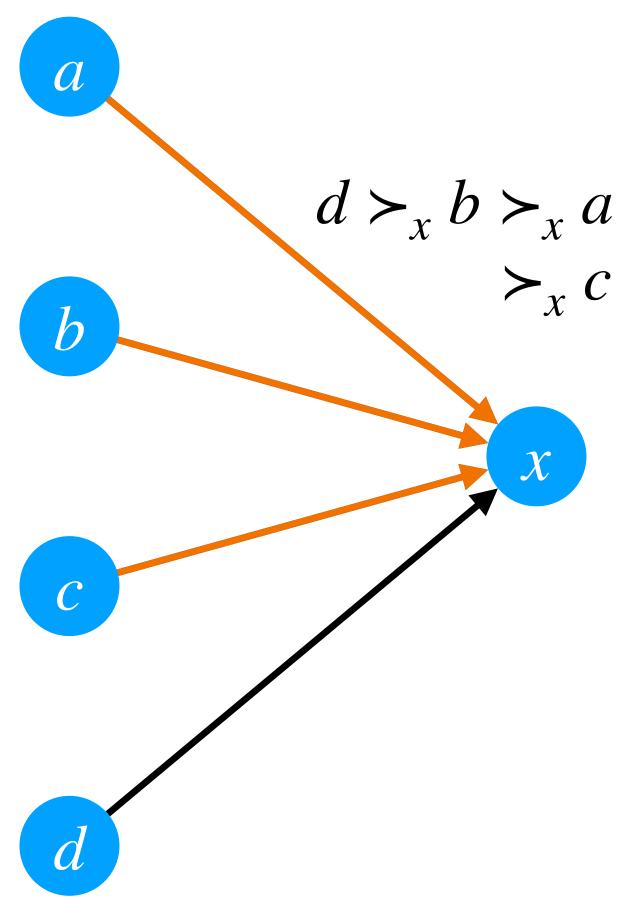
Deferred Acceptance: Stability and Running Time

- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - *a* must have proposed to *x* at some point
 - x rejected a and got matched to a more preferred applicant
 - in later iterations, x can only be matched to a yet more preferred applicant
 - in the end, x is matched to an applicant they prefer over a
- DA terminates after at most $|A| \cdot |X| + 1$ steps



Deferred Acceptance: Stability and Running Time

- suppose DA terminates with matching Mand (a, x) prefer each other over M
 - *a* must have proposed to *x* at some point
 - x rejected a and got matched to a more preferred applicant
 - in later iterations, x can only be matched to a yet more preferred applicant
 - in the end, x is matched to an applicant they prefer over a
- > DA terminates after at most $|A| \cdot |X| + 1$ steps
 - at least one new rejection between a pair (a, x)occurs in every step except for the last one



we have run applicant-proposing DA; one can analogously run company-proposing

- we have run applicant-proposing DA; one can analogously run company-proposing
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

- we have run applicant-proposing DA; one can analogously run company-proposing
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

every applicant gets matched to their most-preferred attainable company,

- we have run applicant-proposing DA; by their most-preferred attainable company one can analogously run company-proposing
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

every applicant gets matched to their most-preferred attainable company,

by contradiction: an applicant gets rejected

- we have run applicant-proposing DA; by contradiction: an applicant gets rejected by their most-preferred attainable company one can analogously run company-proposing
- \triangleright call (a, x) the first such pair for any agent, call an agent from the other side and say x rejects a because of b **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

every applicant gets matched to their most-preferred attainable company,

- we have run applicant-proposing DA; by contradiction: an applicant gets rejected by their most-preferred attainable company one can analogously run company-proposing
- \triangleright call (a, x) the first such pair for any agent, call an agent from the other side and say x rejects a because of b **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

every applicant gets matched to their most-preferred attainable company,

b likes x at least as much as their most-preferred attainable company because of how we fixed (a, x)

- we have run applicant-proposing DA; by contradiction: an applicant gets rejected one can analogously run company-proposing by their most-preferred attainable company
- \triangleright call (a, x) the first such pair for any agent, call an agent from the other side and say x rejects a because of b **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

every applicant gets matched to their most-preferred attainable company,

- b likes x at least as much as their most-preferred attainable company because of how we fixed (a, x)
- \blacktriangleright since x is attainable for a, there exists a stable matching in which they are matched and b is matched to $y \neq x$ or unmatched

- we have run applicant-proposing DA; by contradiction: an applicant gets rejected by their most-preferred attainable company one can analogously run company-proposing
- call (a, x) the first such pair for any agent, call an agent from the other side and say x rejects a because of b **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

every applicant gets matched to their most-preferred attainable company,

- b likes x at least as much as their most-preferred attainable company because of how we fixed (a, x)
- since x is attainable for a, there exists a stable matching in which they are matched and *b* is matched to $y \neq x$ or unmatched
- (b, x) form a blocking pair in this matching

- we have run applicant-proposing DA; one can analogously run company-proposing
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

- every applicant gets matched to their most-preferred attainable company,
- every company gets matched to their least-preferred attainable applicant.

- we have run applicant-proposing DA; one can analogously run company-proposing
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

- every applicant gets matched to their most-preferred attainable company,
- every company gets matched to their least-preferred attainable applicant.

• by contradiction: $x \in X$ is matched to an applicant $a \in A$ that they prefer over some attainable $b \in A$

- by contradiction: $x \in X$ is matched to we have run applicant-proposing DA; an applicant $a \in A$ that they prefer one can analogously run company-proposing over some attainable $b \in A$
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

- every applicant gets matched to their most-preferred attainable company,
- every company gets matched to their least-preferred attainable applicant.

 \blacktriangleright there is a stable matching Mwhere x is matched to b and *a* is matched to $y \neq x$ or unmatched

- we have run applicant-proposing DA; one can analogously run company-proposing
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

- every applicant gets matched to their most-preferred attainable company,
- every company gets matched to their least-preferred attainable applicant.

- by contradiction: $x \in X$ is matched to an applicant $a \in A$ that they prefer over some attainable $b \in A$
 - \blacktriangleright there is a stable matching M where x is matched to h and *a* is matched to $y \neq x$ or unmatched
 - by the previous claim, $x \succ_{\alpha} y$, and by assumption $a \succ_x b$

- we have run applicant-proposing DA; one can analogously run company-proposing
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

- every applicant gets matched to their most-preferred attainable company,
- every company gets matched to their least-preferred attainable applicant.

- by contradiction: $x \in X$ is matched to an applicant $a \in A$ that they prefer over some attainable $b \in A$
 - \blacktriangleright there is a stable matching Mwhere x is matched to b and *a* is matched to $y \neq x$ or unmatched
 - by the previous claim, $x \succ_a y$, and by assumption $a \succ_x b$
 - (a, x) form a blocking pair in M

- we have run applicant-proposing DA; one can analogously run company-proposing
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

- every applicant gets matched to their most-preferred attainable company,
- every company gets matched to their least-preferred attainable applicant.

Thus, the matched agents are the same in every stable matching.

- we have run applicant-proposing DA; one can analogously run company-proposing
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

- every applicant gets matched to their most-preferred attainable company,
- every company gets matched to their least-preferred attainable applicant.

Thus, the matched agents are the same in every stable matching.

• suppose there exists $x \in X$ that is matched to $a \in A$ in applicant-proposing DA and to no one in another stable matching M

- we have run applicant-proposing DA; one can analogously run company-proposing
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

- every applicant gets matched to their most-preferred attainable company,
- every company gets matched to their least-preferred attainable applicant.

Thus, the matched agents are the same in every stable matching.

• suppose there exists $x \in X$ that is matched to $a \in A$ in applicant-proposing DA and to no one in another stable matching M

> since x is a's most preferred attainable company, (a, x) is a blocking pair in M

- we have run applicant-proposing DA; • suppose there exists $x \in X$ that is matched to $a \in A$ in applicant-proposing DA one can analogously run company-proposing and to no one in another stable matching M
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

- every applicant gets matched to their most-preferred attainable company,
- every company gets matched to their least-preferred attainable applicant.

Thus, the matched agents are the same in every stable matching.

- since x is a's most preferred attainable company, (a, x) is a blocking pair in M
- companies matched in A-P DA \subseteq companies matched in any stable matching

- we have run applicant-proposing DA; • suppose there exists $x \in X$ that is matched to $a \in A$ in applicant-proposing DA one can analogously run company-proposing and to no one in another stable matching M
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

- every applicant gets matched to their most-preferred attainable company,
- every company gets matched to their least-preferred attainable applicant.

Thus, the matched agents are the same in every stable matching.

- since x is a's most preferred attainable company, (a, x) is a blocking pair in M
- ► companies matched in A-P DA \subseteq companies matched in any stable matching
- since all stable matchings have size $\min\{|A|, |X|\}, \text{ the set of matched}$ companies is the same in all of them

- suppose there exists $x \in X$ that is matched we have run applicant-proposing DA; to $a \in A$ in applicant-proposing DA one can analogously run company-proposing and to no one in another stable matching M
- for any agent, call an agent from the other side **attainable** if there exists a stable matching in which these two agents are matched

Theorem

In the outcome of applicant-proposing DA:

- every applicant gets matched to their most-preferred attainable company,
- every company gets matched to their least-preferred attainable applicant.

Thus, the matched agents are the same in every stable matching.

- since x is a's most preferred attainable company, (a, x) is a blocking pair in M
- companies matched in A-P DA \subseteq companies matched in any stable matching
- since all stable matchings have size $\min\{|A|, |X|\}, \text{ the set of matched}$ companies is the same in all of them
- the proof is analogous for applicants (starting from company-proposing DA)

Is DA strategyproof?

Strategic Behavior

Strategic Behavior

Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

Strategic Behavior

Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings

Strategic Behavior

Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings
 - for any of them, an agent can misreport and force the other (better) one

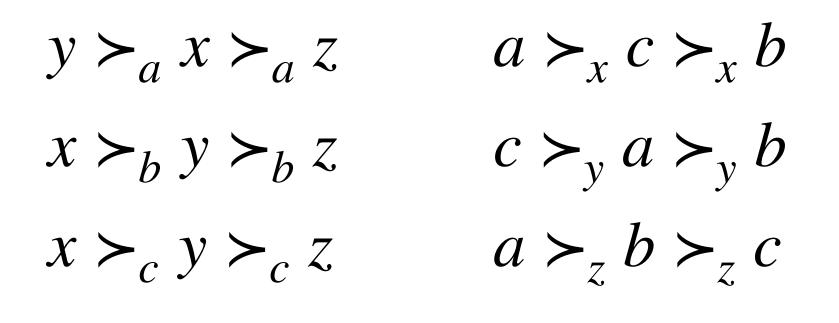
Strategic Behavior

Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings
 - for any of them, an agent can misreport and force the other (better) one

Strategic Behavior

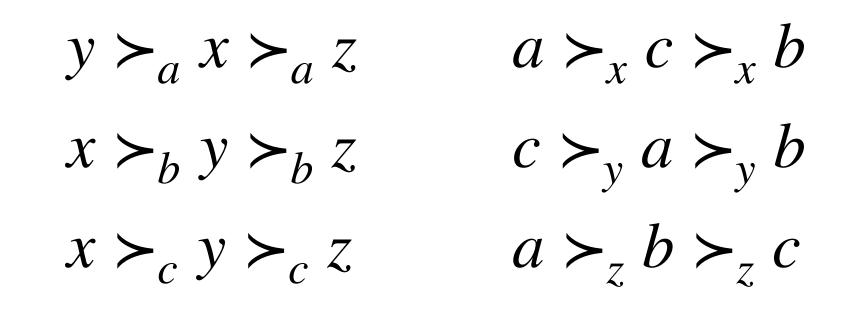


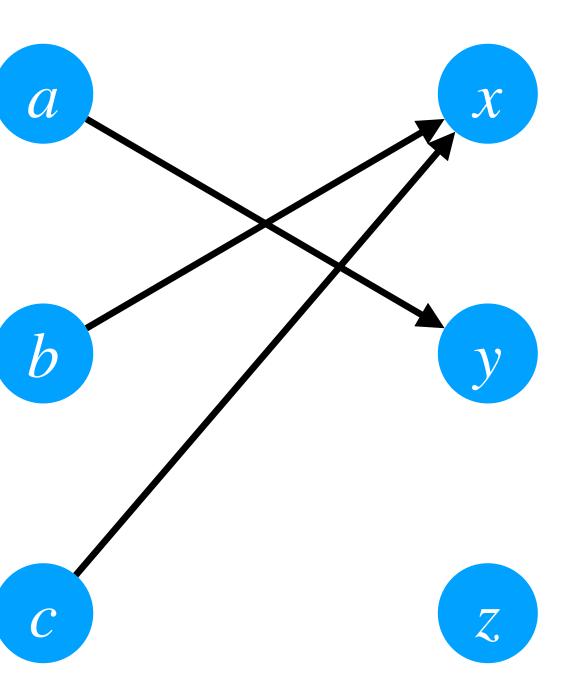
Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings
 - for any of them, an agent can misreport and force the other (better) one

Strategic Behavior



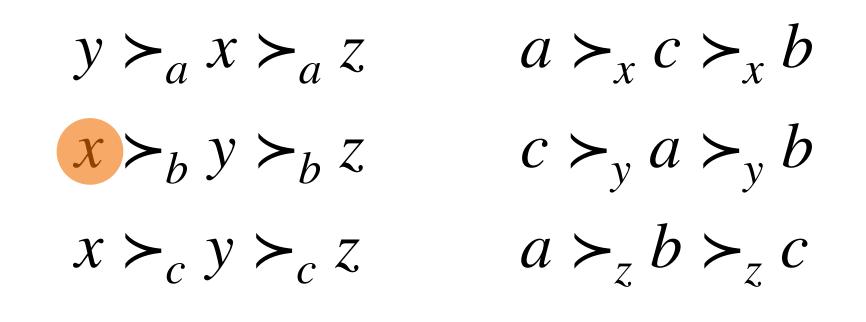


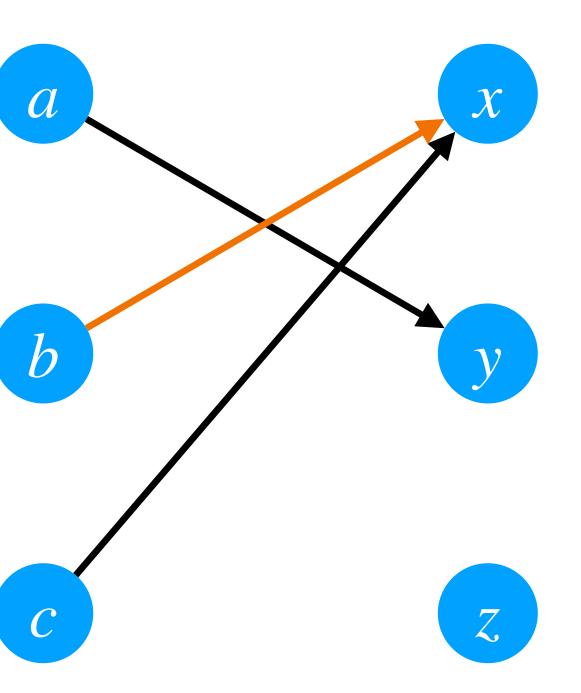
Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings
 - for any of them, an agent can misreport and force the other (better) one

Strategic Behavior



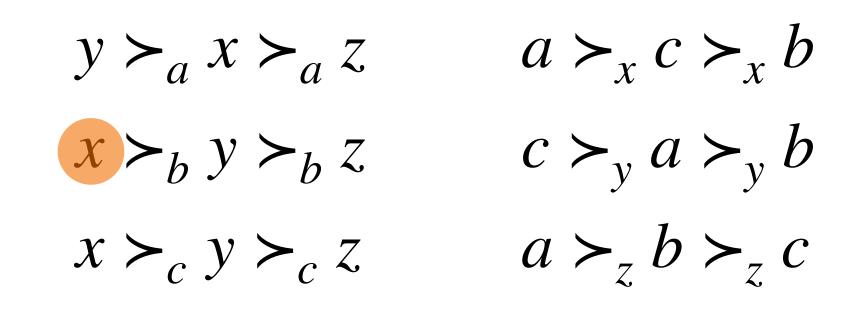


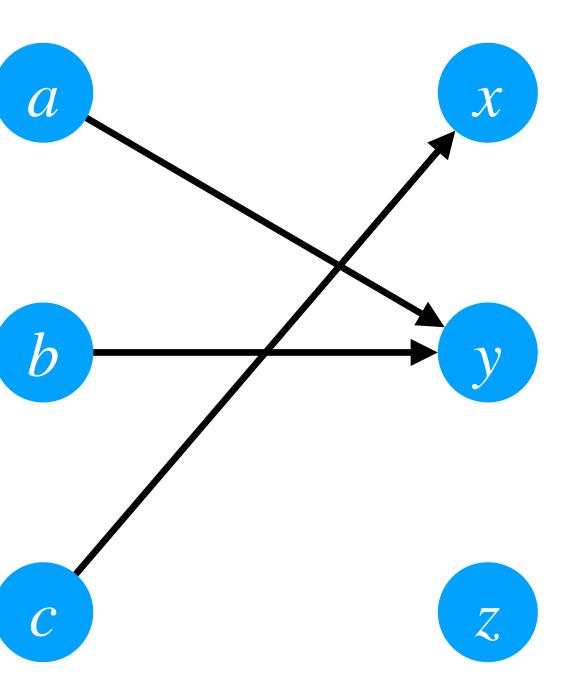
Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings
 - for any of them, an agent can misreport and force the other (better) one

Strategic Behavior



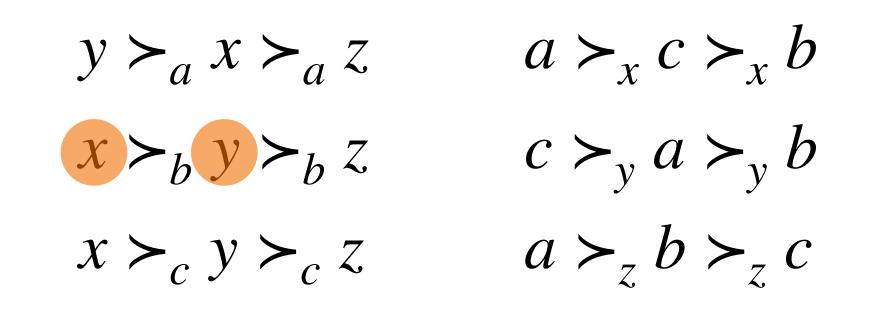


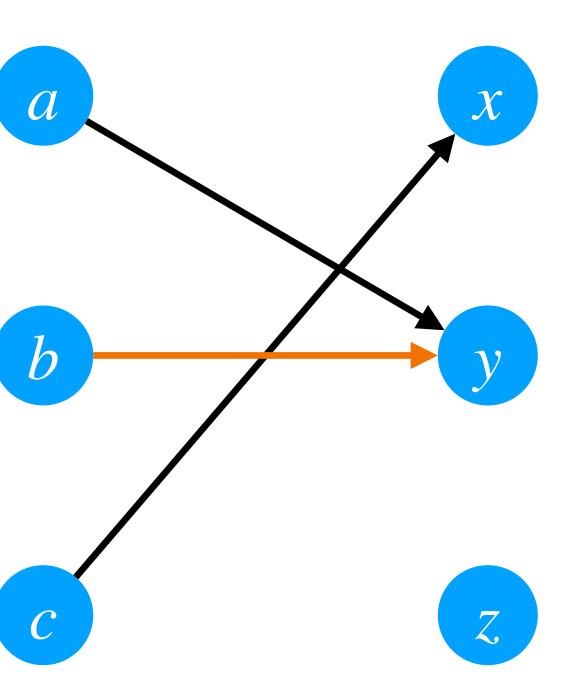
Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings
 - for any of them, an agent can misreport and force the other (better) one

Strategic Behavior



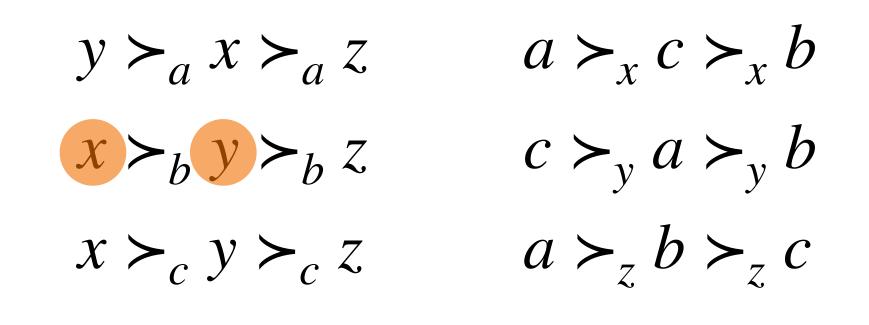


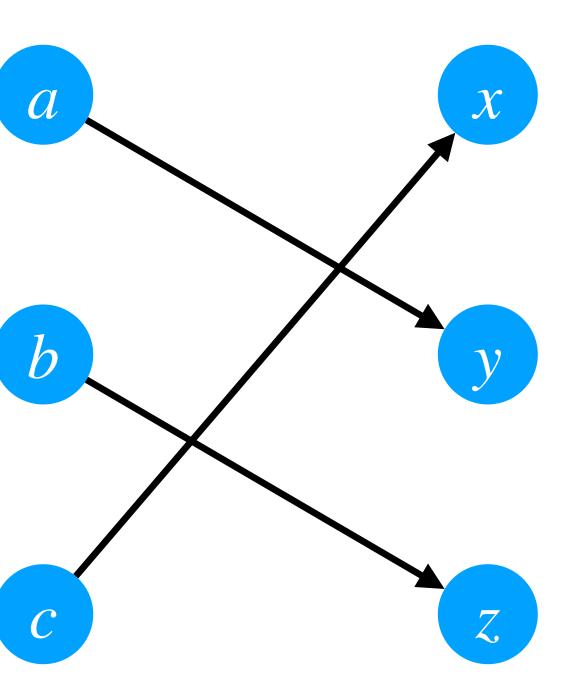
Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings
 - for any of them, an agent can misreport and force the other (better) one

Strategic Behavior



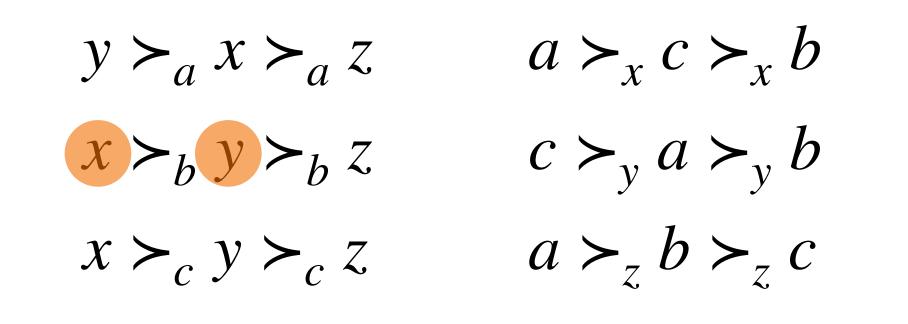


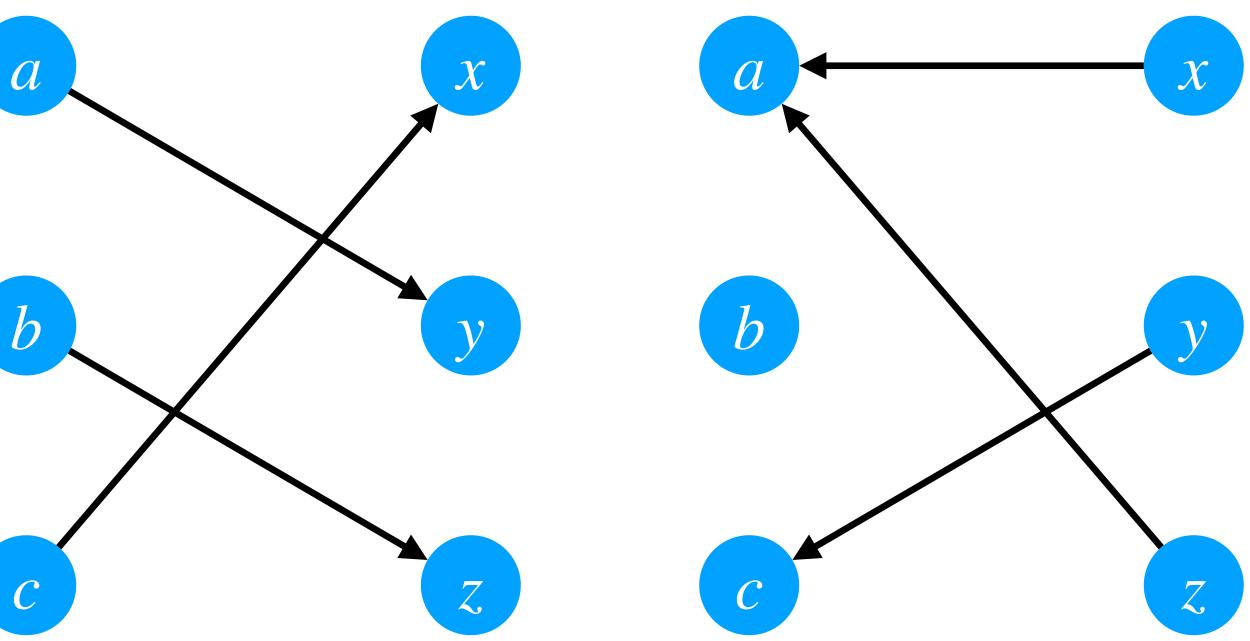
Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings
 - for any of them, an agent can misreport and force the other (better) one

Strategic Behavior



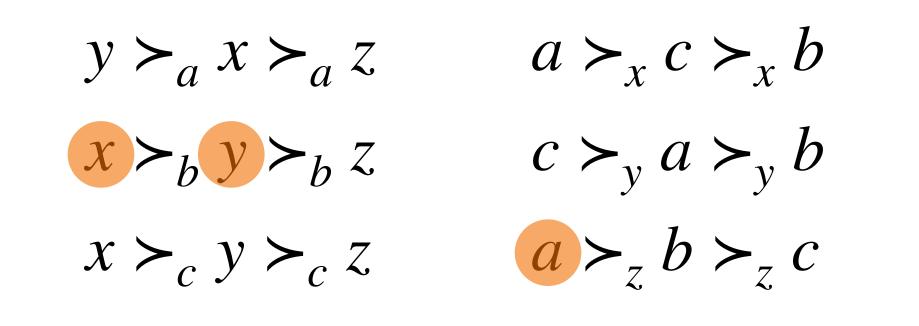


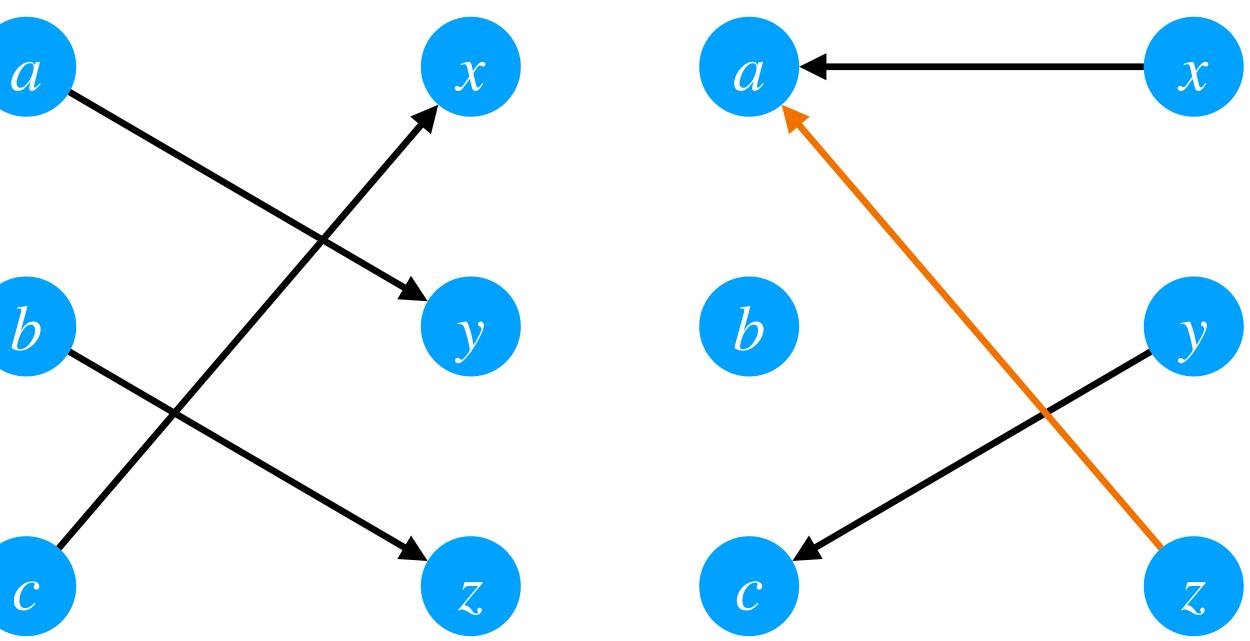
Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings
 - for any of them, an agent can misreport and force the other (better) one

Strategic Behavior



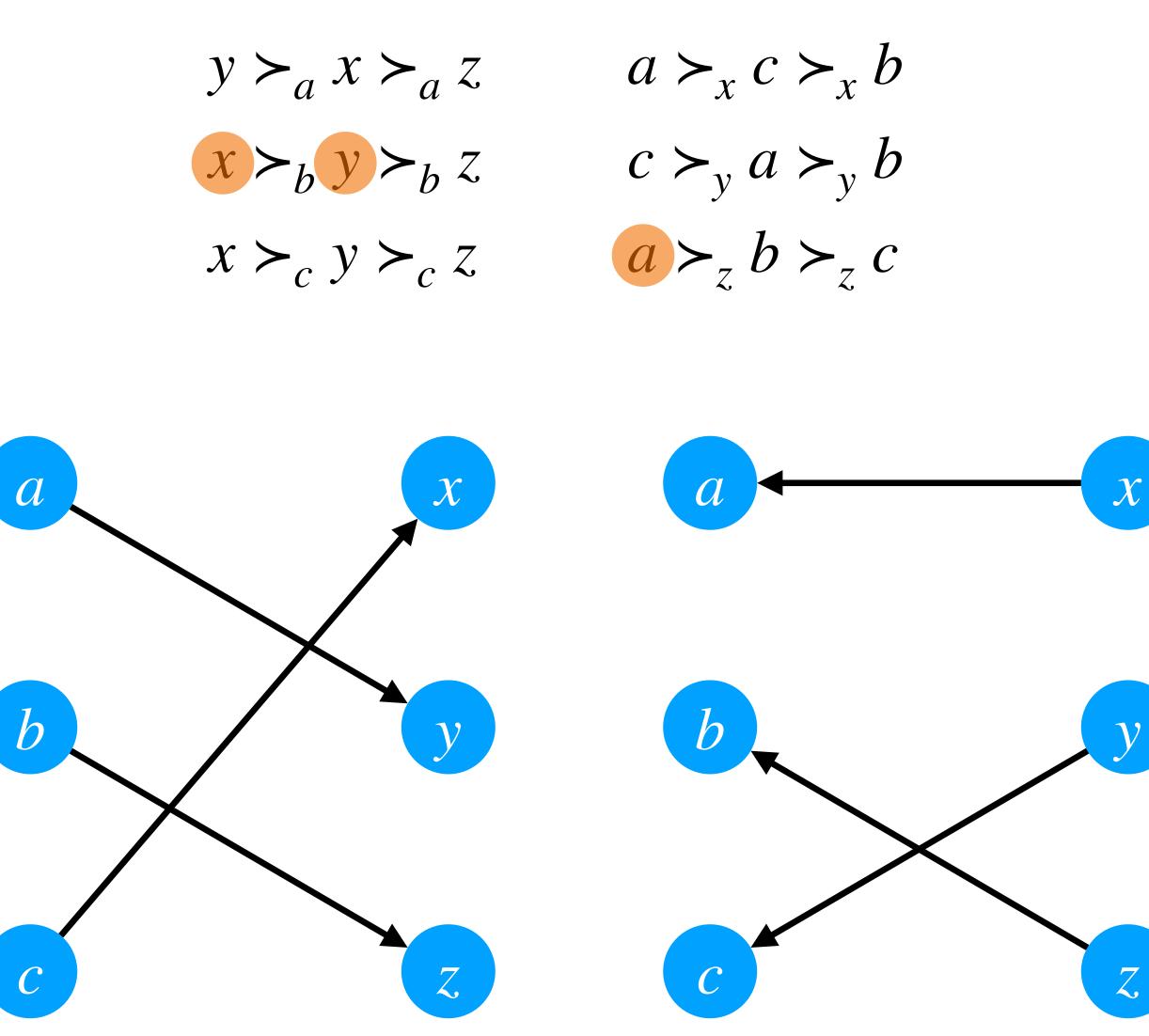


Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings
 - for any of them, an agent can misreport and force the other (better) one

Strategic Behavior



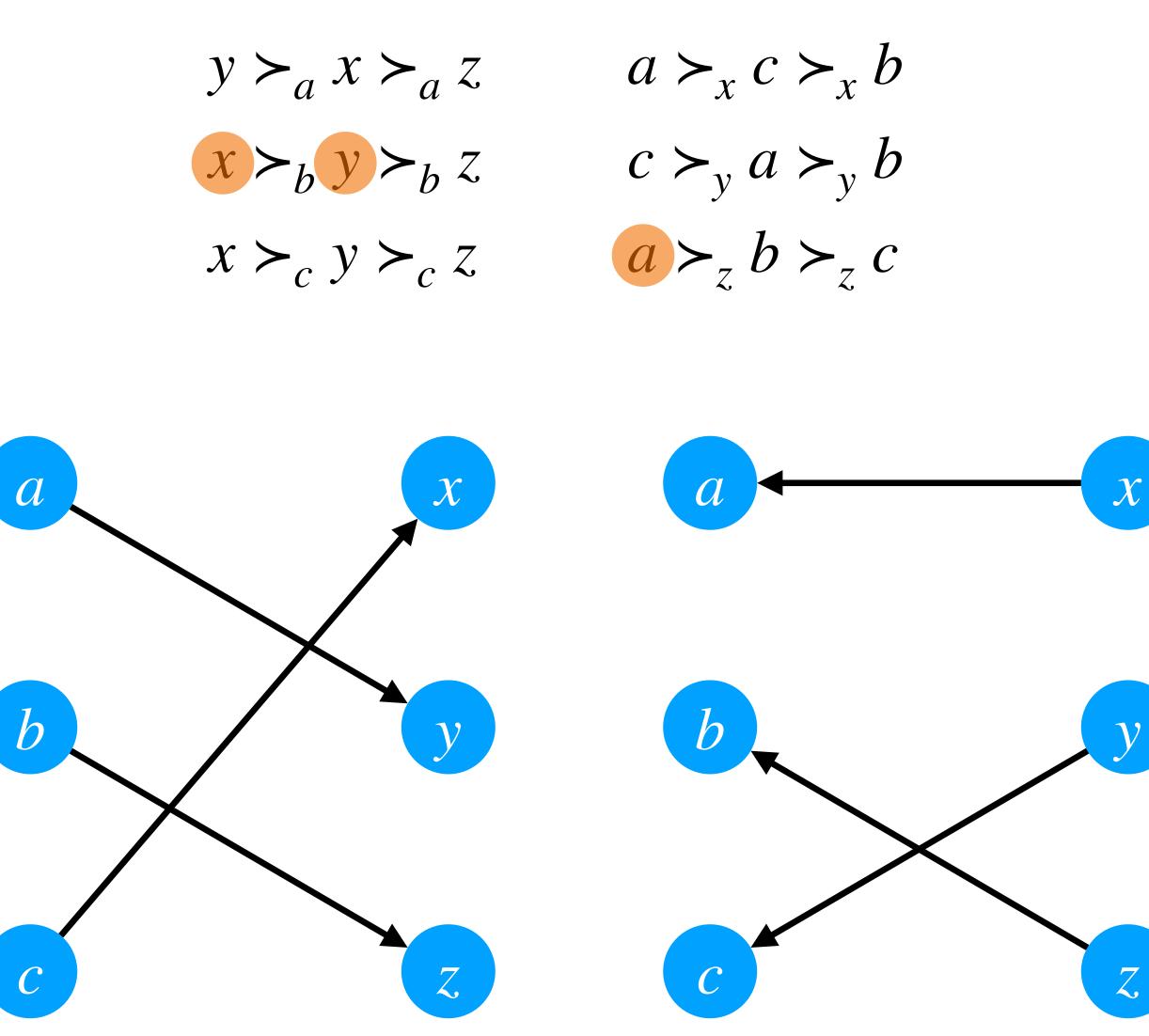
Is DA strategyproof? yes (proposing side) and **no** (proposed side)

Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings (why?)
 - for any of them, an agent can misreport and force the other (better) one

Strategic Behavior



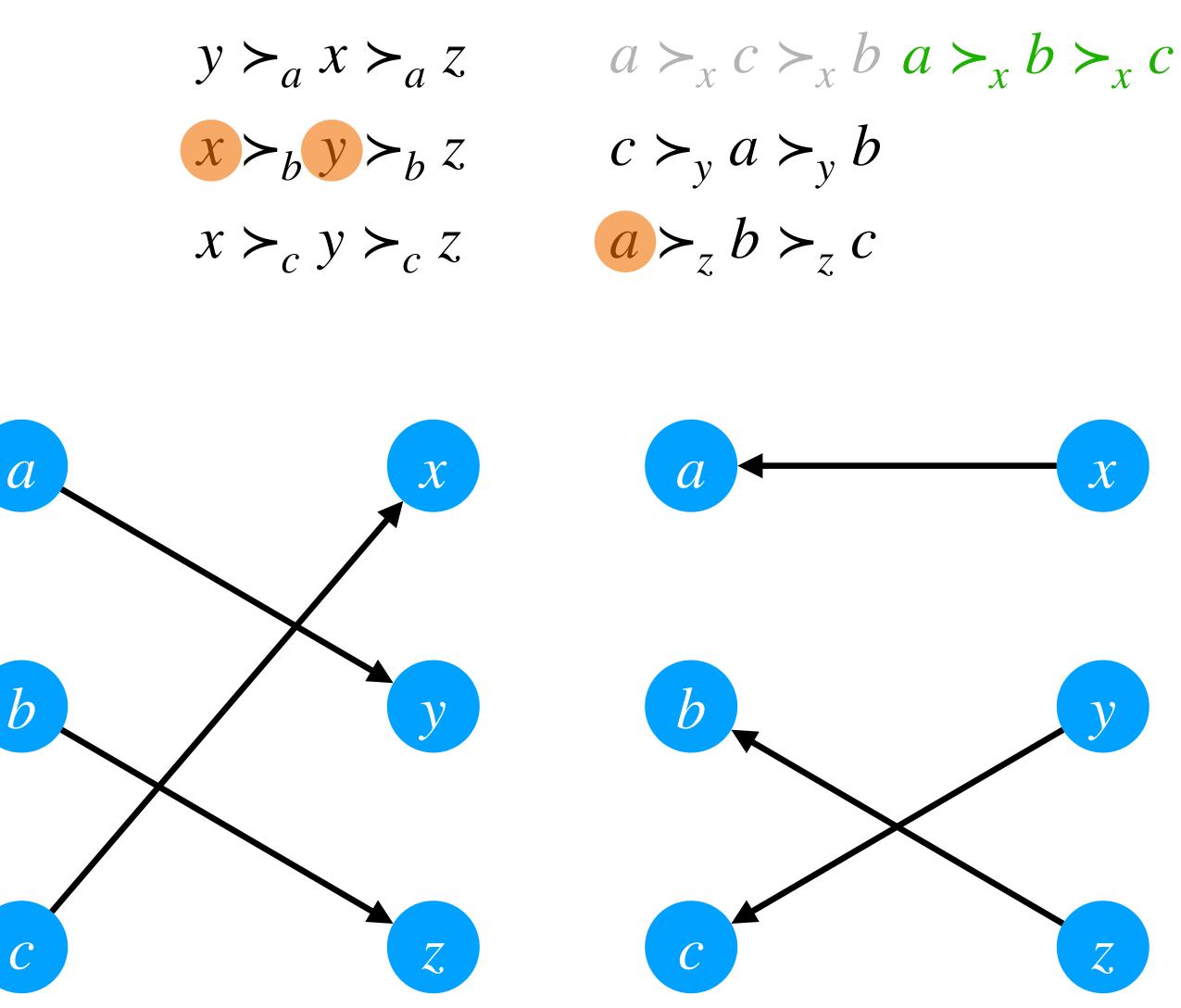
Is DA strategyproof? yes (proposing side) and **no** (proposed side)

Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings (why?)
 - for any of them, an agent can misreport and force the other (better) one

Strategic Behavior



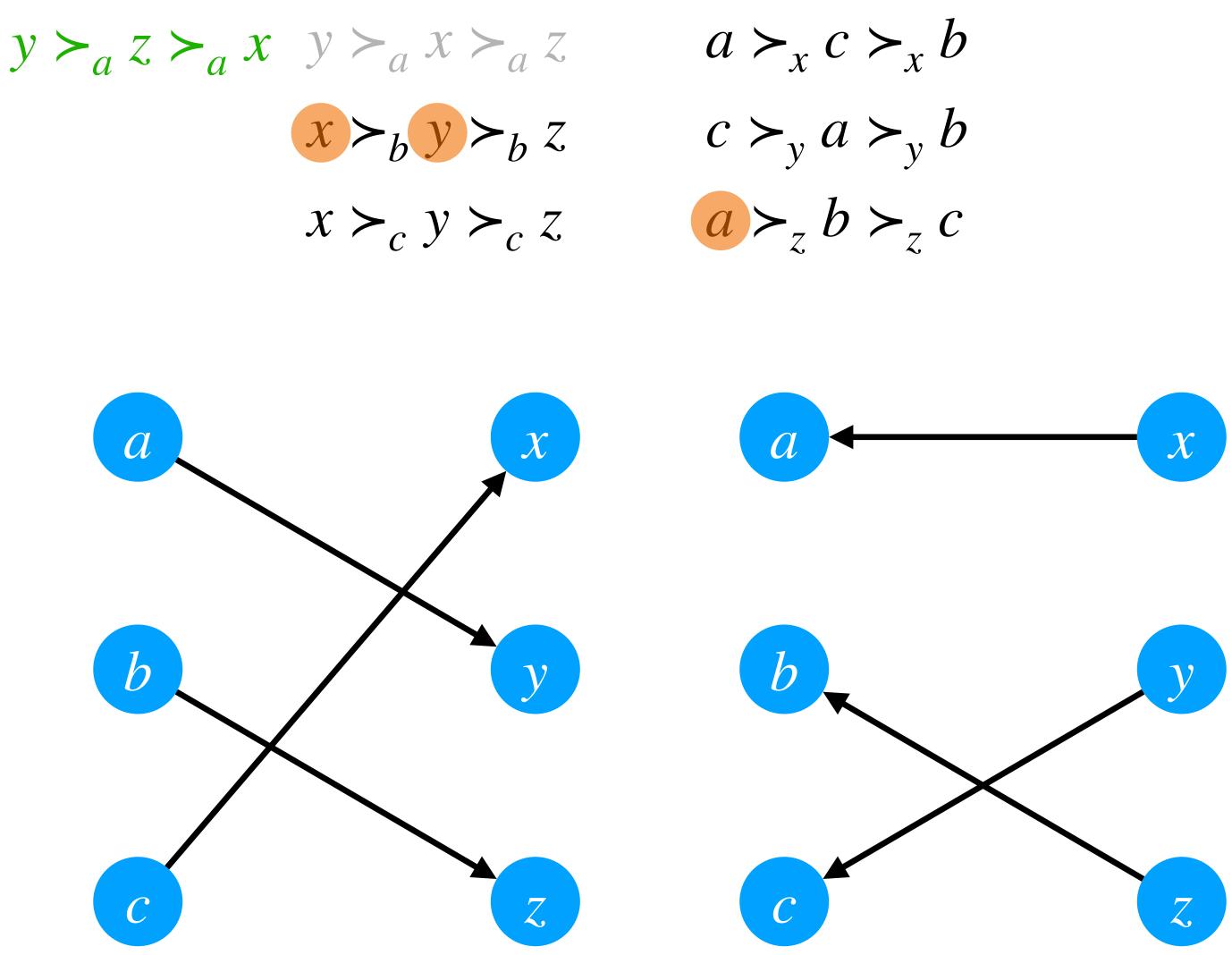
Is DA strategyproof? yes (proposing side) and **no** (proposed side)

Theorem [Roth '82]

No mechanism is stable and strategyproof for both sides.

- proof idea:
 - instance with only two stable matchings (why?)
 - for any of them, an agent can misreport and force the other (better) one

Strategic Behavior



a matching is Pareto-optimal for one side if no alternative matching is

Efficiency

- a matching is Pareto-optimal for one side if no alternative matching is
 - weakly better for everyone from this side

Efficiency

- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side •

Efficiency

- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

No mechanism is stable and Pareto-optimal for any side.

Efficiency

[Roth '82]

- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

No mechanism is stable and Pareto-optimal for any side.

- proof idea:
 - instance where DA is not Pareto-optimal for the proposing side

Efficiency

[Roth '82]

- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

No mechanism is stable and Pareto-optimal for any side.

proof idea:

- instance where DA is not Pareto-optimal for the proposing side
- the outcome of DA Pareto-dominates all other stable matchings for the proposing side

Efficiency

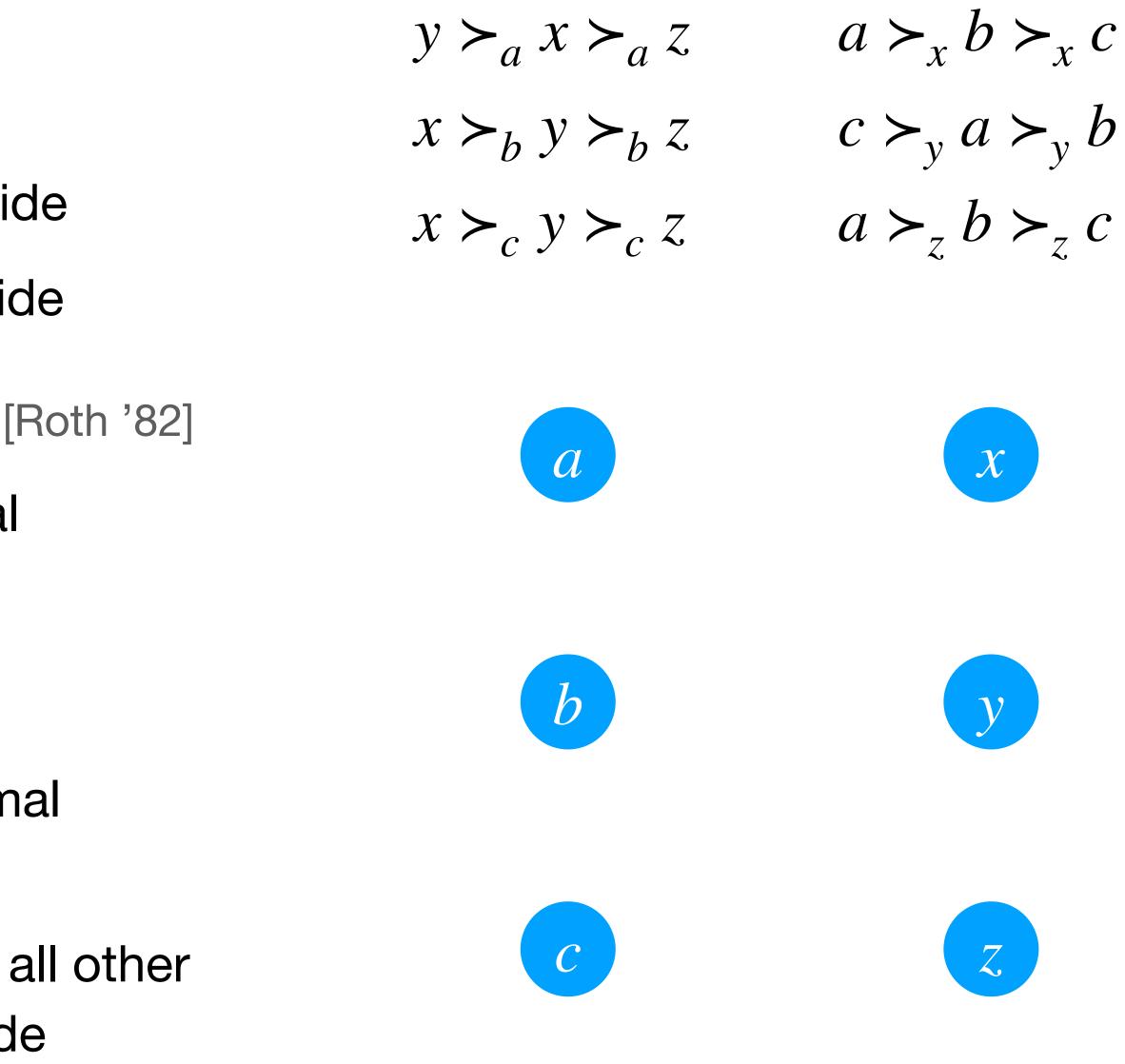
[Roth '82]

- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

No mechanism is stable and Pareto-optimal for any side.

proof idea:

- instance where DA is not Pareto-optimal for the proposing side
- the outcome of DA Pareto-dominates all other stable matchings for the proposing side



- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

No mechanism is stable and Pareto-optimal for any side.

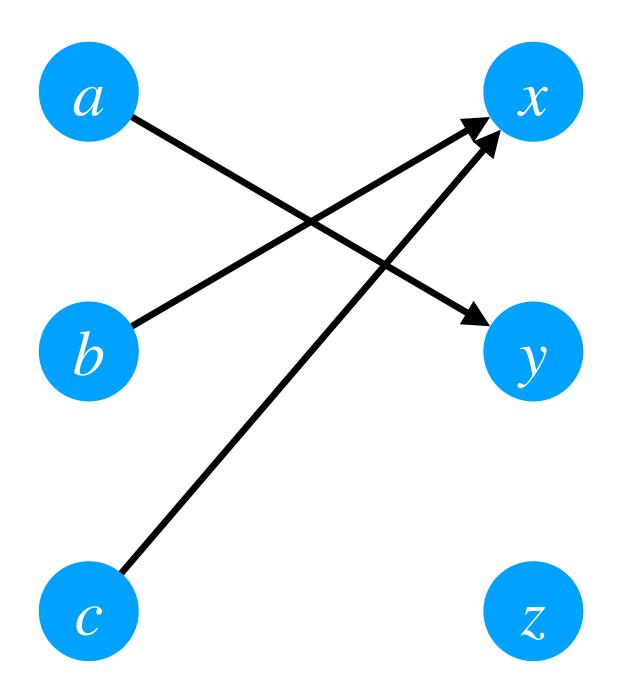
proof idea:

- instance where DA is not Pareto-optimal for the proposing side
- the outcome of DA Pareto-dominates all other stable matchings for the proposing side

Efficiency

 $a \succ_x b \succ_x c$ $y \succ_a x \succ_a z$ $c \succ_y a \succ_y b$ $x \succ_b y \succ_b z$ $a \succ_z b \succ_z c$ $x \succ_{c} y \succ_{c} z$

- [Roth '82]



- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

No mechanism is stable and Pareto-optimal for any side.

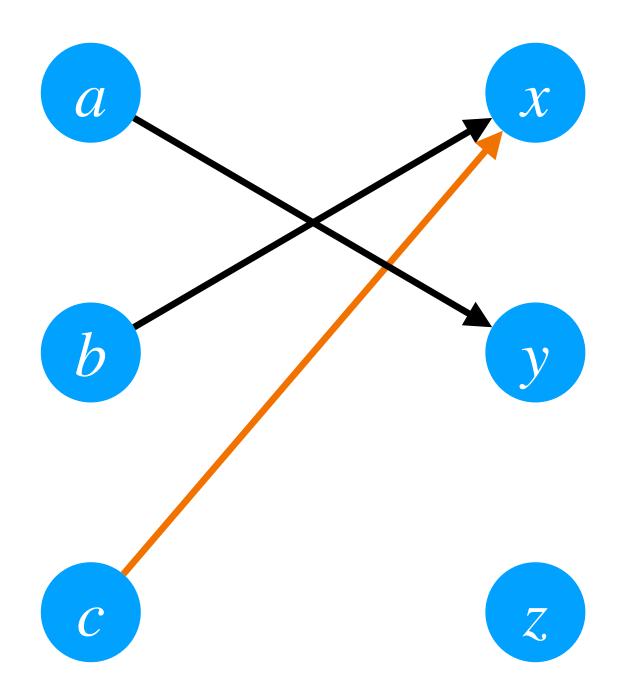
proof idea:

- instance where DA is not Pareto-optimal for the proposing side
- the outcome of DA Pareto-dominates all other stable matchings for the proposing side

Efficiency

 $a \succ_x b \succ_x c$ $y \succ_a x \succ_a z$ $x \succ_b y \succ_b z$ $c \succ_y a \succ_y b$ $a \succ_z b \succ_z c$ $x \succ_{c} y \succ_{c} z$

- [Roth '82]



- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

No mechanism is stable and Pareto-optimal for any side.

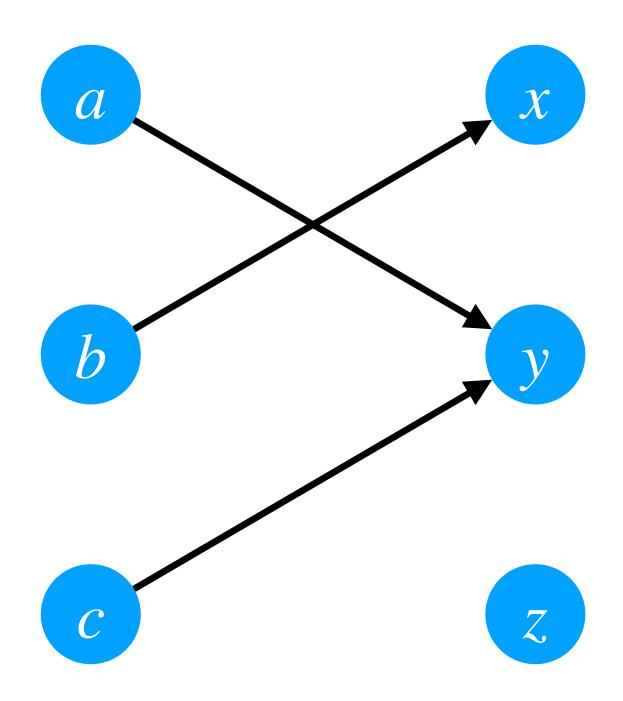
proof idea:

- instance where DA is not Pareto-optimal for the proposing side
- the outcome of DA Pareto-dominates all other stable matchings for the proposing side

Efficiency

 $a \succ_x b \succ_x c$ $y \succ_a x \succ_a z$ $x \succ_b y \succ_b z$ $c \succ_y a \succ_y b$ $a \succ_z b \succ_z c$ $x \succ_{c} y \succ_{c} z$

- [Roth '82]



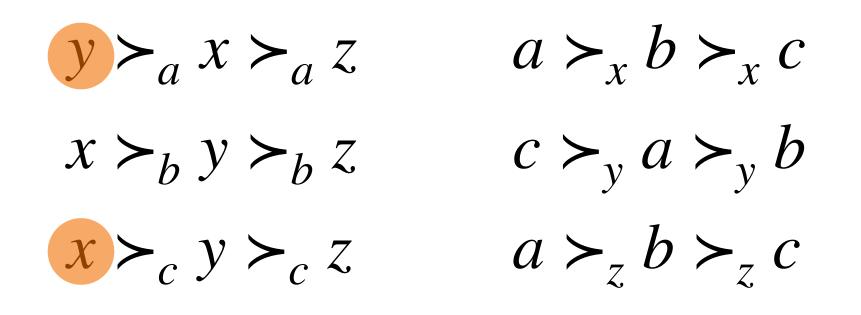
- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

No mechanism is stable and Pareto-optimal for any side.

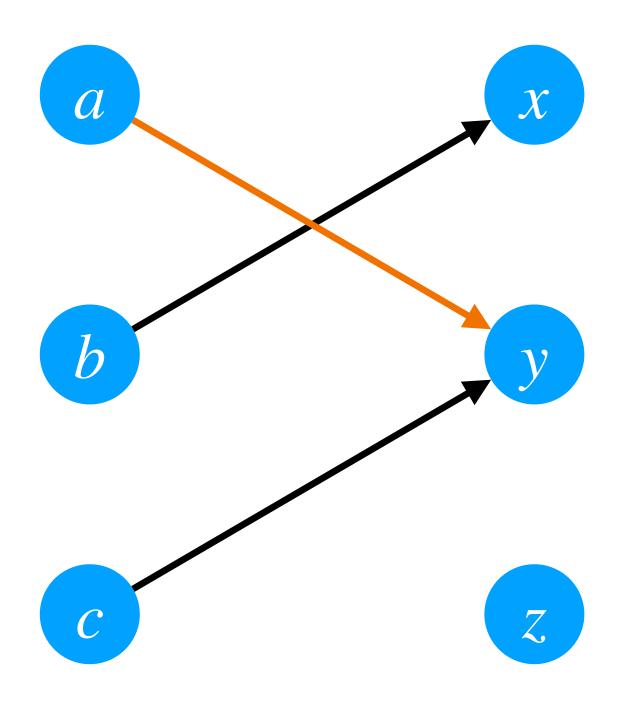
proof idea:

- instance where DA is not Pareto-optimal for the proposing side
- the outcome of DA Pareto-dominates all other stable matchings for the proposing side

Efficiency



- [Roth '82]



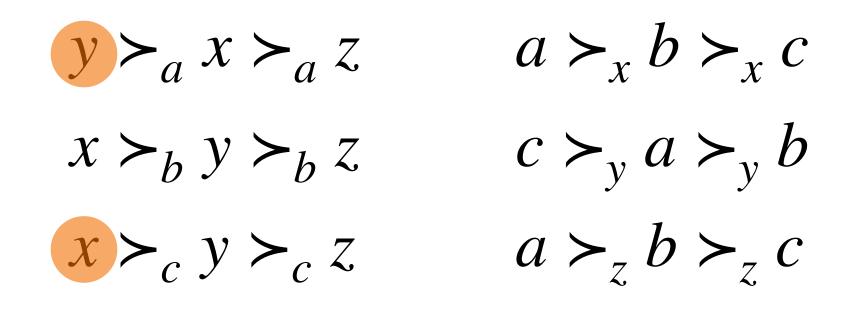
- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

No mechanism is stable and Pareto-optimal for any side.

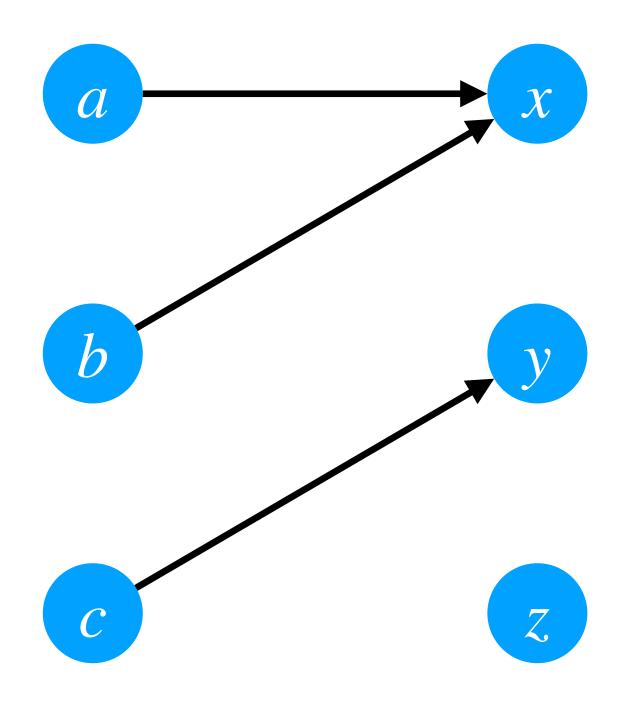
proof idea:

- instance where DA is not Pareto-optimal for the proposing side
- the outcome of DA Pareto-dominates all other stable matchings for the proposing side

Efficiency



- [Roth '82]



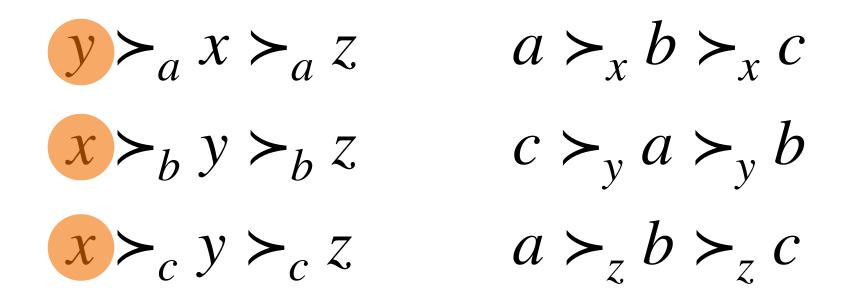
- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

No mechanism is stable and Pareto-optimal for any side.

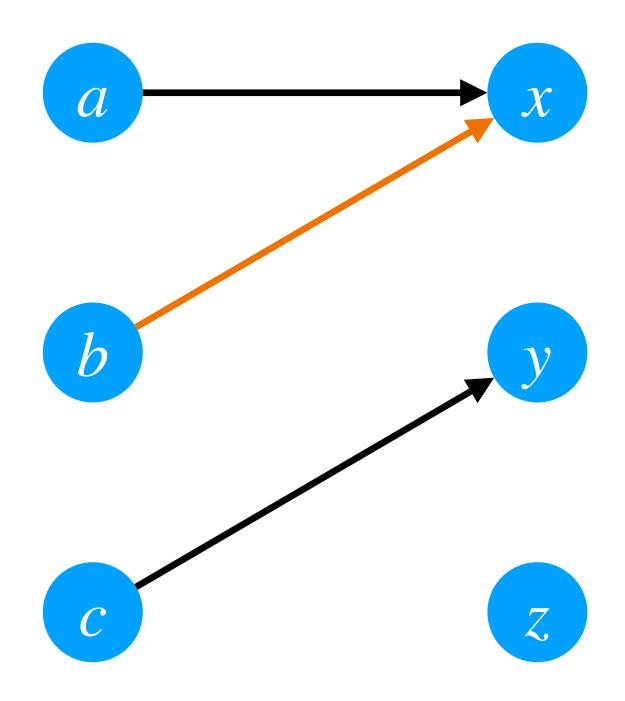
proof idea:

- instance where DA is not Pareto-optimal for the proposing side
- the outcome of DA Pareto-dominates all other stable matchings for the proposing side

Efficiency



- [Roth '82]



- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

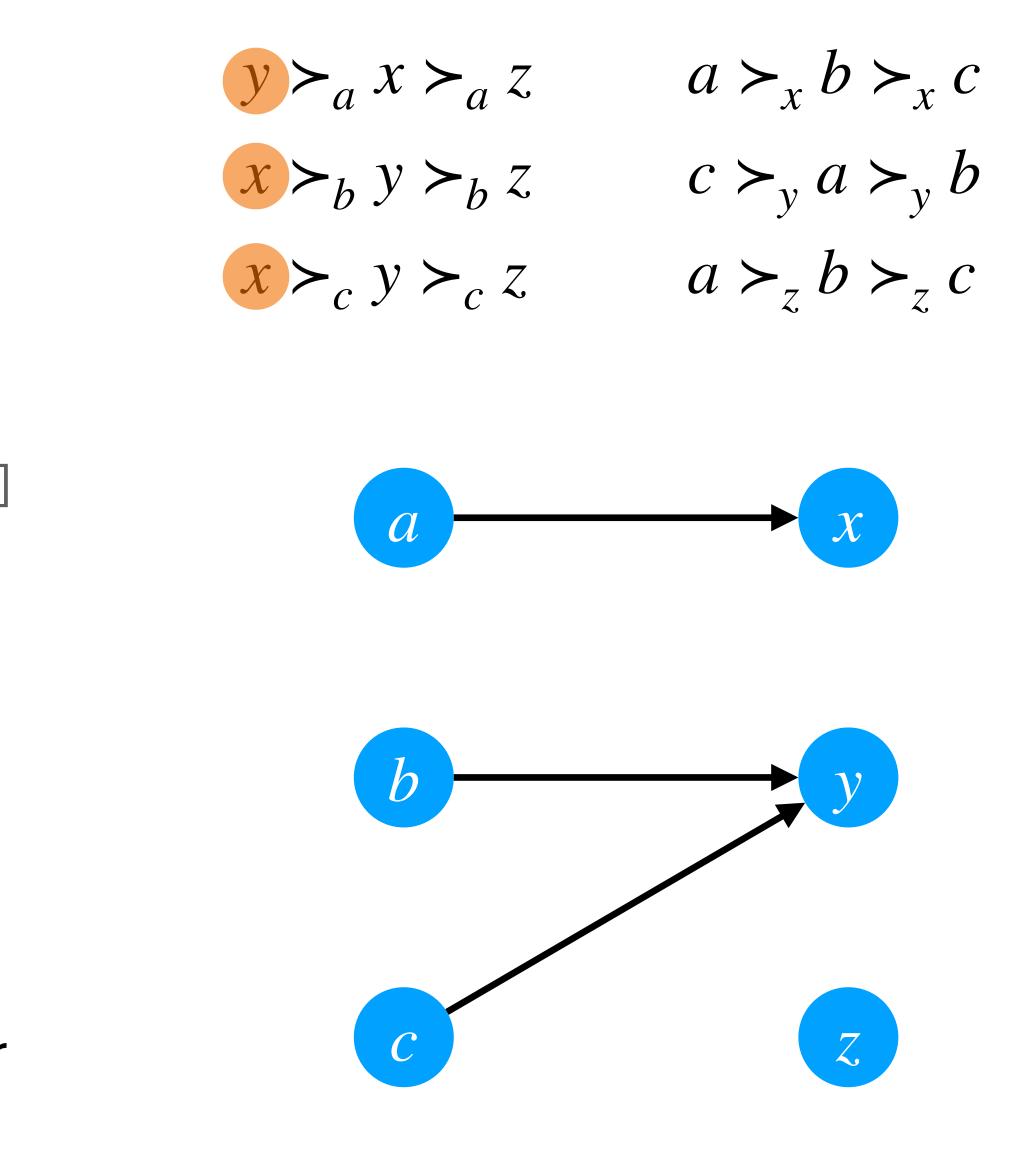
Theorem [Roth '82]

No mechanism is stable and Pareto-optimal for any side.

proof idea:

- instance where DA is not Pareto-optimal for the proposing side
- the outcome of DA Pareto-dominates all other stable matchings for the proposing side

Efficiency



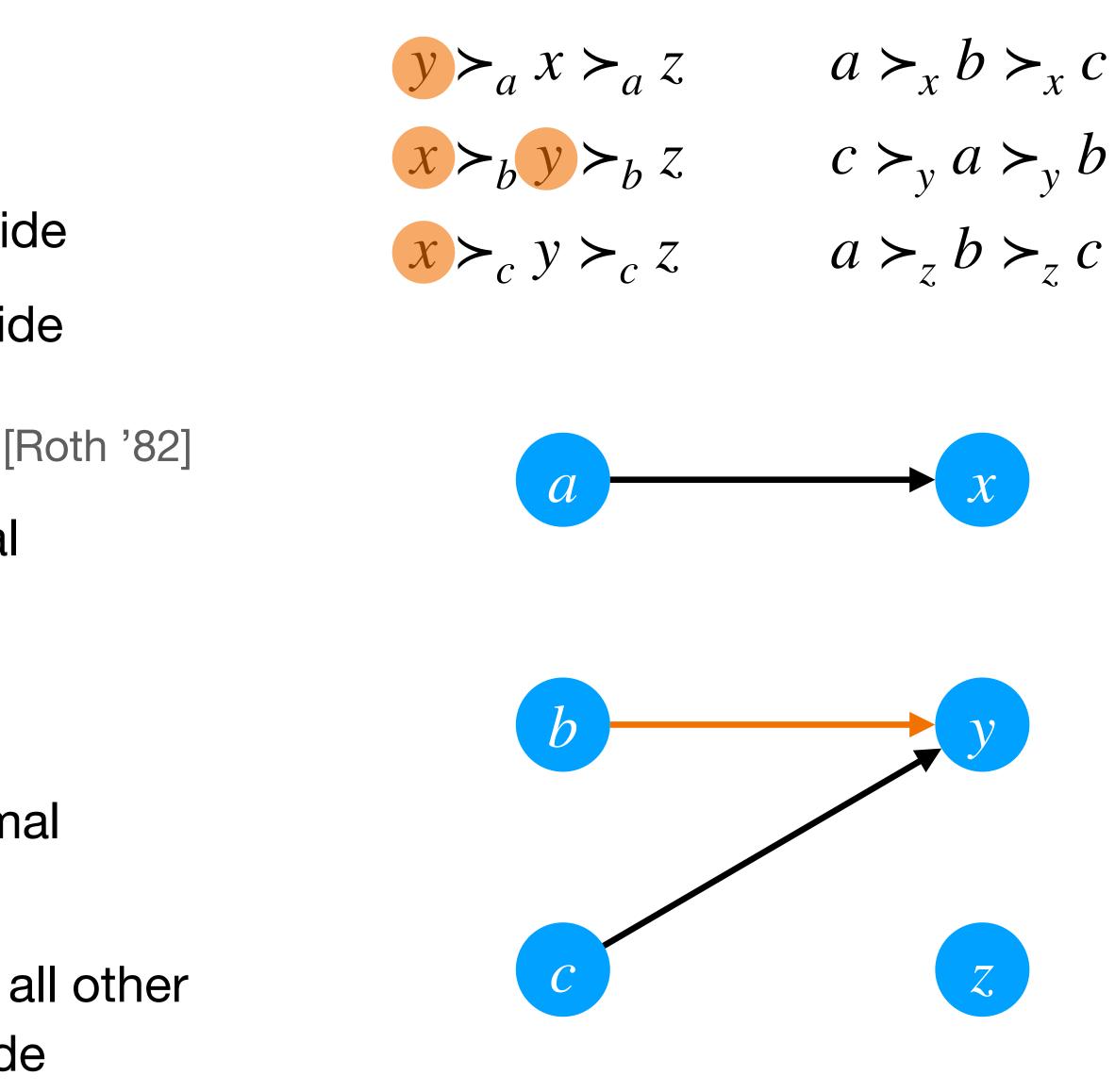
- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

No mechanism is stable and Pareto-optimal for any side.

proof idea:

- instance where DA is not Pareto-optimal for the proposing side
- the outcome of DA Pareto-dominates all other stable matchings for the proposing side

Efficiency



- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

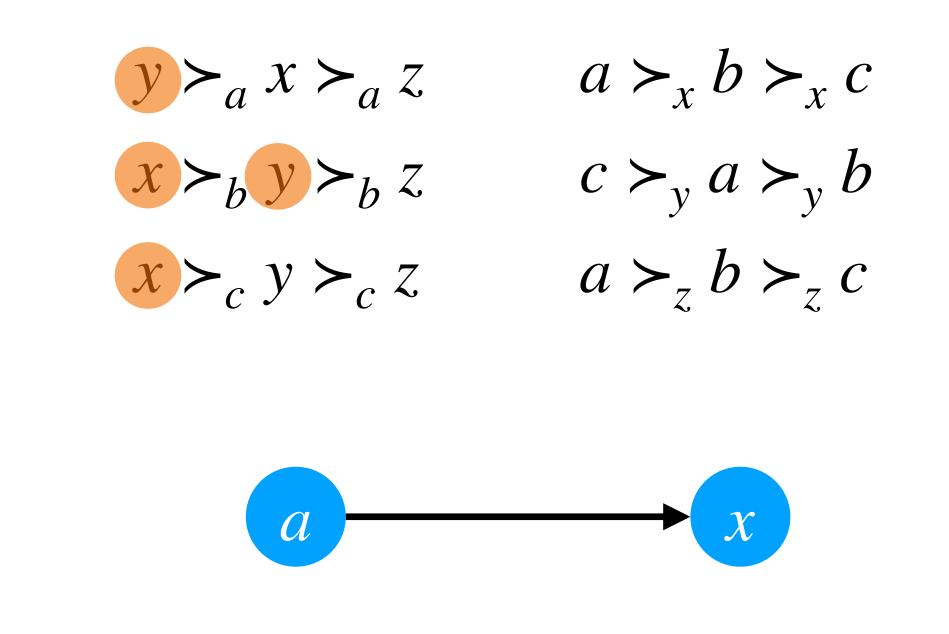
Theorem [Roth '82]

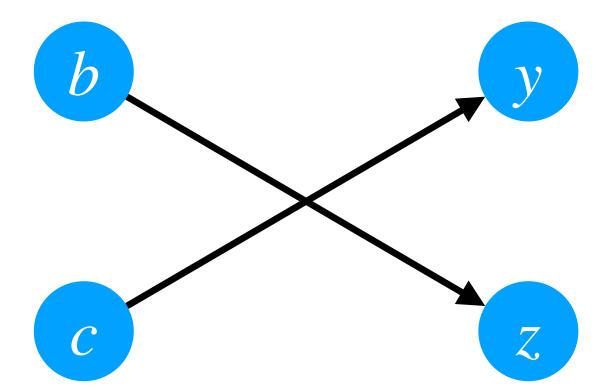
No mechanism is stable and Pareto-optimal for any side.

proof idea:

- instance where DA is not Pareto-optimal for the proposing side
- the outcome of DA Pareto-dominates all other stable matchings for the proposing side

Efficiency





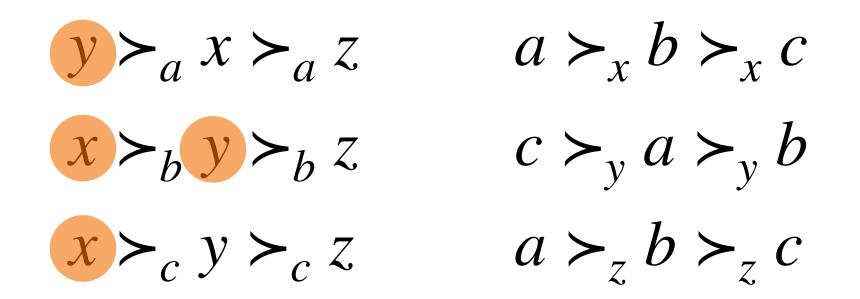
- a matching is **Pareto-optimal** for one side if no alternative matching is
 - weakly better for everyone from this side
 - strictly better for someone from this side

No mechanism is stable and Pareto-optimal for any side.

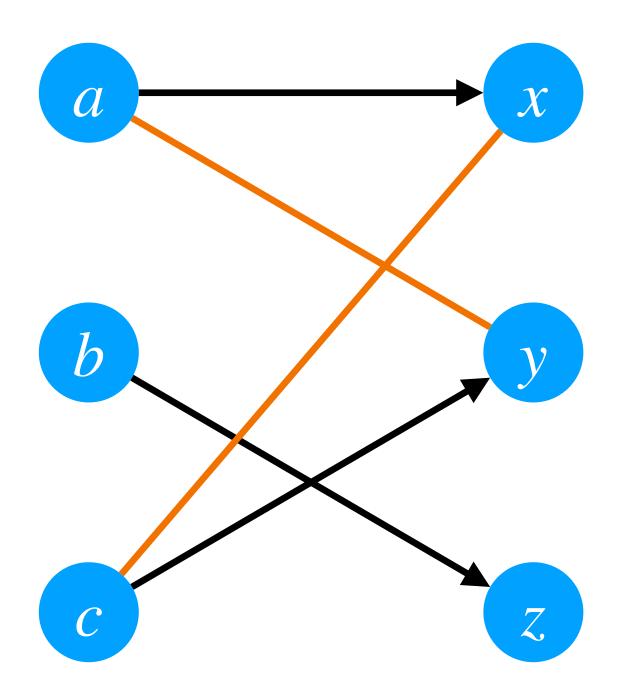
proof idea:

- instance where DA is not Pareto-optimal for the proposing side
- the outcome of DA Pareto-dominates all other stable matchings for the proposing side

Efficiency



- [Roth '82]



partial order \leq over stable matchings \mathcal{M} defined by $M \leq M' \Leftrightarrow$ all applicants weakly prefer M' over M

Lattice of Stable Matchings

- **partial order** \leq over stable matchings \mathcal{M} defined by $M \leq M' \Leftrightarrow$ all applicants weakly prefer M' over M
- (\mathcal{M}, \leq) is a (distributive) **lattice** see Gale, Sotomayor '85 for a simple proof

- **partial order** \leq over stable matchings \mathcal{M} defined by $M \leq M' \Leftrightarrow$ all applicants weakly prefer M' over M
- \land (\mathcal{M}, \leq) is a (distributive) **lattice** see Gale, Sotomayor '85 for a simple proof
 - in $M \lor M'$, each applicant is matched to their most-preferred company among M, M'

A *lattice* is a partially ordered set (L, \leq) s.t. any pair of elements $a, b \in L$ have a least upper bound $a \lor b$ in L and a greatest lower bound $a \wedge b$ in L.

- **partial order** \leq over stable matchings \mathcal{M} defined by $M \leq M' \Leftrightarrow$ all applicants weakly prefer M' over M
- \land (\mathcal{M}, \leq) is a (distributive) **lattice** see Gale, Sotomayor '85 for a simple proof
 - in $M \lor M'$, each applicant is matched to their most-preferred company among M, M'
 - in $M \wedge M'$, each applicant is matched to their least-preferred company among M, M'

A *lattice* is a partially ordered set (L, \leq) s.t. any pair of elements $a, b \in L$ have a least upper bound $a \lor b$ in L and a greatest lower bound $a \wedge b$ in L.

- partial order \leq over stable matchings \mathcal{M} defined by $M \leq M' \Leftrightarrow$ all applicants weakly prefer M' over M
- \land (\mathcal{M}, \leq) is a (distributive) **lattice** see Gale, Sotomayor '85 for a simple proof
 - in $M \lor M'$, each applicant is matched to their most-preferred company among M, M'
 - in $M \wedge M'$, each applicant is matched to their least-preferred company among M, M'

 $c \succ_x d \succ_x b \succ_x a$ $x \succ_a y \succ_a z \succ_a w$ $d \succ_v c \succ_v a \succ_v b$ $y \succ_h x \succ_h w \succ_h z$ $z \succ_c w \succ_c x \succ_c y \qquad a \succ_z b \succ_z d \succ_z c$ $b \succ_w a \succ_w c \succ_w d$ $w \succ_d z \succ_d y \succ_d x$

- partial order \leq over stable matchings \mathcal{M} defined by $M \leq M' \Leftrightarrow$ all applicants weakly prefer M' over M
- \land (\mathcal{M}, \leq) is a (distributive) **lattice** see Gale, Sotomayor '85 for a simple proof
 - in $M \lor M'$, each applicant is matched to their most-preferred company among M, M'
 - in $M \wedge M'$, each applicant is matched to their least-preferred company among M, M'

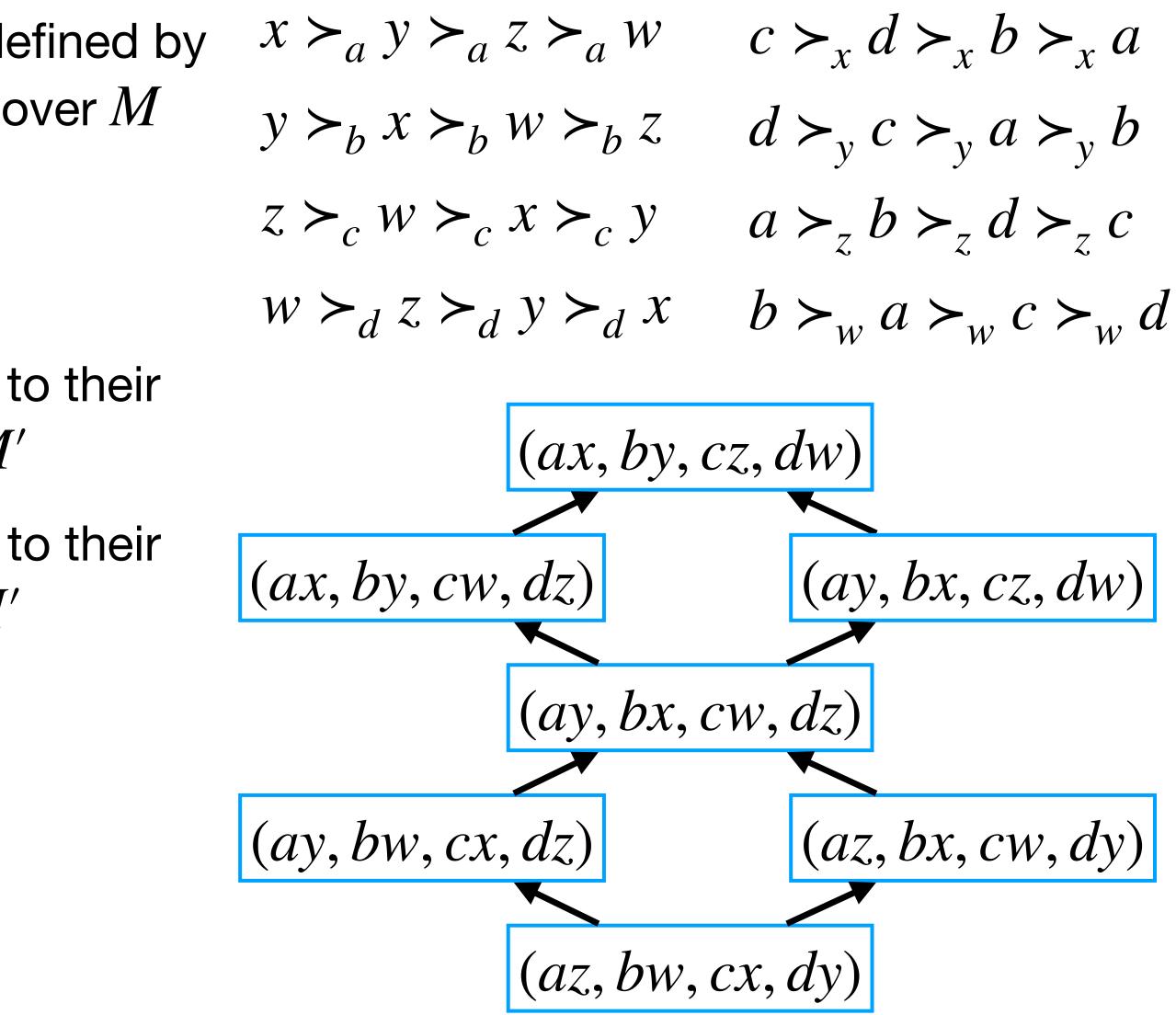
 $c \succ_x d \succ_x b \succ_x a$ $x \succ_a y \succ_a z \succ_a w$ $d \succ_v c \succ_v a \succ_y b$ $y \succ_b x \succ_b w \succ_b z$ $z \succ_c w \succ_c x \succ_c y \qquad a \succ_z b \succ_z d \succ_z c$ $b \succ_w a \succ_w c \succ_w d$ $w \succ_d z \succ_d y \succ_d x$ (ax, by, cz, dw)

- partial order \leq over stable matchings \mathcal{M} defined by $M \leq M' \Leftrightarrow$ all applicants weakly prefer M' over M
- \land (\mathcal{M}, \leq) is a (distributive) **lattice** see Gale, Sotomayor '85 for a simple proof
 - in $M \lor M'$, each applicant is matched to their most-preferred company among M, M'
 - in $M \wedge M'$, each applicant is matched to their least-preferred company among M, M'

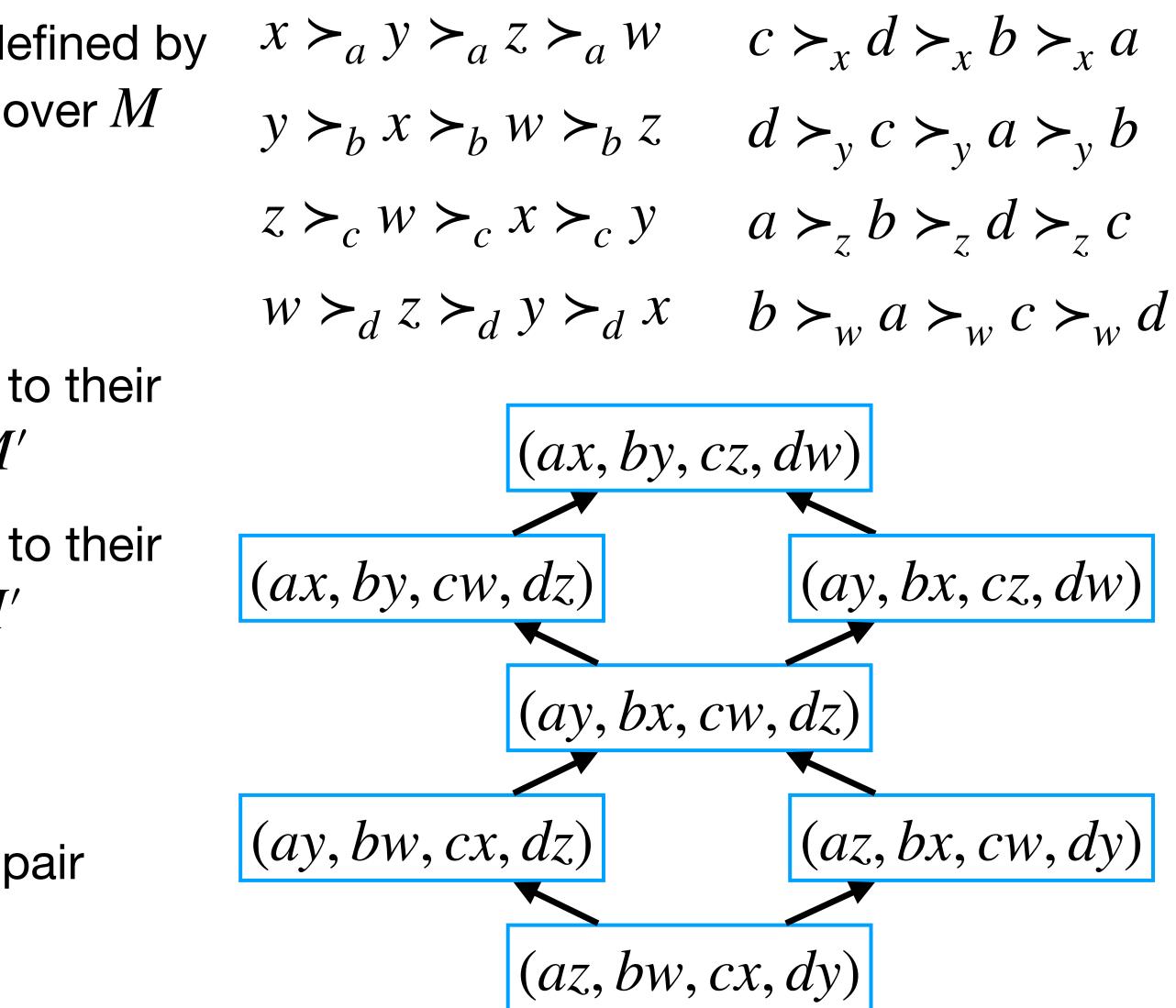
 $c \succ_x d \succ_x b \succ_x a$ $x \succ_a y \succ_a z \succ_a w$ $d \succ_v c \succ_v a \succ_y b$ $y \succ_b x \succ_b w \succ_b z$ $z \succ_c w \succ_c x \succ_c y \qquad a \succ_z b \succ_z d \succ_z c$ $b \succ_w a \succ_w c \succ_w d$ $w \succ_d z \succ_d y \succ_d x$ (ax, by, cz, dw)

(az, bw, cx, dy)

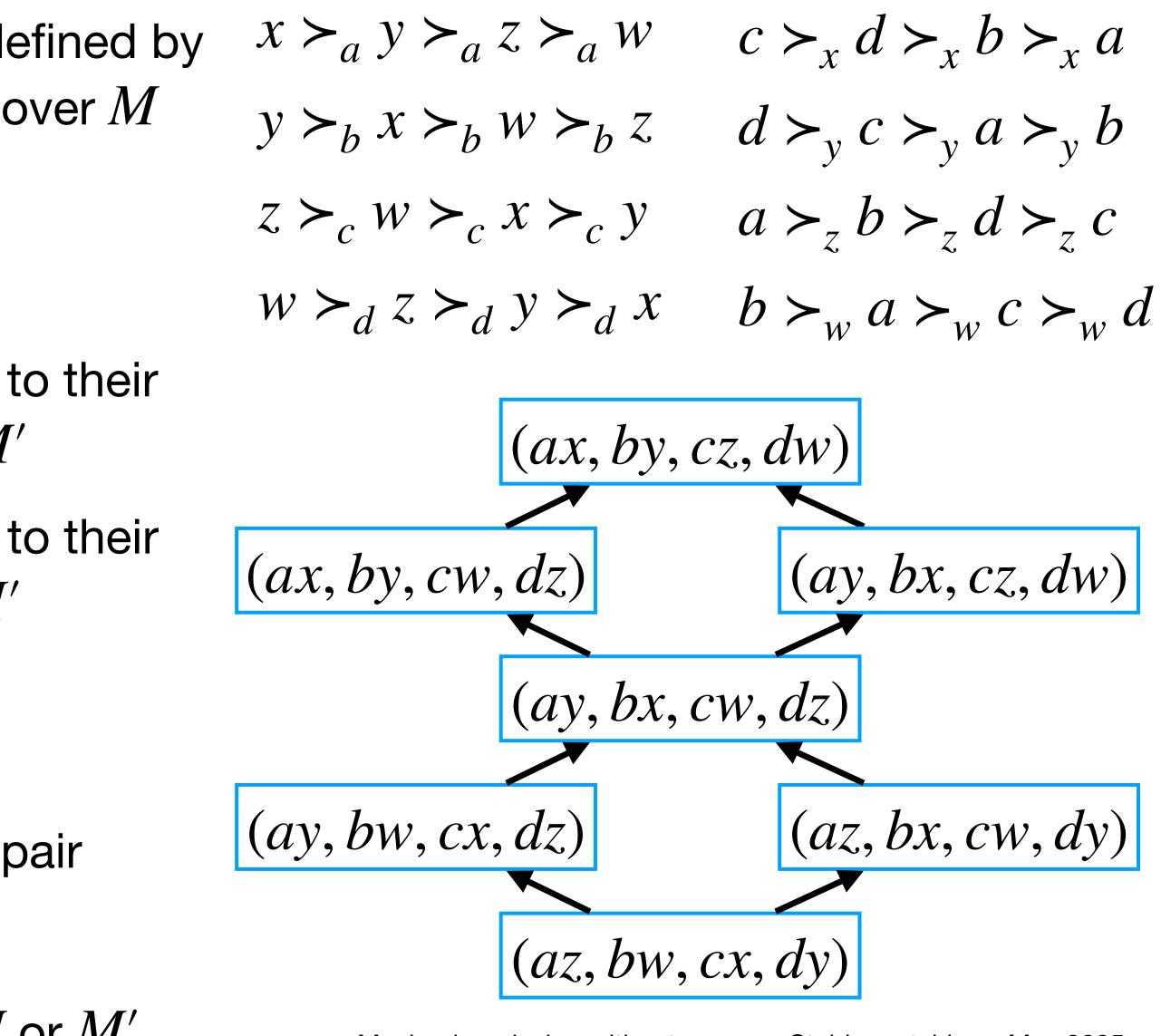
- partial order \leq over stable matchings \mathcal{M} defined by $M \leq M' \Leftrightarrow$ all applicants weakly prefer M' over M
- \land (\mathcal{M}, \leq) is a (distributive) lattice see Gale, Sotomayor '85 for a simple proof
 - in $M \lor M'$, each applicant is matched to their most-preferred company among M, M'
 - in $M \wedge M'$, each applicant is matched to their least-preferred company among M, M'



- partial order \leq over stable matchings \mathcal{M} defined by $M \leq M' \Leftrightarrow$ all applicants weakly prefer M' over M
- \land (\mathcal{M}, \leq) is a (distributive) **lattice** see Gale, Sotomayor '85 for a simple proof
 - in $M \lor M'$, each applicant is matched to their most-preferred company among M, M'
 - in $M \wedge M'$, each applicant is matched to their least-preferred company among M, M'
- $M \lor M', M \land M'$ matching? if two applicants have the same top choice in M and M', one of them forms a blocking pair



- partial order \leq over stable matchings \mathcal{M} defined by $M \leq M' \Leftrightarrow$ all applicants weakly prefer M' over M
- \land (\mathcal{M}, \leq) is a (distributive) **lattice** see Gale, Sotomayor '85 for a simple proof
 - in $M \lor M'$, each applicant is matched to their most-preferred company among M, M'
 - in $M \wedge M'$, each applicant is matched to their least-preferred company among M, M'
- $M \lor M', M \land M'$ matching? if two applicants have the same top choice in M and M', one of them forms a blocking pair
- $M \lor M', M \land M'$ stable? blocking pairs would be blocking pairs in M or M'



but not Pareto-optimality

Takeaways and Applications

Deferred Acceptance: stability, strategy-proofness for proposing side, computational efficiency,

but not Pareto-optimality except when proposed side has homogeneous preferences

Takeaways and Applications

Deferred Acceptance: stability, strategy-proofness for proposing side, computational efficiency,

- but not Pareto-optimality except when proposed side has homogeneous preferences
- Are SP and Pareto-optimality for one side compatible?

Deferred Acceptance: stability, strategy-proofness for proposing side, computational efficiency,

- but not Pareto-optimality except when proposed side has homogeneous preferences
- Are SP and Pareto-optimality for one side compatible? yes, e.g. serial dictatorship

Deferred Acceptance: stability, strategy-proofness for proposing side, computational efficiency,

- Deferred Acceptance: stability, strategy-proofness for proposing side, computational efficiency, but not Pareto-optimality except when proposed side has homogeneous preferences
- Are SP and Pareto-optimality for one side compatible? yes, e.g. serial dictatorship
- applications: assignment of doctors to hospitals, students to schools/colleges, etc

- Deferred Acceptance: stability, strategy-proofness for proposing side, computational efficiency, but not Pareto-optimality except when proposed side has homogeneous preferences
- Are SP and Pareto-optimality for one side compatible? yes, e.g. serial dictatorship
- applications: assignment of doctors to hospitals, students to schools/colleges, etc
 - results from this lecture remain valid in such many-to-one matching markets

- Deferred Acceptance: stability, strategy-proofness for proposing side, computational efficiency, but not Pareto-optimality except when proposed side has homogeneous preferences
- Are SP and Pareto-optimality for one side compatible? yes, e.g. serial dictatorship
- applications: assignment of doctors to hospitals, students to schools/colleges, etc
 - results from this lecture remain valid in such many-to-one matching markets
- SP for proposed side is often overlooked, partly because these preferences are often exogenous

- Deferred Acceptance: stability, strategy-proofness for proposing side, computational efficiency, but not Pareto-optimality except when proposed side has homogeneous preferences
- Are SP and Pareto-optimality for one side compatible? yes, e.g. serial dictatorship
- applications: assignment of doctors to hospitals, students to schools/colleges, etc
 - results from this lecture remain valid in such many-to-one matching markets
- SP for proposed side is often overlooked, partly because these preferences are often exogenous
- real-life applications pose several challenges

- Deferred Acceptance: stability, strategy-proofness for proposing side, computational efficiency, but not Pareto-optimality except when proposed side has homogeneous preferences
- Are SP and Pareto-optimality for one side compatible? yes, e.g. serial dictatorship
- applications: assignment of doctors to hospitals, students to schools/colleges, etc
 - results from this lecture remain valid in such many-to-one matching markets
- SP for proposed side is often overlooked, partly because these preferences are often exogenous
- real-life applications pose several challenges
 - diversity/fairness considerations [Hafalir et al. '13]

- Deferred Acceptance: stability, strategy-proofness for proposing side, computational efficiency, but not Pareto-optimality except when proposed side has homogeneous preferences
- Are SP and Pareto-optimality for one side compatible? yes, e.g. serial dictatorship
- applications: assignment of doctors to hospitals, students to schools/colleges, etc
 - results from this lecture remain valid in such many-to-one matching markets
- SP for proposed side is often overlooked, partly because these preferences are often exogenous
- real-life applications pose several challenges
 - diversity/fairness considerations [Hafalir et al. '13]
 - joint applications (couples/families) [Nguyen, Vohra '18]

- Deferred Acceptance: stability, strategy-proofness for proposing side, computational efficiency, but not Pareto-optimality except when proposed side has homogeneous preferences
- Are SP and Pareto-optimality for one side compatible? yes, e.g. serial dictatorship
- applications: assignment of doctors to hospitals, students to schools/colleges, etc
 - results from this lecture remain valid in such many-to-one matching markets
- SP for proposed side is often overlooked, partly because these preferences are often exogenous
- real-life applications pose several challenges
 - diversity/fairness considerations [Hafalir et al. '13]
 - joint applications (couples/families) [Nguyen, Vohra '18]
 - Chilean school admission system gives interesting examples! [Correa et al. '21]

- Castillo, M., Cristi, A., Epstein, B., Subiabre, F. (2022). School Choice in Chile. Operations *Research*, 70(2), 1066-1087.
- mathematical monthly, 69(1), 9-15.
- Mathematics, 11(3), 223-232.
- Hafalir, I. E., Yenmez, M. B., Yildirim, M. A. (2013). Effective affirmative action in school choice. Theoretical Economics, 8(2), 325-363.
- *Review*, 108(11), 3154-3169.
- research, 7(4), 617-628.

References

Correa, J., Epstein, N., Epstein, R., Escobar, J., Rios, I., Aramayo, N., Bahamondes, B., Bonet, C.,

Gale, D., Shapley, L. S. (1962). College admissions and the stability of marriage. The American

Gale, D., Sotomayor, M. (1985). Some remarks on the stable matching problem. *Discrete Applied*

Nguyen, T., Vohra, R. (2018). Near-feasible stable matchings with couples. American Economic

Roth, A. E. (1982). The economics of matching: Stability and incentives. *Mathematics of operations*

