
Mayank Goswami and Andreas Wiese Winter 2015/2016

Exercises for Approximation Algorithms
www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter15/approx

Tutorials: Andreas Schmid

Exercise Sheet 4 Due: 6.1.2016

Your homework must be handed in on Wednesday at the beginning of the tutorial.

You need to collect at least 50% of all points over all exercise sheets. You are allowed to work
on these exercises in groups but every student has to hand in his/her own write-up.

Exercise 1 (6 points)

In class we saw an Ω(n log n) lower bound on the closest pair of points problem in the linear
decision tree model, and a (expected) linear time algorithm that used randomness, computing
the floor function and randomness. This exercise is about an O(n log n) algorithm that does
not use any of these techniques. The algorithm proceeds in a divide and conquer approach:

1. Sort all the points P using x-coordinate.

2. Split them into left and right by finding a middle line.

3. Solve the problem recursively in the left and right subsets. Let the distance of closest
pair on the left be d` and on the right be dr.

4. Find the minimum distance d`,r among the set of pairs of points where on point is to the
left of the dividing line and one is to the right.

5. Output the minimum of d`, d`,r and dr.

Giving details for all steps, prove that this algorithm runs in O(n log n) time. In particular,
prove that Step 4 can be done in O(n) time. [Hint: Use the ”grid” property– instead of
comparing all left-right distances in Step 4, note that the closest pair cannot be farther than
min(d`, dr)].

Exercise 2 (14 points)

In class we saw how to prove lower bounds in the linear decision tree model. This exercise is
on two other techniques, leaf counting and adversary arguments.



a) [Counting leaves, 7 points] Prove that for any deterministic comparison-based sorting
algorithm A, the average-case number of comparisons (the number of comparisons on
average on a randomly chosen permutation of n distinct elements) is at least C = blog2 n!c.
In other words, prove that in a decision tree, not just that there is some leaf with depth
C, but in fact that the average-depth of a leaf is C.

b) [Adversary Argument, 7 points ] Given an array of n elements (n is even), consider the
problem of computing the minimum and the maximum (output both). Naively this can
be done in 2n − 3 comparisons (how?). Give an algorithm that does this in at most
3n/2− 2 comparisons. Prove that the algorithm is optimal using an adversary argument.

Exercise 3+4 (20 points)

In the lecture we have seen an approximation algorithm for Bin Packing by Karmakar and
Karp that uses at most OPT + O(log2(OPT )) many bins. As a reminder here is some of the
notation used in the lecture. We group items of the same size (here we used b1 as the number
of items of largest size s1 and bm as the number of items of smallest size sm). For an instance
I of Bin Packing we define: SIZE(I) :=

∑m
i=1 bi · si.

3 (10 points) Assume that you are given a Bin Packing instance I in which every item has
size at least 1

c
where c is some positive constant bigger than one. Show that in this case

the algorithm by Karmakar and Karp will use at most OPT +O(c · log(SIZE(I))) many
bins.

4 (10 points) Assume that you are given an instance I of Bin Packing. We say that an item
i is big if ai ≥ 1/SIZE(I). Assume you are given a packing of only the big items that uses
K bins. Show that one can find a packing of all items that uses at most max{K,OPT +3}
bins.


