
Lecture 2

Synchronizers

In the previous lecture, we have seen that results may vary quite a bit depending
on the model. Today, we study one very important distributed model in more
detail. We will see that it can be a good approach to first figure out how to
simulate a more powerful model before attempting to solve a difficult problem.

2.1 Synchronous Message Passing

As promised in the previous lecture, we’ll be more precise about the considered
model(s) today. If you expect that this means tedious definitions, that’s not
actually true. Many useful models are useful because they are simple, implying
that understanding them means to learn something about a wide variety of
systems. This is also the case for the following well-studied model of distributed
computing.

Definition 2.1 (The LOCAL model). The network is modeled as a simple1

graph G = (V,E) of n nodes. Each node has a unique identifier of O(log n)
bits. An algorithm is executed in synchronous rounds, where in each round,
each node (a.k.a. processor) takes the following steps:

1. Do some local computations.

2. Send messages to its neighbors in the graph G.

3. Receive messages (that were sent by neighbors in step 2 of the same round).

In addition, nodes may determine a (local) output and terminate at the end of
a round. The time complexity of a synchronous message passing algorithm is
the time until all nodes have terminated. Finally, some problems will also have
some additional input information, e.g., edge weights. Nodes will then initially
know the local part of the input, e.g., the weight of incident edges.

Clearly, this model is questionable for many reasons:

• We do not put restrictions on local computations or memory, which means
that nodes could solve NP-hard problems locally! Some authors consider
this cheating and require computations polynomial in n.

1Meaning: undirected, unweighted, loop-free, and without parallel edges.
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16 LECTURE 2. SYNCHRONIZERS

• Nodes can send messages of arbitrary size. In particular, they simply can
send everything they know to all neighbors in each round. This can easily
result in unrealistically large messages of size Ω(n2), e.g., in a complete
graph.

• We assume perfectly synchronous execution, but many practical systems
simply cannot operate this way or, if forced to do so, would have extremely
long rounds (because one needs to wait for the slowest computations to
finish and all messages to arrive before moving on to the next round).

So, why is the LOCAL model useful at all? First of all, it was originally
designed for proving lower bounds, just like the one given in Theorem 1.7. This
makes the statement only more powerful: Even if all the above crazy things
were possible, it would still take at least 1/2 · log∗ n+O(1) rounds to color the
list with few colors. Such results are surprisingly useful, simply because they
tell us what we shouldn’t spend our time on trying.

Second, algorithms designed in the LOCAL model frequently turn out to
use very little computations and memory, as well as small messages. The Cole-
Vishkin coloring algorithm is a prime example for this. After all, only so much
can be done with little information! Hence, it’s not a bad approach to design a
(fast) algorithm in this model and worry about things like message size later.

Finally, even if the designed algorithms are fast (in terms of the number of
rounds), but use large messages, we can either try to get rid of the “cumbersome”
aspects of the algorithm or know that an algorithm being slow must be caused
by a limitation in bandwith or computation.

2.2 Asynchronous Message Passing

Still, all that doesn’t address the issue of synchrony, which, to put it mildly,
turns out to be more of a problem. Consequently, there is a “sister” to the
LOCAL model, the asynchronous message passing model.2

Definition 2.2 (The asynchronous message passing model). The network is
modeled as a simple graph G = (V,E) of n nodes. Each node has a unique
identifier of O(log n) bits. An algorithm is executed based on events. An event
at node v ∈ V is either the node starting to execute the algorithm or receiving
a message from a neighbor (nodes start the algorithm at the latest on reception
of the first message). Upon an event at node v, v does the following:

1. It does some local computations.

2. It may send messages to its neighbors in the graph G.

Each sent message will eventually be received, but it is completely arbitrary
which of the messages in transit will arive next. Just like before, a node may
also determine a (local) output and terminate upon an event.

Observe that an asynchronous algorithm can also operate in the synchronous
model: If all nodes start the execution at time 0 and each message is under way

2The LOCAL model is also called sychronous message passing model, but that’s a mouthful
and I’m lazy.
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for exactly 1 time unit, this is exactly the same as executing the algorithm in a
synchronous system.

It is a crucial aspect of the asynchronous model that the time for a message
to reach its destination is unbounded. However, we still would like to figure out
what algorithms are “fast” in this model. We do this by giving the algorithm
more slack.

Definition 2.3 (Asynchronous time complexity). An algorithm in the asyn-
chronous message passing model has time complexity T , if in all executions in
which all nodes start the algorithm at time 0 and each message is received at
most one time unit after it was sent, all nodes terminate by time T .

Remarks:

• An asynchronous algorithm of time complexity T has synchronous time
complexity at most T .

• One can extend this definition to allow for not all nodes “waking up” at
time 0.

• Assuming asynchrony is typically unrealistic, too. However, this time
we’re overly pessimistic, which means that algorithms can deal with “more
synchronous” models, while lower bounds cannot.

• A lower bound or impossibility result based on asynchrony thus means
that one can/should look for adding constraints that make the system
“more synchronous,” enable better algorithms, and yet are still pessimistic
enough to be realistic.

• The synchronous and asynchronous models are two extremes, so under-
standing them also helps understanding what’s in between.

2.3 Simulating Synchrony

Our goal is to be able to “pretend” that the system is synchronous when coming
up with algorithms. In other words, we would like to figure out a (generic) way
of transforming a synchronous algorithm into an asynchronous one. The new
algorithm should behave just like the old, which is captured by the following
definition.

Definition 2.4 (Simulation). Algorithm A simulates algorithm B, if, given the
same inputs, both algorithms compute the same outputs.

A synchronizer generates sequences of clock pulses at each node of the net-
work satisfying the condition given by the following definition.

Definition 2.5 (valid clock pulse). Assume that (upon an event), node v can
“trigger clock pulse i,” for i ∈ N and nodes simulate a synchronous algorithm
A. When generating clock pulse i, node v will send all messages it would send
in round i according to A; to each of these messages it will attach the round
number i. Clock pulse i (at node v) is valid if it is generated after v generated
all pulses j < i, it has not been generated before, and it is generated after v
received all the messages of the synchronous algorithm sent to v by its neighbors
in rounds j < i.
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Given a mechanism that generates valid clock pulses 1, . . . , T+1 at all nodes,
a T -round synchronous algorithm can be simulated: Each node can compute its
output based on its local history of messages and clock pulses.

Lemma 2.6. If all generated clock pulses are valid according to Definition 2.5
and all non-terminated nodes keep generating pulses, we can simulate the re-
spective synchronous algorithm.

Proof. Suppose synchronous Algorithm A terminates in T rounds at node v.
When v generates pulse T + 1, it has received all messages sent by its neighbors
during the execution of A, neatly labeled by their round numbers. It can thus
locally perform exactly the computations that A would, output the result, and
terminate.

Note that the messages a synchronous algorithm sends in round i are simply
the “output” generated by executing the algorithm partially up to round i− 1;
if i − 1 is 0, this just means to compute the first set of messages based on the
input. In particular, it’s safe to generate pulse 1 right away at each node. In
other words, all we need to do is to provide a method that generates clock pulse
i + 1 at each node provided that clock pulse i ∈ N has been generated at each
node and the respective messages of A have been sent.

The main issue with generating clock pulse i + 1 at a node v is that (in
general) v cannot know which of its neighbors sent a message in round i of A.
As messages may be in transit arbitrarily long, this means that if it produces a
clock pulse without hearing from some neighbor, it risks generating an invalid
pulse. On the other hand, if there is no such message, but it plays things safe,
it may wait indefinitely and we have a deadlock.

The most simple solution to this dilemma is to make sure that there is always
a message from each neighbor in each round. Denote by mA(v, w, i) the message
v sends to w in round i when executing A; if A sends no such message or has
already terminated at v, we write mA(v, w, i) = ⊥. With this notation, this
strategy is cast into Algorithm 5.

1

(m(2, 1, 1), 1)
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(m(2, 3, 1), 1)
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(m(3, 4, 2), 2)

Figure 2.1: First two “rounds” of an execution of the α-synchronizer. Black
arrows correspond to messages sent by the original algorithm, while red edges
indicate (⊥, i) messages. Actually, one can just send ⊥ messages, where the
receivers count the number of ⊥ messages received from each neighbor; for this
reason, we refrained from depicting the message contents for red arrows.
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Algorithm 5 α-synchronizer simulating A (code for node v ∈ V )

1: if v just woke up then
2: pulsev := 1
3: for {v, w} ∈ E do
4: termv(w) :=∞
5: compute mA(v, w, 1)
6: send (mA(v, w, 1), 1) to w
7: end for
8: end if
9: if v received (mA(w, v, i), i) from w then

10: store (mA(w, v, i), i)
11: end if
12: if v received (term, i) from w then
13: termv(w) := i
14: end if
15: if v stores (mA(w, v, i), i) for each {v, w} ∈ E with termv(w) < i and

pulsev = i then
16: pulsev := i+ 1
17: check if A terminates at v at the end of round i (from stored messages,

ignoring ⊥ and term)
18: if A terminates at v at the end of round i then
19: for {v, w} ∈ E with termv(w) > i+ 1 do
20: send (term, i+ 1) to w
21: end for
22: compute output of A (from stored messages) and terminate
23: else
24: for {v, w} ∈ E with termv(w) > i+ 1 do
25: compute mA(v, w, i+ 1) (from stored messages)
26: send (mA(v, w, i+ 1), i+ 1) to w
27: end for
28: end if
29: end if

Theorem 2.7 (Synchronizer α). Given a synchronous Algorithm A of running
time T , synchronizer α simulates it in an asynchronous system with a running
time of T . The number of additional messages send compared to an execution
of A is at most 2(T + 1)|E|.

Proof. To prove simulation, we will show that

1. All generated pulses are valid.

2. If node v terminates at the end of round Tv in A, it generates pulses
1, . . . , Tv + 1, terminates when generating pulse Tv + 1, and outputs the
correct result.

3. For each pulse i ∈ {1, . . . , Tv}, v sends (mA(v, w, i), i) to all neighbors
upon generating pulse i.

4. At pulse Tv + 1, v sends (term, Tv + 1) to all non-terminated neighbors.
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5. If, for {v, w} ∈ E, w terminates with pulse Tw+1, v will wait for a message
from w in rounds 1, . . . , Tw + 1.

We prove this by induction. The base case is i = 1. Clearly, all nodes
generate valid pulse 1 and compute and transmit the messages for round 1 upon
wake-up; they wait for messages from all neighbors w, since initially termv(w) =
∞. Also, note that in the event that a node would terminate immediately
according to A (i.e., “after 0 rounds”), it also does so here, computes the same
output, and sends a (term, 1) message to each neighbor.

Now suppose all statements are true for pulses 1, . . . , i of each node and
consider pulse i + 1. As all messages for round i were computed and sent,
eventually they arrive. Neighbors not sending a message have, by the induction
hypothesis, terminated in an earlier round, so v sent termv(w) = j for some j ≤ i
and will not wait for such a message. Hence, eventually each v will generate
pulse i+ 1. As the content of all messages for pulses 1, . . . , i was correct, nodes
correctly store them and compute and send the messages (mA(v, w, i+1), i+1).
Likewise, termination and corresponding outputs are determined correctly. This
completes the induction step and thus the proof that A is simulated.

Concerning the time complexity, observe that all messages for pulse/round 1
are sent at time 0 and received by time 1 (assuming delays of at most 1). Hence
all (non-terminated) nodes generate pulse 2 by time 1 and the corresponding
messages are received by time 2, and so on. By time T , all nodes terminated
or generated pulse T + 1, the latter also implying that they terminated because
they completed T rounds of A.

Regarding the number of sent messages, note that node v sends in pulses
i ∈ {1, . . . , Tv + 1} at most one message over each incident edge. Denoting by
δv := |{w ∈ V | {v, w} ∈ E}| the degree of v, the total number of messages is at
most

∑
v∈V

Tv+1∑
i=1

δv =
∑
v∈V

(Tv + 1)δv ≤ (T + 1)
∑
v∈V

δv = 2(T + 1)|E|,

where the last equality uses that each edge has exactly two endpoints.

Remarks:

• Despite its length, this proof is quite simple. The most difficult part is to
figure out all the conditions that must be satisfied to perform the induction
step and make them part of the induction hypothesis (which then makes
things tedious).

• The same problem transpired when I wrote the pseudo-code for Algo-
rithm 5. It’s idea is straightfoward, but I made several mistakes. Allowing
for all the cases and treating them properly can be tiresome, and makes it
challenging to show correctness of more involved asynchronous algorithms.

• Fortunately, Theorem 2.7 shows that we have to do it only once! We
now can devise synchronous algorithms and make them into asynchronous
algorithms using the synchronizer.

• The argument extends to randomized algorithms in the following way. In-
terpret a randomized algorithm as a deterministic algorithm in which each
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node has an additional input: a (sufficiently long) string of independent,
unbiased random bits. Now synchronizer α simulates a randomized syn-
chronous algorithm. The algorithm has to fulfill that if a node is given the
same randomness (i.e., the strings are the same) throughout the simulated
“asynchronous rounds,” it must show the same behavior.

• Note that this can be subtle: If in a program one calls a standard function
producing a random value, it may compute the “random” value by taking
into account the system clock’s time!

• Of course, that’s not the end of the story. This equivalence between asyn-
chronous and synchronous systems breaks down if we take into account
other factors, such as the number of messages sent by an algorithm (we’ll
look into this now) or the possibility of failures (we’ll look into this next
lecture).

2.4 Synchronizing Globally

Synchronizer α is “expensive” in terms of messages. This may be fine if the
simulated algorithm also sends a lot of messages, implying that there’s not
much of a difference. Similarly, if A communicates only over a subset of the
edges that are known in advance (e.g. a spanning tree), we can also run the
synchronizer on the induced subgraph only. However, if neither is the case and
we care about the number of messages, we might want to look for something
else.

An obvious way of reducing the number of messages per round related to
the synchronizer is to communicate control messages over fewer edges. Since we
need to make sure that all (potential) neighbors are synchronized, the respective
edge set must connect all nodes. A connected graph with the fewest number of
edges is a tree.

Definition 2.8 (Distributed representation of a rooted tree). A distributed
rooted tree is defined as follows. There is a distinguished root node v0 ∈ V .
Each v ∈ V \{v0} has a neighbor pv as parent; pv is known to v and vice versa.

Note that it’s easy to root an unrooted tree (i.e., one where nodes don’t know
pv) at a node v0 in time equal to it’s depth with r as root, by sending messages
“down” the tree. If we also need to figure out which node becomes root, we can
use, e.g., the node with largest identifier. We then start the rooting procedure at
each node, including the corresponding identifier into each message, and always
let the currently largest known identifier “win.”

How do we use a given rooted tree for synchronization? We let the root
orchestrate the execution of the algorithm. Nodes will send their messages for a
given round, wait for acknowledgements from the recipients, and then consider
themselves “safe” for the current round.

Definition 2.9 (Safe Node). A node v is safe with respect to a certain clock
pulse if all messages of the synchronous algorithm sent by v in that pulse have
already arrived at their destinations.

If all nodes are safe, we can move on to the next round. So we let the root
know when all nodes are safe and then, in turn, distribute the information that
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this is the case to all nodes – both via the tree. The details of synchronizer β
are given in Algorithm 6.

Theorem 2.10 (β-synchronizer). Denote by d the depth of the tree employed
by Algorithm 6. The algorithm simulates the synchronous T -round Algorithm A
in O(d(T + 1)) asynchronous rounds. In total O(M + (T + 1)n) messages are
sent, where M is the number of messages sent by A.

Proof sketch. We give the main idea of the proof here; working out the details
is similar to the proof of Theorem 2.7.

When the root issues a new pulse by sending a pulse message, it is forwarded
to each node in the tree, as each node sends it to its children upon reception.
Hence, if the root issues a pulse, eventually all nodes issue the pulse. Upon
a pulse, nodes send the their messages for the respective round of A, wait for
the acknowledgements, and then set their safe-variable for the pulse to true.
Note that this will eventually happen (no message is lost, acknowledgements
are always sent), and it implies that the respective node is indeed safe. A safe
node will send a safe message to its parent as soon as it received safe messages
from all of its children. Thus, by induction on decreasing distance from the root
(i.e., starting at leaves), all nodes will send safe messages to their parents; the
induction also shows that this entails that the subtree rooted at the respective
node consists of safe nodes only. Consequently, eventually the root will generate
the next pulse, and at this point all nodes are safe.

This way the algorithm will proceed until all nodes have determined that
A has locally terminated. This information is forwarded to the root in a sim-
ilar fashion to the information that nodes are safe (using the done messages),
the only difference being that not necessarily all nodes terminate in the same
simulated round of A. However, all nodes participate in the synchronizer un-
til the root initiates the distribution of term messages, which happens when it
learns that all nodes’ simulation of A has locally terminated. We conclude that
Algorithm 6 simulates A.

Now consider the time complexity. Suppose pulse i starts at time t. By time
t+ d, all nodes have received their (pulse, i) message. Thus, by time t+ d+ 2,
the messages of A for round i have been received, acknowledged, and also these
acknowledgements have arrived. Now, starting from the leaves, we see that by
time t + 2d + 2, the root will have received safe messages from all its children
and issue pulse i+ 1. Since A terminates in T rounds, all nodes will notice this
when generating pulse T + 1. Then it takes at most d time until the root learns
that all nodes have completed their part of the execution of A and another d
time to terminate, for a total of O(dT +d) = O(d(T +1)) asynchronous rounds.

Finally, let us check the message complexity. In each pulse, over each tree
edge a pulse and a safe message is sent. We also have one done and one term
message per tree edge. All other messages are either messages of A or acknowl-
edgements for such messages. Hence, the total number of messages is

∑
tree edges

2 +

T+1∑
i=1

∑
tree edges

2 +
∑

messages of A
2

= 2(n− 1) + 2(T + 1)(n− 1) + 2M

∈ O(M + (T + 1)n),
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Algorithm 6 β-synchronizer simulating A (code for node v ∈ V ). For sim-
plicity, we adopt the convention that v stores all received information for later
reference and performs necessary computations.

1: if v just woke up then
2: donev := false
3: if v is root then
4: send (pulse, 1) to self (i.e., execute code for “received (pulse, 1)”)
5: end if
6: end if
7: if received (pulse, i) then
8: pulsev := i
9: safev(i) := false

10: send (pulse, i) to children
11: for {v, w} ∈ E with mA(v, w, i) 6= ⊥ do
12: send (mA(v, w, i), i) to w
13: end for
14: end if
15: if v received (mA(w, v, i), i) from w then
16: send (ACK, i) to w
17: end if
18: if v received (ACK, i) from all w with mA(v, w, i) 6= ⊥ then
19: safev(i) := true
20: end if

// do the following only once for each pulse i
21: if safev(i) = true and v received (safe, i) messages from all children then
22: if v is the root then
23: send (pulse, i+1) to self (i.e., execute code for “received (pulse, i+1)”)
24: else
25: send (safe, i) to parent
26: end if
27: if A terminates at v at the end of round i then
28: donev := true
29: end if
30: end if
31: if donev = true and received done from all children then
32: if v is root then
33: send term to all children
34: compute output and terminate
35: else
36: send done to parent
37: end if
38: end if
39: if v received term then
40: send term to children
41: compute output and terminate
42: end if
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provided that no node ever sends a message related to pulses larger than T + 1.
To achieve this, we bundle up the synchronizer-related messages a node sends

to its parent (i.e., safe and done) in each pulse. This means that the root cannot
learn that pulse T + 1 is complete without also noticing that A has terminated.
The root then will just send the term message and terminate without issuing
another pulse.

Remarks:

• The last paragraph of this proof highlights again how careful one needs to
be with asynchrony. If safe and done messages are handled independently,
it could happen that a term message is incredibly slow and we execute a
huge number of pointless pulses!

• Strictly speaking, the theorem is therefore about a slightly different version
of Algorithm 6. Since this means the theorem is technically wrong, I hope
that this way of presenting it is at least very didactic.

• Note that nodes cannot terminate just because they’re done with simu-
lating A. They have to relay information to and from the root.

• The β-synchronizer is an example of repeated use of the flooding/echo
routine. The root “floods” the information to do something through the
tree, and the result is then collected by the “echo” emanating from the
leaves. Here, the job is to make sure that all messages of A have arrived,
so some additional waiting can be involved.

• Flooding/echo is extremely useful when sufficient time is available (i.e.,
we don’t mind waiting for d time). One can use the principle for detecting
termination of algorithms or determining sums (including the number of
nodes), averages, maxima, etc., and then making the result known to
everyone.

• One can do the flooding also without having a tree at hand, instead con-
structing it “on the fly.” In this version, the first received message deter-
mines the parent, and one speculatively sends a message to all neighbors
at this point, as they might become children. This costs |E| messages.
If we start from a “clean slate” (no knowledge of the network topology),
this number of messages is necessary to make sure that no node is missed:
an unexplored edge may lead to a node with no other connection to the
network.

• Surely, synchronizer β is message-optimal (up to constants)? Nope! We
could just collect and make known the entire graph (including identi-
fiers and inputs) to each node by collecting and distributing it using
echo/flooding on the tree, using O(n) messages. Afterwards, each node
can simulate the complete algorithm locally!

• “That’s cheating!!” you might exclaim. Rightfully so, because if we could
do things centrally, then we wouldn’t need to think about a distributed
algorithm in the first place. Still, in practice this is something to always
check before rushing to the fancy solutions from this course!
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2.5 BFS Tree Construction
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Figure 2.2: Trivial synchronous BFS tree construction. The root sends “1” to
all neighbors. Nodes receiving a message “d” know they are in distance d from
the root, send d+ 1 to all neighbors, and terminate. Here we see the algorithm
in the complete graph; in general, it requires D synchronous rounds, where D
is the diameter of the network.

Synchronizer β requires a tree to operate, preferably one with small depth d.
In synchronous systems, flooding is a simple yet efficient method to construct
a breadth-first search (BFS) spanning tree using at most 2|E| messages and
ensuring that d ≤ D, where

D := max
v,w∈V

{dist(v, w)} (2.1)

is the network diameter and dist(v, w) is the length of a shortest path from v

Algorithm 7 Dijkstra BFS

1: The algorithm proceeds in phases. In phase i the nodes with distance i to
the root are detected. Let Ti be the tree in phase i. We start with T0 which
is just the root.

2: repeat
3: The root starts phase i by broadcasting “start i” within Ti.
4: When receiving “start i” a leaf node v of Ti (that is, a node that was

newly discovered in the last phase) sends a “join i + 1” message to all
quiet neighbors. (A neighbor w is quiet if v has not yet “talked” to w.)

5: A node v receiving the first “join i+ 1” message replies with “ACK” and
becomes a leaf of the tree Ti+1.

6: A node v receiving any further “join” message replies with “NACK.”
7: The leaves of Ti collect all the answers of their neighbors; then the leaves

start an echo algorithm back to the root.
8: When the echo process terminates at the root, the root increments the

phase.
9: until there was no new node detected
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start 1
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end 2
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Figure 2.3: A run of Dijkstra’s algorithm on the graph depicted on the left.
In the first phase, the neighbors of the root join the tree, resulting in T1. The
second phase uses the existing tree edges to communicate its start and finish
messages, very similar to the β-synchronizer. If there were more distant nodes
w.r.t. the root, there would be more phases following the same pattern.

to w. However, in asynchronous systems the spanning tree constructed by the
flooding algorithm may be far from BFS; in the worst case, we construct a line
in a complete graph (see Figure 2.4)!

In this section, we implement two classic BFS constructions—Dijkstra and
Bellman-Ford—as asynchronous algorithms. We start with the Dijkstra algo-
rithm. The basic idea is to always add the “closest” node to the existing part
of the BFS tree. We parallelize this idea by developing the BFS tree layer by
layer. In Algorithm 7, by “broadcast” we denote the operation that the root uses
flooding to distribute some information throughout the (current) tree. “Echo”
means the process of all leaves sending some information to the root, which
interior nodes aggregate from all children before forwarding it.

Theorem 2.11 (Distributed Dijkstra). The time complexity of Algorithm 7 is
O(D2). Its message complexity is O(|E|+ nD).

Proof. A broadcast/echo algorithm in Tp needs at most time 2D. Finding new
neighbors at the leaves costs 2 time units. Since the depth of the BFS tree
is bounded by the diameter, we have at most D phases, giving a total time
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complexity of O(D2).

The broadcast/echo routine uses each edge of a tree twice, i.e., at most
2(n − 1) such messages are sent in each phase. Since there are D phases, this
amounts to O(nD) messages. On each edge, there are at most 2 “join” messages.
Replies to a “join” request are answered by 1 “ACK” or “NACK,” which means
that we have at most 4 additional messages per edge. Therefore the message
complexity is O(|E|+ nD).

Remarks:

• The description of the algorithm is less formal than before, but highlights
the structure of the algorithm better. This helps with explaining the idea,
but don’t be fooled: This style can easily trick the reader (or writer!)
into believing some things will happen in a certain order, while in fact
asynchrony could cause something entirely different to happen!

• We haven’t specified how the root is selected. Either one has to specify
this in advance, or the problem of leader election has to be solved. This
is another fundamental problem in distributed computing.

The basic idea of the Moore-Bellman-Ford algorithm is even simpler. We
keep book on the distance to the root. If a node has found a better route to the
root, its neighbors update their distance accordingly.

Algorithm 8 Bellman-Ford BFS

1: Each node v stores an integer dv which corresponds to the distance dist(v, v0)
to the root v0. Initially dv0 = 0, and dv =∞ for v ∈ V \ {v0}.

2: The root starts the algorithm by sending “1” to all neighbors.
3: if v receives “d” with d < dv from w then
4: dv := d
5: pv := w
6: v sends “d+ 1” to all neighbors
7: end if

Theorem 2.12 (Bellman-Ford BFS). The time complexity of Algorithm 8 is
O(D), the message complexity is O(n|E|).

Proof. We prove the time complexity by induction. We claim that a node at
distance d from the root has received a message “d” by time d. The root knows
by time 0 that it is the root. A node v at distance d has a neighbor w at distance
d− 1. Node w, by the induction hypothesis, sends a message “d” to v by time
d− 1, which is then received by v by time d.

Regarding message complexity, a node can reduce its distance at most n− 1
times; each of these times it sends a message to all of its neighbors. If all nodes
do this we have O(n|E|) messages.



28 LECTURE 2. SYNCHRONIZERS

0

∞

∞

∞

0

∞

∞

∞
1

1

1

0

1

∞

∞

0

1

∞

∞

2

2

0

1

2

∞

0

1

2

∞

3

0

1

2

3

0

1

2

3

1

0

1

1

3

0

1

1

3

2

0

1

1

2

0

1

1

2
1

0

1

1

1

Figure 2.4: “Bad” execution of the Bellman-Ford algorithm on the complete
graph of 4 nodes. Red arrows indicate messages that cause nodes’ estimated
distances to change upon reception. Dotted arrows indicate that such messages
are delayed. Note that terminating when the first distance estimate is obtained
(i.e., running a naive synchronous BFS algorithm) would yield erroneous results.
Moreover, on average each node changes its label n/2 times (here n = 4),
implying a message complexity of n · n · n/2 ∈ Θ(n3).

Remarks:

• Here’s another “wrong” algorithm/proof: I didn’t say in the algorithm or
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the theorem how termination is detected. Can you see how to fix this?

• If not, don’t worry. We’ll cover this in the exercises, with astonishing
results!

• Algorithm 7 has the better message complexity and Algorithm 8 has the
better time complexity. The currently best algorithm (optimizing both)
needs O(|E|+ n log3 n) messages and O(D log3 n) time. This “trade-off”
algorithm is beyond the scope of this lecture.

• As such an advanced algorithm is quite efficient and one usually can con-
struct the tree in advance, in many cases it is not a big deal. Still, one
needs to keep in mind that this initial overhead exists and might not be
worth it.

2.6 Hybrid Synchronizers

Synchronizer α is fast, but costs a lot of messages. Synchronizer β is slow, but
efficient in terms of messages. Can we compromise? The answer is yes and
called (surprise!) synchronizer γ.

Figure 2.5: A cluster partition of a network: The dashed circles specify the
clusters, cluster leaders are black, the solid edges are the edges of the intracluster
trees, and the bold solid edges are the intercluster edges.

We will now briefly discuss the key ideas (there has been enough detail for
one lecture already!). In the initialization phase, the network is partitioned into
clusters of small diameter. In each cluster, a leader node is chosen and a BFS tree
rooted at this leader node is computed. These trees are called the intracluster
trees. Two clusters C1 and C2 are called neighboring if there are nodes u ∈ C1

and v ∈ C2 for which {u, v} ∈ E. For every two neighboring clusters, an
intercluster edge is chosen, which will serve for communication between these
clusters. Figure 2.5 illustrates this partitioning into clusters.
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We say that a cluster is safe if all its nodes are safe. Let’s start the de-
scription from all nodes generating a pulse (which, of course, may happen at
very different times). In at most 2 time units, all nodes will be safe. As in
synchronizer β, we now let the leader of each cluster learn that the cluster is
safe (we use acknowledgements again). Then, the leader will let the leaders of
adjacent clusters know that its cluster is safe. This is done by flooding this
information through the own cluster using the tree, then communicating it over
the intercluster edges, and using the same approach as in the β-synchronizer to
collect the information that all adjacent clusters are safe within the cluster (i.e.,
a “safe” message is sent to the parent once “safe” via all incident intercluster
edges and from all children has been received). Once a cluster leader knows
that all adjacent clusters and its own are safe, it tells all nodes in its cluster
to generate the next pulse. Hence, we essentially apply synchronizer α between
clusters.

Theorem 2.13 (Synchronizer γ). Let EC be the set of intercluster edges and
let k be the maximum cluster radius (i.e., the maximum distance of a leaf to
its cluster leader). Simulating a synchronous T -round algorithm sending M
messages using synchronizer γ then takes O((T +1)k) time and requires O(M+
(T + 1)(|EC |+ n)) messages.

Proof sketch. From the above description, we see that each pulse requires a
constant number of flooding or echo operations on the trees (which have depth at
most k and in total at most n−1 edges), 2 messages over each intercluster edge,
and the messages of the simulated algorithm plus acknowledgements. Hence,
each pulse takes O(k) time, O(|EC |+ n) synchronizer messages, and two times
the number of messages sent by the algorithm in the simulated round. Summing
up, over T rounds (and taking into account handling of termination), we get
the stated bounds.

In the exercises, we will see that one can have |EC | ∈ O(n1+1/k), which is
pretty impressive.

Corollary 2.14 (Synchronizer γ). For k ∈ {1, . . . , dlog ne}, there is a net-
work partion so that synchronizter γ simulates a synchronous T -round algorithm
sending M messages in O((T + 1)k) time and requires O(M + (T + 1)n1+1/k)
messages.

Remarks:

• For k = 1, this is just like synchronizer α.

• For k = dlog ne, this uses as few messages as synchronizer β, but pays
only a factor of O(log n) in time, regardless of D!

Remarks:

• It can be shown that the trade-off between cluster radius and number of
intercluster edges of Corollary 2.14 is asymptotically optimal. There are
graphs for which every clustering into clusters of radius at most k requires
n1+c/k intercluster edges for some constant c.
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• The synchronizers β and γ achieve global synchronization, i.e. every node
generates every clock pulse. The disadvantage of this is that nodes that do
not participate in a computation also have to participate in the synchro-
nization. In many computations (e.g. in a BFS construction), many nodes
only participate for a few synchronous rounds. In such scenarios, it is pos-
sible to achieve time and message complexity O(log3 n) per synchronous
round (without initialization).

• It can be shown that if all nodes in the network need to generate all pulses,
the trade-off of synchronizer γ is asymptotically optimal.

• Partitions of networks into clusters of small diameter and coverings of net-
works with clusters of small diameters come in many variations and have
various applications in distributed computations. In particular, apart from
synchronizers, algorithms for routing, the construction of sparse spanning
subgraphs, distributed data structures, and even computations of local
structures such as maximal independent sets can be based on some kind
of network partition or cover.

What to take Home

• Asynchrony does not affect solvability of problems – if there are no faults.

• It comes at a cost in time and/or message complexity, though.

• Simulation is a powerful tool for designing algorithms. Designing and an-
alyzing advanced asynchronous algorithms can be very challenging. If it’s
ok to run a synchronizer (which simulates synchrony), things can become
astronomically simpler.

• Not all problems have a single best solution. Frequently, there is a trade-off
between quality measures that cannot be compared in a straightforward
way, e.g. time vs. messages.

• Then again, there might be a “sweet spot,” where the cost in either mea-
sure is very small. We had this with time vs. number of colors for list
coloring, and with the γ-synchronizer using a good network partition.

• On the way to a good solution, it may turn out that one needs to solve
another problem that did not appear to be of relevance initially.

• Totally unrelated: network partitions rock!

Bibliographic Notes

The idea behind synchronizers is quite intuitive and as such, synchronizers α and
β were implicitly used in various asynchronous algorithms [Gal76, Cha79, CL85]
before being proposed as separate entities. The general idea of applying syn-
chronizers to run synchronous algorithms in asynchronous networks was first
introduced by Awerbuch [Awe85]. His work also formally introduced the syn-
chronizers α, β, and γ. Improved synchronizers that exploit inactive nodes or
hypercube networks were presented in [AP90, PU87].
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Trees are one of the oldest graph structures, already appearing in the first
book about graph theory [Koe36]. Broadcasting (i.e., flooding some information
through the network) in distributed computing is younger, but not that much
[DM78]. Overviews about broadcasting can be found for example in Chapter 3 of
[Pel00] and Chapter 7 of [HKP+05]. Overviews of distributed tree construction
can be found in Chapter 5 of [Pel00] or Chapter 4 of [Lyn96]. The classic papers
on routing are [For56, Bel58, Dij59].

Figure 2.5 is courtesy of Roger Wattenhofer. Wide parts of this lecture
are based on the corresponding lecture of his course “Principles of Distributed
Computing.”
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