
Lecture 5

Maximal Independent Set

5.1 The Problem

Definition 5.1 (Independent Set). Given an undirected Graph G = (V,E),
an independent set is a subset of nodes U ⊆ V , such that no two nodes in U
are adjacent. An independent set is maximal if no node can be added without
violating independence, and maximum if it maximizes |U |.

2

1

2

Figure 5.1: Example graph with 1) a maximal independent set and 2) a maxi-
mum independent set.

From a centralized perspective, an MIS is an utterly boring structure: Just
pass over all nodes and greedily select them, i.e., pick every node without a
previously selected neighbor. Voilà, you’ve got an MIS! However, in the dis-
tributed setting, things get more interesting. As you saw in the first exercise,
finding an MIS on a list is essentially the same as finding a 3-coloring, and if we
don’t care about message size, being able to find an MIS on general graphs in
T rounds can be used to determine a (∆ + 1)-coloring in T rounds. This means
that despite it being easy to verify that a set is an MIS locally (i.e., some node
will notice if there’s a problem just by looking at its immediate neighborhood),
it takes Ω(log∗ n) rounds to compute an MIS!

Today, we’re going to study this problem in the synchronous message passing
model (without faults), for an arbitrary simple graph G = (V,E). Recall that

59

60 LECTURE 5. MAXIMAL INDEPENDENT SET

we can use synchronizers to transform any algorithm in this model into an
asynchronous algorithm, so the result will make a very versatile addition to our
toolbox! Like last week, we’re going to allow for randomness. This can be done
in the same way, by assuming that each node has an infinite (read: sufficiently
large) supply of unbiased random bits.

Remarks:

• Note that an MIS can be very small compared to a maximum independent
set. The most extreme discrepance occurs on a star graph, where the two
possible MIS are of size 1 and n− 1 (cf. Figure 5.1)!

• One can apply a coloring algorithm first and then, iterating over colors,
concurrently add all uncovered nodes of the current color to the indepen-
dent set. Once this is complete, all nodes are covered, i.e., we have an
MIS. However, this can be quite slow, as the number of colors can be
large.

5.2 Fast MIS Construction

Algorithm 12 MIS construction algorithm. Of course we cannot implement
an algorithm that operates with real values. We’ll fix this later.

// each iteration of the while-loop is called a phase

while true do
choose a uniformly random value r(v) ∈ [0, 1] and send it to all neighbors
if r(v) < r(w) for each r(w) received from some neighbor w then

notify neighbors that v joins the independent set
return(1) and terminate

end if
if a neighbor joined the independent set then

return(0) and terminate
end if

end while

Lemma 5.2. Algorithm 12 computes an MIS. It terminates with probability 1.

Proof. We claim that at the beginning of each phase, the set of nodes that
joined the set and terminated is an independent set, and the set of all nodes
that terminated is the union of their (inclusive) neighborhoods; we show this by
induction. Trivially, this holds initially. In each phase, it cannot happen that
two adjacent non-terminated nodes enter the set. By the induction hypothesis,
no active (i.e., not terminated) node has a neighbor in the independent set.
Together this implies that at the end of the phase, the set of nodes that output
1 is still an independent set. As the active neighbors of joining nodes output
0 and terminate, the induction step succeeds and the claim holds true. We
conclude that the algorithm computes an independent set.

To see that the independent set is maximal, observe that a node can only
terminate if it enters the set or has a neighbor in the set. Thus, once all nodes

5.3. BOUNDING THE RUNNING TIME OF THE ALGORITHM 61

have terminated, no further nodes could be added to the set without violating
independence.

Finally, note that the probability that two random real numbers from [0, 1]
are identical is 0. By the union bound, this yields that with probability 1,
in a given phase all random numbers are different. This entails that the non-
terminated node with the smallest number joins the set. This implies that
within finitely many phases in which the numbers differ, all nodes terminate.
Using the union bound once more, it follows that the algorithm terminates with
probability 1.

Remarks:

• Simple stuff, but demonstrating how to reason about such algorithms.

• The union bound states that the probability of one (or more) of several
(more precisely: countably many) events happening is at most the sum of
their individual probabilities. It is tight if the events are disjoint.

• The union bound can’t even be called a theorem. It’s obvious for discrete
random variables, and for continuous random variables it’s just paraphras-
ing the fact that the total volume of the union of countably many sets is
bounded by the sum of their individual volumes, a property that any
measure (in particular a probability measure) must satisfy.

• We’ll frequently use the union bound implicitly in the future.

• That’s enough with the continuous stuff for today, now we’re returning to
“proper” probabilities.

• Note that the algorithm can be viewed as selecting in each phase an inde-
pendent set in the subgraph induced by the still active nodes. This means
that all we need to understand is a single phase of the algorithm on an
arbitrary graph!

5.3 Bounding the Running Time of the Algo-
rithm

Before we can do this, we need a (very basic) probabilitistic tool: linearity of
expectation.

Theorem 5.3 (Linearity of Expectation). Let Xi, i = 1, . . . , k denote random
variables, then

E

[∑
i

Xi

]
=
∑
i

E [Xi] .

Proof. It is sufficient to prove E [X + Y] = E [X]+E [Y] for two random variables
X and Y , because then the statement follows by induction. We’ll do the proof
for a discrete random variable; for a continuous one, simply replace the sums

62 LECTURE 5. MAXIMAL INDEPENDENT SET

by intregrals. We compute

E [X + Y] =
∑

(X,Y)=(x,y)

P [(X,Y) = (x, y)] · (x+ y)

=
∑
X=x

∑
Y=y

P [(X,Y) = (x, y)] · x

+
∑
Y=y

∑
X=x

P [(X,Y) = (x, y)] · y

=
∑
X=x

∑
Y=y

P [X = x] · P [Y = y | X = x] · x

+
∑
Y=y

∑
X=x

P [Y = y] · P [X = x | Y = y] · y

=
∑
X=x

P [X = x] · x+
∑
Y=y

P [Y = y] · y

= E [X] + E [Y] ,

where in the second last step we used that∑
X=x

P [X = x | Y = y] =
∑
Y=y

P [Y = y | X = x] = 1,

as X and Y are random variables (i.e., something happens with probability 1,
even when conditioning on another variable’s outcome).

Denote by Nv := {w ∈ V | {v, w}} ∈ E the neighborhood of v ∈ V and by
δv := |Nv| its degree. Now it’s alluring to reason as follows. Since δv + 1 nodes
are removed “because of v” if v joins the set, by linearity of expectation we have
that ∑

v∈V
P [v joins the set] · (δv + 1) =

∑
v∈V

δv + 1

δv + 1
= |V | wrong!!

nodes are removed in expectation. This is utter nonsense, as it would auto-
matically mean that all nodes are eliminated in a single step (otherwise the
expectation must be smaller than |V |), which clearly is false!

The mistake here is that we counted eliminated nodes multiple times: it’s
possible that several neighbors of a node join the set. In fact, there are graphs
in which only a small fraction of the nodes gets eliminated in a phase, see
Figure 5.2.

In summary, we cannot hope for many nodes being eliminated in each phase.
We might be able to reason more carefully, over multiple phases, but how? It
turns out that the easiest route actually goes through figuring out the expected
number of edges that are deleted (i.e., one of their endpoints is deleted) from
the graph in a given phase. Still, we need to be careful about not counting
deleted edges repeatedly!

Lemma 5.4. In a single phase, we remove at least half of the edges in expecta-
tion.

5.3. BOUNDING THE RUNNING TIME OF THE ALGORITHM 63

Figure 5.2: A graph where it’s highly unlikely that more than a small fraction
of the nodes gets deleted in the first phase. The graph is fully bipartite, but
with few nodes on the right side. If R� n nodes are on the right, the expected
number of such nodes that gets selected is R/(n−R+ 1)� 1. This means the
probability that at least one node on the right is selected is at most R/(n−R+
1)� 1, too. From the left side, in expectation (n−R)/R nodes are selected. If
1� R� n, this means that it’s very likely that only nodes on the left side are
selected and the selected nodes are much fewer than n−R; as R� n, the fact
that all nodes on the right side are deleted does not affect the tally substantially.

Proof. To simplify the notation, at the start of our phase, denote the subgraph
induced by the non-terminated nodes by G = (V,E), i.e., ignore all terminated
nodes and their incident edges. In addition, think of each undirected edge
{v, w} as being replaced by the two directed edges (v, w) and (w, v); we make
sure that we count each such directed edge at most once when bounding the
expected number of removed edges.

Suppose that a node v joins the MIS in this phase, i.e., r(v) < r(w) for
all neighbors w ∈ Nv. Consider a fixed w ∈ Nv. If we also have r(v) < r(x)
for all x ∈ Nw \ {v}, we call this event (v → w). The probability of event
(v → w) is at least 1/(δv + δw), since (i) δv + δw is the maximum number of
nodes adjacent to v or w (or both) and (ii) ordering by r(·) induces a uniform
random permutation on V . As v joins the MIS, all (directed) edges (w, x) with
x ∈ Nw will be removed; there are δw such edges.

We now count the removed (directed) edges. Whether we remove the edges
adjacent to w because of event (v → w) is a random variable X(v→w). If event
(v → w) occurs, X(v→w) has the value δw, if not it has the value 0. For each
undirected edge {v, w}, we have two such variables, X(v→w) and X(w→v). Due
to Theorem 5.3, the expected value of the sum X of all these random variables

64 LECTURE 5. MAXIMAL INDEPENDENT SET

is at least

E [X] =
∑

{v,w}∈E
E[X(v→w)] + E[X(w→v)]

=
∑

{v,w}∈E
P [(v → w)] · δw + P [(w → v)] · δv

≥
∑

{v,w}∈E

δw
δv + δw

+
δv

δw + δv

=
∑

{v,w}∈E
1 = |E|.

In other words, in expectation |E| directed edges are removed in a single
phase! Note that we did not count any edge removals twice, as a directed edge
(v, w) can only be removed by an event (u→ v). The event (u→ v) inhibits a
concurrent event (u′ → v), because then r(u) < r(u′) for all u′ ∈ Nv. We may
have counted an undirected edge at most twice (once in each direction). So, in
expectation at least half of the undirected edges are removed.

This tells us that in expectation we make good progress. But how do we
derive some explicit bound on the time until all edges are eliminated (and
thus all nodes are, too) from this? We need another very basic tool, Markov’s
inequality.

Theorem 5.5 (Markov’s Inequality). Let X be a positive random variable (in
fact, P [X ≥ 0] = 1 and P [X = 0] < 1 suffice). Then, for any K > 1,

P [X ≥ KE[X]] ≤ 1

K
.

Proof. We’ll prove the statement for a discrete random variable with values
from N0; it’s straightforward to generalize to arbitrary discrete variables and
continuous variables. We bound

E[X] =

∞∑
i=0

P [X = i] · i

≥
∞∑

i=dKE[X]e
P [X = i] · i

≥ KE[X]

∞∑
i=dKE[X]e

P [X = i]

= KE[X]P [X ≥ KE[X]].

Dividing by KE[X] yields the statement of the theorem.

Using Markov’s bound, we can now infer that the bound on the expected
number of removed edges in a given phase also implies that a constant fraction
of edges must be removed with constant probability.

Corollary 5.6. In a single phase, we remove at least a third of the edges with
probability at least 1/4.

5.3. BOUNDING THE RUNNING TIME OF THE ALGORITHM 65

Proof. Fix a phase. For simplicity, denote the remaining graph by G = (V,E).
Denote by X the random variable counting the number of removed edges and
by X̄ the random variable counting the number of surviving edges, i.e., |E| =
X + X̄. By Lemma 5.4,

E[X̄] = |E| − E[X] ≤ |E|
2
.

By Markov’s inequality (Theorem 5.5, for K = 4/3),

P

[
X ≤ |E|

3

]
= P

[
X̄ ≥ 2|E|

3

]
≤ P

[
X̄ ≥ 4E[X̄]

3

]
≤ 3

4
.

Hence,

P

[
X >

|E|
3

]
= 1− P

[
X ≤ |E|

3

]
≥ 1

4
.

In other words, we translated the bound on the expected number of elim-
inated edges into a bound on the probability that a constant fraction of the
remaining edges gets eliminated. This now can happen only O(log n) times
before we run out of edges!

Theorem 5.7. Algorithm 12 computes an MIS in O(log n) rounds in expecta-
tion.

Proof. Irrespectively of how the remaining graph looks like, Corollary 5.6 tells
us that with probability at least 1/4, at least a fraction of 1/3 of the remaining
edges is removed in each phase. Let’s call a phase in which this happens good.
After

log3/2 |E| <
log n2

log(3/2)
< 4 log n

good phases, we can be sure that there is at most a single remaining edge; in the
following phase the algorithm will terminate. As each phase requires 2 rounds,
it thus suffices to show that the expected number of phases until 4 log n good
phases occurred is in O(log n).

Computing this expectation precisely is tedious. However, consider, say,
40 log n phases. The expected number of good phases in 40 log n phases is, by
Corollary 5.6, at least 10 log n. Hence, the expected number of phases that are
not good is at most 30 log n, and by Markov’s inequality the probability that
more than 36 log n phases are bad is at most 30/36 = 5/6. In fact, this holds for
any set of 40 logn phases. Consequently, the expected number of phases until
at least 4 log n good phases occurred is bounded by

40 log n

∞∑
i=0

(
5

6

)i
· 1

6
· (i+ 1) =

20 log n

3

(∞∑
i=0

i

(
5

6

)i
+

∞∑
i=0

(
5

6

)i)

=
20 log n

3

(
5

6
· 62 + 6

)
= 240 log n.

We conclude that the expected running time of the algorithm is bounded by
480 log n ∈ O(log n) rounds.

66 LECTURE 5. MAXIMAL INDEPENDENT SET

Remarks:

• This analysis is somewhat heavy-handed with respect to constants. I’d
guess that the probability to eliminate at least half of the edges is at least
1/2, and that the algorithm terminates in expected time smaller than
4 log n. Proving this, however, might be quite difficult!

• The analysis is also tight up to constants. If one samples uniformly at
random from the family of graphs of uniform degree ∆ for, say, ∆ = n1/100,
there will be extremely few short cycles. In such a graph, it’s easy to show
that the degree of surviving nodes falls almost exactly by a constant factor
in each phase (until degrees become fairly small).

• No algorithm that has expected running time o(log n) on all graphs is
known to date. Plenty of research has been done and better bounds for
many restricted graphs classes (like, e.g., trees) are known, but nothing
that always works.

• The strongest known lower bound on the number of rounds to compute
an MIS is Ω(

√
log n) or Ω(log ∆) (depending on whether one parametrizes

by the number of nodes or the maximum degree). It holds also for ran-
domized algorithms; closing this gap is one of the major open problems in
distributed computing.

• Embarrassingly, the best known upper bound on the time to compute an
MIS deterministically is 2O(

√
logn), i.e., there’s an exponential gap to the

lower bound! Even worse, the respective algorithm may end up collecting
the topology of the entire graph locally, i.e., using huge messages!

5.4 Exploiting Concentration

We have bounded the expected running time of the algorithm, but often that
is not too useful. If we need to know when we can start the next task and
this is not controlled by termination of the algorithm (i.e., we need to be ready
for something), we need to know that all nodes are essentially certain to be
finished! Also, there are quite a few situations in which we don’t have such a
trivial-to-check local termination condition. Yet, we would like to have an easy
way of deciding when to stop!

Definition 5.8 (With high probability (w.h.p.)). We say that an event occurs
with high probability (w.h.p.), if it does so with probability at least 1− 1/nc for
any (fixed) choice of c ≥ 1. Here c may affect the constants in the O-notation
because it is considered a “tunable constant” and usually kept small.

This weird definition asks for some explanation. The reason why the prob-
ability bound depends on n is that it makes applying the union bound ex-
tremely convenient. Think for instance that you showed that each node ter-
minates w.h.p. within O(log n) rounds (the constant c being absorbed by the
O-notation). Then you pick c′ := c + 1, apply the union bound over all nodes
and conclude that everyone terminates with probability at least 1− 1/nc

′ · n =
1− 1/nc, i.e., w.h.p.!

5.4. EXPLOITING CONCENTRATION 67

The cool thing here is that this works for any polynomial number of events,
as c is “tunable.” For instance, if something holds for each edge w.h.p., it holds
for all edges w.h.p. Even better, we can condition on events that happen w.h.p.
and basically pretend that they occur deterministically. The probability that
they do not happen is so small that any dependencies that might exist have
negligible effects!

After this sales pitch, the obvious question is where we can get such strong
probability bounds from. Chernoff’s bound comes to the rescue! It holds for
sums of independent random variables.

Definition 5.9 (Independence of random variables). A set of random variables
X1, . . . , Xk is independent, if for all i and (x1, . . . , xk) it holds that

P [Xi = xi]

= P [Xi = xi | (X1, . . . , Xi−1, Xi+1, . . . , Xk) = (x1, . . . , xi−1, xi+1, . . . , xk)].

In words, the probability that Xi = xi is independent of what happens to the
other variables.

Theorem 5.10 (Chernoff’s Bound). Let X =
∑k
i=1Xi be the sum of k inde-

pendent Bernoulli (i.e., 0-1) variables. Then, for 0 < δ ≤ 1,

P
[
X ≥ (1 + δ)E[X]

]
≤ e−δ

2E[X]/3

P
[
X ≤ (1− δ)E[X]

]
≤ e−δ

2E[X]/2.

Let’s see Chernoff’s bound in action.

Corollary 5.11. Algorithm 12 terminates w.h.p. in O(log n) rounds.

Proof. By Lemma 5.4, with probability at least 1/4, a third of the remaining
edges is removed from the graph in a given phase. This bound holds indepen-
dently of anything that happened before! We reason as in the proof of Theo-
rem 5.7, but bound the number of phases until 4 log n phases are good using
Chernoff’s bound.

For c ≥ 1, the probability that we need more than k := d32c log ne phases
for 4 log n of them to be good is bounded by the probability that the sum
X :=

∑k
i=1Xi of independent Bernoulli variables Xi with P [Xi = 1] = 1/4

is smaller than 4 log n. We have that E[X] = d8c log ne. Hence, by Chernoff’s
bound for δ = 1/2,

P [X < 4 log n] ≤ P
[
X <

E[X]

2

]
≤ e−E[X]/8 ≤ e−c logn < n−c.

Thus, the probability that the algorithm does not terminate within 2(k + 1) ∈
O(log n) rounds is at least 1− 1/nc. Since c ≥ 1 was arbitrary, this proves the
claim.

68 LECTURE 5. MAXIMAL INDEPENDENT SET

Remarks:

• Chernoff’s bound is exponentially stronger than Markov’s bound. How-
ever, it requires independence!

• Surprisingly, in fact Chernoff’s bound is just a very clever application of
Markov’s bound (see exercises)!

• Careful: Pairwise independence of random variables X1, . . . , Xk does not
imply that they are independent! A counterexample are two independent
Bernoulli variables X1 and X2 with P [X1 = 1] = P [X2 = 1] = 1/2 (i.e.,
unbiased coin flips), and X3 := X1 XOR X2. If one fixes either X1 or
X2, X3 is determined by the respective other (independent) coin flip, and
hence remains independent. If one fixes both X1 and X2, X3 is already
determined!

5.5 Bit Complexity of the Algorithm

We still need to fix the issue of the algorithm using random real numbers. We
don’t want to communicate an infinite number of bits! To resolve this, recall the
relation between uniformly random real numbers from [0, 1] and infinite strings
of unbiased random bits: The latter is a binary encoding of the former. Next,
note that in order to decide whether rv > rw or rv < rw for neighbors v, w ∈ V
(rv = rw has probability 0 and thus does not concern us here), it is sufficient to
communicate only the leading bits of both strings, until the first differing bit is
found! What is the expected number of sent bits? Easy:

∞∑
i=1

(
1

2

)i
· i = 2.

Inconveniently, the number of bits that need to be exchanged between each pair
of nodes among three nodes that form a triangle are not independent. This is a
slightly more elaborate example showing that pairwise independence does not
imply “collective” independence.

Our way out is using that the probability to exchange many bits is so small
that the dependence does not matter, as it also must become very small. The
probability that a pair of nodes needs to exchange more than 1 + (c + 2) log n
bits in a given phase is

2−(c+2) logn = n−(c+2).

By the union bound, the probability that any pair of nodes needs to exchange
more than this many bits is thus no larger than n−c (there are fewer than n2

edges). Applying the union bound over all rounds, we can conclude it suffices
for each node to broadcast O(log n) bits per round. But we can do better!

Corollary 5.12. If n is known, Algorithm 12 can be modified so that it sends
1-bit messages and terminates within O(log n) rounds w.h.p.

Proof. Before running Algorithm 12, each pair of neighbors v, w determines
for each of the O(log n) phases the algorithm will require whether rv < rw or
vice versa. This is done by v sending the leading bits of rv (and receiving the
ones from w) until the first difference is noted. Then the nodes move on to

5.6. APPLICATIONS 69

exchanging the leading bits for the next phase, and so on. The total number of
bits that needs to be exchanged is in expectation O(log n) (2 times the number
of phases). By Chernoff’s bound, for any fixed K ≥ 2 the probability that the
sum X of K log n independent unbiased coin flips is smaller than K log n/2 is
in n−Ω(K). Note that the probability that the exchange for a given phase ends
is indeed 1/2 and independent of earlier such events. Choosing K suitably, we
conclude that w.h.p. v and w exchange at most O(log n) bits in total.

Applying the union bound, we conclude that w.h.p. no pair of nodes ex-
changes more than O(log n) bits. Knowing n, we can determine the respective
number, run the exchange algorithm for the respective number of rounds, and
then run Algorithm 12 without having to communicate the values rv, v ∈ V , at
all.

Remarks:

• Using this trick means that nodes need to communicate different bits to
different neighbors.

• It’s possible to get rid of needing to know n.1

• It’s not hard to see that at least some nodes will have to send Ω(log n)
bits across an edge: in a graph consisting of n/2 pairs of nodes connected
by an edge, the expected number of edges for which log(n/2) random bits
are required to break symmetry is 1.

5.6 Applications

We know from the first exercise that we can use an MIS algorithm to compute
a (∆ + 1)-coloring.

Corollary 5.13. On any graph G, a (∆ + 1)-coloring can be computed in
O(log n) rounds w.h.p.

MIS are not only interesting for graph coloring. As we will see in the exer-
cises, they can also be very helpful in finding small dominating sets2 in some
graph families. Moreover, an MIS algorithm can be used to compute a maximal
matching.

Definition 5.14 (Matching). Given a graph G = (V,E), a matching is a subset
of edges M ⊆ E, such that no two edges in M are adjacent (i.e., where no node
is incident to 2 edges in the matching). A matching is maximal if no edge
can be added without violating the above constraint. A matching of maximum
cardinality is called maximum. A matching is called perfect if each node is
adjacent to an edge in the matching.

1This is done by alternating between bit exchange rounds and rounds of Algorithm 12.
However, then some nodes may not yet have succeeded in comparing the random values for
the “current” phase of Algorithm 12. This can be understood as the exchange of the random
numbers happening asynchronously (nodes do not know when they will be ready to compare
their value to all neighbors), and thus can be resolved by running the α-synchronizer version of
Algorithm 12. Now one needs to avoid that the communication of the synchronizer dominates
the complexity. Solution: Exploiting synchrony, we can count “synchronizer rounds” by locally
counting how many rounds neighbors completed and just communicating “I advance to the
next round” (plus the respective message content) and otherwise remaining silent.

2A dominating set D ⊆ V satisfies that each v ∈ V \D has a neighbor in D.

70 LECTURE 5. MAXIMAL INDEPENDENT SET

Corollary 5.15. On any graph G, a maximal matching can be computed in
O(log n) rounds w.h.p.

Proof. For a simple graph G = (V,E), the line graph is (E,L), where {e, e′} ∈ L
if and only if e ∩ e′ 6= ∅. In words, edges become nodes, and a pair of “new”
nodes is connected by an edge exactly if the corresponding edges in the original
graph share an endpoint. We simulate an MIS algorithm on the line graph. It’s
straightforward to show that this can be done at an overhead of factor 2 in time
complexity.

Another use of MIS is in constructing small vertex covers.

Definition 5.16 (Vertex cover). A vertex cover C ⊆ V is a set of nodes covering
all edges, i.e., for all e ∈ E, e∩C 6= ∅. It is minimal, if no node can be removed
without violating coverage. It is minimum, if it is of minimum size.

Corollary 5.17. On any graph G, a vertex cover that is at most a factor 2
larger than a minimum vertex cover can be computed in O(log n) rounds w.h.p.

Proof. Compute a maximal matching using Corollary 5.15 and output the end-
points of all its edges. Clearly, this is a vertex cover, as an uncovered edge could
be added to the matching. Moreover, any vertex cover must contain for each
matching edge at least one of its endpoints. Hence the cover is at most a factor
of 2 larger than the optimum.

Finally, we can also use a maximal matching to approximate a maximum
matching.

Corollary 5.18. On any graph G, a matching that is at most a factor 2 smaller
than a maximum matching can be computed in O(log n) rounds w.h.p.

Proof. Compute and output a maximal matching using Corollary 5.15. Now
consider a maximum matching. A minimum vertex cover must be as least as
large as this matching (as no node can cover two matching edges). As the
endpoints of the edges of a maximal matching form a vertex cover, they must
be at least as many as those of a minimum vertex cover and thus the size of a
maximum matching. The number of edges in the maximal matching is half this
number.

Remarks:

• Given the important role of all these graph structures in “traditional”
algorithms, it comes hardly as a surprise that being able to construct an
MIS fast in distributed systems comes in very handy on many occasions!

What to take Home

• Finding an MIS is a trivial task for centralized algorithms. It’s a pure
symmetry breaking problem.

• An MIS is typically not useful by itself, but MIS algorithms are very
helpful in the construction of many other basic graph structures.

5.6. APPLICATIONS 71

• Your basic toolbox for analyzing randomized algorithms:

– linearity of expectation

– Markov’s bound

– probabilistic independence (and its convenient properties)

– probabilistic domination (see below)

– Chernoff’s bound

– union bound

• Probabilistic domination simply means that you replace a random variable
by some other variable “dominating” it. We did this with the probability
that a constant fraction of the edges is removed: whether this happens
might depend on the graph, so we could not apply Chernoff to collections
of such variables. However, we knew that no matter what, the respective
probability is constantly bounded independently of the graph, so we used
independent Bernoulli variables to indicate whether a phase was good or
not, possibly treating some good phases as “bad,” to be on the safe side.

• One particularly useful toolchain is probabilistic domination → Chernoff
→ union bound. It’s not uncommon to use the other tools just to feed
this chain, like we did today, too!

• That’s almost everything you need to analyze the majority of randomized
distributed algorithms out there. The difficulty typically lies in how to
apply these tools properly, not in finding new ones!3

Bibliographic Notes

In the 80s, several groups of researchers came up with more or less the same
ideas: Luby [Lub86], Alon, Babai, and Itai [ABI86], and Israeli and Itai [II86].
Essentially, all of these works imply fast randomized distributed algorithms for
computing an MIS. The new MIS variant (with a simpler analysis) presented
here is by Métivier, Robson, Saheb-Djahromi, and Zemmari [MRSDZ11]. With
some adaptations, also the algorithms [Lub86, MRSDZ11] only need to transmit
a total of O(log n) bits per node, which is asymptotically optimal, even on
unoriented trees [KSOS06]. Deterministic MIS algorithms are emberassingly

far from the lower bounds: the best known upper bound is 2O(
√

logn) [PS96].
In growth-bounded graphs,4 an MIS is a constant-factor approximation to

a minimum dominating set. In this graph family, an MIS (and thus small
dominating set) can be computed in O(log∗ n) rounds [SW08]; the respective
algorithm leverages the Cole-Vishkin technique. On graphs that can be decom-
posed into a constant number of forests, a constant-factor approximation to a
minimum dominating set can be computed with the help of an MIS algorithm,
too [LPW13] (see exercises).

3Admittedly, this might be a bad case of “if all you have is a hammer, everything looks
like a nail.” In a course on probabilistic algorithms I took I drove the TA mad by solving
most of the exercises utilizing Chernoff’s bound (or trying to), even though the questions were
handcrafted to strongly suggest otherwise.

4A graph is growth-bounded, if the maximal number of independent nodes in r-hop neigh-
borhoods is bounded as a function of r, independently of n or ∆.

72 LECTURE 5. MAXIMAL INDEPENDENT SET

Wide parts of the script for this lecture are based on material kindly provided
by Roger Wattenhofer. Thanks!

Bibliography

[ABI86] Noga Alon, László Babai, and Alon Itai. A Fast and Simple
Randomized Parallel Algorithm for the Maximal Independent Set
Problem. J. Algorithms, 7(4):567–583, 1986.

[II86] Amos Israeli and Alon Itai. A Fast and Simple Randomized Parallel
Algorithm for Maximal Matching. Inf. Process. Lett., 22(2):77–80,
1986.

[KSOS06] Kishore Kothapalli, Christian Scheideler, Melih Onus, and Chris-
tian Schindelhauer. Distributed coloring in O(

√
log n) Bit Rounds.

In 20th international conference on Parallel and Distributed Pro-
cessing (IPDPS), 2006.

[LPW13] Christoph Lenzen, Yvonne-Anne Pignolet, and Roger Watten-
hofer. Distributed Minimum Dominating Set Approximations in
Restricted Families of Graphs. Distributed Computing, 26(2):119–
137, 2013.

[Lub86] Michael Luby. A Simple Parallel Algorithm for the Maximal Inde-
pendent Set Problem. SIAM J. Comput., 15(4):1036–1053, 1986.

[MRSDZ11] Yves Métivier, John Michael Robson, Nasser Saheb-Djahromi, and
Akka Zemmari. An optimal bit complexity randomized distributed
MIS algorithm. Distributed Computing, 23(5-6):331–340, 2011.

[PS96] Alessandro Panconesi and Aravind Srinivasan. On the Complexity
of Distributed Network Decomposition. J. Algorithms, 20(2):356–
374, 1996.

[SW08] Johannes Schneider and Roger Wattenhofer. A Log-Star Distrib-
uted Maximal Independent Set Algorithm for Growth-Bounded
Graphs. In 27th ACM Symposium on Principles of Distributed
Computing (PODC), Toronto, Canada, August 2008.

