Exercise 1 (10 points)

a) In the land of Oddaria, coins have weird integral values (not necessarily 1, 2, 5, etc.).
Cashiers frequently have to solve the following problem when handing out change. Given a
positive integer \(t \) (the amount of change) and \(n \) positive integers \(w_1, \ldots, w_n \) (the values of all
coins at the cashier’s disposal), decide whether some subset of \(\{w_1, \ldots, w_n\} \) sums exactly to \(t \).
Design a fast dynamic programming algorithm and analyze its running time in terms of \(n \) and \(t \).

b) Coins are either rare or regular. Adapt your solution to give, among all ways of giving
change, the way that hands out the least number of rare coins.

Exercise 2 (8 points)

In the lecture we focused on polynomial multiplication when both polynomials have the same
degree \(d \). Generalize the results obtained in the lecture to multiplication of polynomials \(p(x) \) of
degree \(n \) and \(q(x) \) of degree \(m \). (You may use the algorithms obtained in the lecture as black
boxes.)

Exercise 3 (10 points)

a) Convolution: We are given vectors \((a_0, a_1, \ldots, a_n) \) and \((b_0, b_1, \ldots, b_m) \) with integer coeffi-
cients (each coefficient fits in a machine cell). We want to compute their convolution
\[(c_0, c_1, \ldots, c_{n+m}) \text{ where } c_i = \sum_j a_j \cdot b_{i-j}. \text{ Design an } O(n \log n) \text{ algorithm.}\]

b) **Boolean Convolution:** We are given bit-vectors \((a_0, a_1, \ldots, a_n)\) and \((b_0, b_1, \ldots, b_m)\). We want to compute their Boolean convolution \((c_0, c_1, \ldots, c_{n+m})\) where \(c_i = \bigvee_j (a_j \land b_{i-j})\) (that is, \(c_i\) is 1 if there exists a \(j\) such that \(a_j\) and \(b_{i-j}\) are both 1). Design an \(O(n \log n)\) algorithm.

Exercise 4 (12 points)

Pattern matching with wildcards: We are given a text string \(t\) of length \(n\) and a pattern string \(p\) of length \(m\). Both \(p\) and \(t\) contain symbols from an alphabet \(\Sigma\) of constant size. In addition, \(p\) may contain a wildcard character "*". We want to know whether any replacement of the wildcard characters in \(p\) by alphabet symbols yields a substring of \(t\). For example, \(p = \text{"bl**k"}\) matches two substrings of \(t = \text{"blank block"}\). Give an \(O(n \log n)\) time algorithm for this problem.

Hint: Use fast polynomial multiplication.