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Exercise Sheet 12 Due: 6.2.2017

The homework must be handed in on Monday before the lecture. You may collaborate with other
students on finding the solutions for this problem set, but every student must hand in a writeup
in their own words. We also expect you to state your collaborators and sources (books, papers,
course notes, web pages, etc.) that you used to arrive at your solutions.

You need to collect at least 50% of all points on all exercise sheets to be admitted to the final
exam.

Whenever you are asked to design an algorithm in this exercise sheet you have
to give a proof of its correctness as well as an asymptotic upper bound on its
worst case running time.

Exercise 1 (10 points)

In this exercise, we will study the behavior of hollow heaps, and in particular, the consequences
of a slight modification to the DecreaseKey operation. Throughout, we assume that n is a
large number that is a power of 2.

a) (2 points) Consider a sequence of n + 1 insertions followed by one deletion. Describe the
structure of the resulting hollow heap and, in particular, the ranks.

In hollow heaps, we essentially do the following to decrease the key of an item e, stored in node
u, to a new value k: Create a new node v and move e to v (leaving u hollow). Set the key of v
to k, move all but two of the children of u (and their subtrees) to v, and set the rank of v to
rank(u)− 2. (Here, we ignore the boundary case that rank(u) < 2.

Consider the following modification of the DecreaseKey operation: we do not move any children
of u to v and set the rank of v to 0. The rest remains the same. This essentially means that
we do a Delete followed by an Insert.

b) (3 points) Consider the hollow heap after n + 1 insertions followed by one deletion, as
in a). On each child of the root pointed to by the MinPointer, we perform a modified
DecreaseKey operation. Afterwards, we perform a Delete operation on this root. What
is the worst-case running time of this sequence?



c) (5 points) Keeping the modified DecreaseKey operation in mind, expand the ideas of b)
to construct, for any (large enough) number m, a sequence of m operations that takes
Ω(m log n) time. What does this say about the amortized cost of Insert, Delete, and
the modified DecreaseKey operations?

Exercise 2 (10 points) Splay trees are dynamic binary search trees that use tree rotations
(just as in treaps) to keep the tree balanced. We always rotate along the parent of the current
node, except in the special case when the current node is a left child of a left child or a right
child of a right child, in which case we rotate along the grandparent of the current node first.
We call this procedure splaying.

The Insert operation will insert a new node at the correct place in the tree and then splay the
new node upwards until it becomes the root of the tree. The Find operation will look for the
item as usual in binary search trees, and splay the node where the search ended (regardless of
whether it contains the requested key) upwards until it becomes the root of the tree.

Now suppose that we did not use the special case, and instead of splaying in the Insert and
Find operations, performed the following procedure:

1: procedure MoveToRoot(v)
2: while parent(v) ! = Null do
3: rotate along parent(v)

Prove that for any (large enough) m, there is a sequence of m Insert and Find operations
that require Ω(mn) time to execute. What does this say about the amortized cost of Insert

and Find operations?

Exercise 3 (10 points)

A red-black tree is a binary search tree with the following properties:

• Every node is colored either red or black.

• The root is black.

• Every leaf is colored black.

• If a node is red, then both its children are black.

• The number of black nodes encountered on the (unique) path from a leaf to the root is
the same for all leafs.

Give a lower- and upper-bound on the height of a red-black tree with n items.

Exercise 4 (10 points)

In the lecture we covered Cuckoo Hashing. Recall that here we use two tables T1 and T2 of the
same size and hash functions h1 and h2. When inserting a new key x, we first try to put x at



position h1(x) in T1. If this leads to a collision, then the previously stored key y is moved to
position h2(y) in T2. If this leads to another collision, then the next key is again inserted at the
appropriate position in T1, and so on. In some cases, this procedure continues forever, i.e. the
same configuration appears after some steps of moving the keys around to dissolve collisions.

a) (5 points) Consider two tables of size 5 each and two hash functions h1(k) = k mod 5

and h2(k) = bk
5
c mod 5. Insert the keys 27, 2, 32 in this order into initially empty hash

tables, and show the result.

b) (5 points) Find another key such that its insertion leads to an infinite sequence of key
displacements.


