Exercises for Fine-Grained Complexity Theory
www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter17/fine-complexity/

Presence exercise sheet

Exercise 1 In the lecture we introduced the Orthogonal Vectors Hypothesis:

\textbf{OVH}: Given two sets $A, B \subseteq \{0, 1\}^d$ such that $|A| = |B| = n$. There is no algorithm running in time $O(n^{2-\varepsilon} \cdot \text{poly}(d))$ (for any $\varepsilon > 0$) which decides whether there exists $a \in A, b \in B$ such that a and b are orthogonal.

\begin{itemize}
 \item [a)] Consider the following variant \textbf{OVH'} of \textbf{OVH}:
 \begin{itemize}
 \item \textbf{OVH'}: Given a set $A \subseteq \{0, 1\}^d$ such that $|A| = n$. There is no algorithm running in time $O(n^{2-\varepsilon} \cdot \text{poly}(d))$ (for any $\varepsilon > 0$) which decides whether there exist $a, a' \in A$ such that a and a' are orthogonal.
 \end{itemize}
 Prove that \textbf{OVH'} and \textbf{OVH} are equivalent.
 \item [b)] Consider the problem of finding the maximum inner product of elements of two sets:
 \begin{itemize}
 \item \textbf{MaxInnerProduct}: Given two sets $A, B \subseteq \mathbb{R}^d$ such that $|A| = |B| = n$, compute the maximum

 \[
 \max \{ \langle a, b \rangle \mid a \in A, b \in B \},
 \]
 \end{itemize}
 where \(\langle \cdot, \cdot \rangle\) denotes the standard inner product of \mathbb{R}^d.
 Prove that there is no algorithm running in time $O(n^{2-\varepsilon} \cdot \text{poly}(d))$ (for any $\varepsilon > 0$) for \textbf{MaxInnerProduct} unless \textbf{OVH} fails.
\end{itemize}

Exercise 2 In this exercise, we will fill in the missing part of the hardness result for \textbf{LCS}. Recall the problem definition for \textbf{LCS}:

\textbf{Longest Common Subsequence (LCS)}: Given two strings A, B over some alphabet Σ, where $|A| = |B| = n$, compute the length $L = L(A, B)$ of the longest string $C = c_1 c_2 \ldots c_L$, that is a subsequence of both A and B, i.e., the longest string that suffices

\[
A = *_1 \ c_1 \ *_2 \ c_2 \ *_3 \ *_4 \ c_3 \ *_5 \ c_4 \ *_6 \ c_5 \ *_{L+1} \ c_L
\]

and

\[
B = *_1 \ c_1 \ *_2 \ c_2 \ *_3 \ *_4 \ c_3 \ *_5 \ c_4 \ *_{L+1} \ c_L
\]
for some arbitrary strings $\star_i, \star_i \in \Sigma^*$ (which may be the empty strings).

Further, recall that we already proved the following lemma, providing us with gadgets to encode vectors as strings.

Lemma 1 (Vector Gadgets). There are functions $V_A, V_B : \{0, 1\}^d \to \{0, 1, 2\}^{3d^2}$, computable in time $O(d^2)$, such that

$$\forall a, b \in \{0, 1\}^d : L(V_A(a), V_B(b)) = \begin{cases} \alpha_d & \text{if } a \perp b, \\ \alpha_d - 2 & \text{otherwise}, \end{cases}$$

where $\alpha_d := 3d^2 - d$ and \langle \cdot, \cdot \rangle again denotes the standard inner product of \mathbb{R}^d.

As we saw in the lecture, for these vector gadget to be useful, we need to ensure that the LCS of gadgets of two non-orthogonal vectors can only attain a single value (dependent on d), instead of the range of values that is possible with the current gadgets. In particular, we need the following normalized vector gadgets.

Lemma 2 (Normalized Vector Gadgets). There are functions $N_A, N_B : \{0, 1\}^d \to \{0, 1, 2\}^{9(d+1)^2}$, computable in time $O(d^2)$, such that

$$\forall a, b \in \{0, 1\}^d : L(N_A(a), N_B(b)) = \begin{cases} \beta_d & \text{if } a \perp b, \\ \beta_d - 2 & \text{otherwise}, \end{cases}$$

for $\beta_d := 3(d + 1)^2 + \alpha_d + 1$.

(In the lecture we used $\beta_d := 3(d + 1)^2 + \alpha_d - 2$, thus resulting in a slightly different formulation of this lemma. However, in general, neither the exact value of β_d nor the exact length of the generated strings is important. What is important is that the lengths of the LCS of gadgets of orthogonal and non-orthogonal vectors are exactly two values – one value for orthogonal vectors and a different, smaller one for non-orthogonal vectors – and that these gadgets can be constructed in poly(d) time.)

Prove this last Lemma 2.

(Hint. Recall the reduction from OVH to OVH' from exercise 1a). Further, recall how we used these normalized vector gadgets in the final construction.)