
Karl Bringmann and Marvin Künnemann Winter 2017/18

Exercises for Fine-Grained Complexity Theory
www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter17/fine-complexity/

Presence exercise sheet

Exercise 1 In the lecture we introduced the Orthogonal Vectors Hypothesis :

OVH: Given two sets A,B ⊆ {0, 1}d such that |A| = |B| = n. There is no algorithm running
in time O(n2−ε · poly(d)) (for any ε > 0) which decides whether there exists a ∈ A, b ∈ B such
that a and b are orthogonal.

a) Consider the following variant OVH′ of OVH:

OVH′: Given a set A ⊆ {0, 1}d such that |A| = n. There is no algorithm running in time
O(n2−ε · poly(d)) (for any ε > 0) which decides whether there exist a, a′ ∈ A such that a
and a′ are orthogonal.

Prove that OVH′ and OVH are equivalent.

b) Consider the problem of finding the maximum inner product of elements of two sets:

MaxInnerProduct: Given two sets A,B ⊆ Rd such that |A| = |B| = n, compute the
maximum

max {〈a, b〉 | a ∈ A, b ∈ B},

where “〈·, ·〉” denotes the standard inner product of Rd.

Prove that there is no algorithm running in time O(n2−ε · poly(d)) (for any ε > 0) for
MaxInnerProduct unless OVH fails.

Exercise 2 In this exercise, we will fill in the missing part of the hardness result for LCS.
Recall the problem definition for LCS:

Longest Common Subsequence (LCS): Given two strings A,B over some alphabet Σ,
where |A| = |B| = n, compute the length L = L(A,B) of the longest string C = c1c2 . . . cL,
that is a subsequence of both A and B, i.e., the longest string that suffices

A = ?1 c1 ?2 c2 ?3 . . . ?L cL ?L+1

and
B = ∗1 c1 ∗2 c2 ∗3 . . . ∗L cL ∗L+1,

www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter17/fine-complexity/

for some arbitrary strings ?i, ∗i ∈ Σ∗ (which may be the empty strings).

Further, recall that we already proved the following lemma, providing us with gadgets to encode
vectors as strings.

Lemma 1 (Vector Gadgets). There are functions VA, VB : {0, 1}d → {0, 1, 2}3d2, computable
in time O(d2), such that

∀a, b ∈ {0, 1}d : L(VA(a), VB(b)) = αd − 2 · 〈a, b〉
{

= αd, if a ⊥ b,
≤ αd − 2, otherwise,

where αd := 3d2 − d and “〈·, ·〉” again denotes the standard inner product of Rd.

As we saw in the lecture, for these vector gadget to be useful, we need to ensure that the LCS of
gadgets of two non-orthogonal vectors can only attain a single value (dependent on d), instead
of the range of values that is possible with the current gadgets. In particular, we need the
following normalized vector gadgets.

Lemma 2 (Normalized Vector Gadgets). There are functions NA, NB : {0, 1}d → {0, 1, 2, 3}9(d+1)2,
computable in time O(d2), such that

∀a, b ∈ {0, 1}d : L(NA(a), NB(b)) =

{
βd, if a ⊥ b,
βd − 2, otherwise,

for βd := 3(d+ 1)2 + αd+1.
(In the lecture we used βd := 3(d+ 1)2 + αd+1 − 2, thus resulting in a slightly different formulation of
this lemma. However, in general, neither the exact value of βd nor the exact length of the generated
strings is important. What is important is that the lengths of the LCS of gadgets of orthogonal and
non-orthogonal vectors are exactly two values – one value for orthogonal vectors and a different, smaller
one for non-orthogonal vectors – and that these gadgets can be constructed in poly(d) time.)

Prove this last Lemma 2.

(Hint. Recall the reduction from OVH to OVH ′ from exercise 1a). Further, recall how we
used these normalized vector gadgets in the final construction.)

