Exercise 3: Impossible!

Task 1: Stop Failing, You Cowards!

The goal of this exercise is to show that under the synchronous message passing model, for any consensus algorithm there are executions with f crashes in which solving consensus requires at least $f + 1$ rounds.

a) Show that there are inputs differing at a single pivotal node v_0 that result in different outputs in the respective (unique) maximal fault-free extensions.

\textbf{Hint:} Use the same argument as for the asynchronous case.

b) Prove that, given a pair of r-round executions with a pivotal node v_r (i.e., only this node’s state makes the difference between outputs 0 and 1 in case there are no further faults), crashing the node “in the right way” yields a pair of $(r + 1)$-round executions with a new pivotal node v_{r+1}.

\textbf{Hint:} The reasoning is similar as for a), but the “inputs” are replaced by the messages of v_r in round r of each of the executions — or their absence due to the node crashing.

c) Conclude that for any $f < n$, there are executions with f faults in which some node neither crashes nor terminates earlier than round $f + 1$.

Task 2: Impossible? We’ll Do it in $f + 2$ Rounds!

a) Suppose each node maintains a bit p_i. In each round, each node sends its bit to all other nodes and sets it to 0 if it received a 0. Show that if a node receives messages from the same set of senders either all with opinion 0 or all with opinion 1 in two consecutive rounds, all nodes have the same bit p_i.

b) Use this observation to construct a synchronous consensus algorithm tolerating an arbitrary number of faults.

c) Prove that the algorithm is correct and terminates in at most $f + 3$ rounds in executions with at most f faults (if necessary, modify your algorithm to achieve this property).

d)* Modify the algorithm to terminate in $f + 2$ rounds under the assumption that n is known!

Remark: Note that the algorithm can deal with an arbitrary number of faults, yet the running time is bounded in terms of the actual faults happening. This property is called \textit{early-stopping}. Given that faults are supposed to be uncommon events, that’s pretty neat!

Task 3*: Intense Sharing

a) Find out what the term “consensus number” refers to!

b) Ponder the consensus number of shared memory that, besides atomic reads, permits to write to up to $k > 1$ shared registers in a single atomic step!

c) Share your insights in the exercise session!