

Multivariate Algorithmics: Problem set 1

Dr. Karl Bringmann, Dr. Holger Dell, Cornelius Brand, Marc Roth bit.ly/MulAlg18

Due: Before the lecture on October 23, 2018 Tutorial: October 25, 2018

Problem 1.1 (\mathscr{D}) Prove: A directed graph D = (V, A) is acyclic if and only if there is an order \prec on V such that for every arc $(u, v) \in A$, we have that $u \prec v$.

Problem 1.2 (\mathscr{D}) Consider the following problem: Given a set of n points in the plane, decide whether there is a set of k lines such that every point lies on at least one line. Prove that this problem has a kernel of size $O(k^2)$.

Problem 1.3 Given an undirected graph G = (V, E), a subset of vertices $X \subseteq V$ is a *feedback vertex* set if G after removal of X and all edges incident to X is a forest. Show that the problem of deciding whether a graph has a feedback vertex set of size at most k has a kernel with O(k) vertices on regular, undirected graphs.¹

Problem 1.4 The problem CONNECTED VERTEX COVER is defined as follows: Given an undirected graph G and a positive integer k, decide whether there exists a vertex cover C of G of size at most k, and such that the subgraph of G induced by C is connected.

- (a) Where do the kernelization rules for VERTEX COVER used to prove Theorem 2.4 fail in the connected case?
- (b) Show that the problems admits a kernel with at most $2^k + O(k^2)$ vertices.
- (c) Show that if the input graph does not contain a 4-cycle as a subgraph, then the problem admits a kernel with at most $O(k^2)$ vertices.

Problem 1.5 () Extend the argument of the previous exercise to show that, for every fixed $d \ge 2$, CONNECTED VERTEX COVER restricted to graphs that do not contain the biclique $K_{d,d}$ admits a kernel with $O(k^d)$ vertices.

Problem 1.6 (2) Let G = (V, E) be a graph, and let $(x_v)_{v \in V}$ be an (not necessarily half-integral) optimum solution to the linear programming formulation of the vertex cover problem, LPVC(G). Define $(y_v)_{v \in V}$ as follows:

$$y_v = \begin{cases} 0 & \text{if } x_v < 1/2\\ 1/2 & \text{if } x_v = 1/2\\ 1 & \text{if } x_v > 1/2 \end{cases}$$

Show that $(y_v)_{v \in V}$ is also an optimal solution to LPVC(*G*).

Please note:

- Each problem is worth one point. There are no half points.
- You need a third of all points from the problem sets to be admitted to the exam.
- You can hand in assignments in groups of size up to three.

¹The degree of the regular graph is *not* assumed to be a fixed constant.