Problem 1.1 (): Prove: A directed graph $D = (V, A)$ is acyclic if and only if there is an order \prec on V such that for every arc $(u, v) \in A$, we have that $u \prec v$.

Problem 1.2 (): Consider the following problem: Given a set of n points in the plane, decide whether there is a set of k lines such that every point lies on at least one line. Prove that this problem has a kernel of size $O(k^2)$.

Problem 1.3 Given an undirected graph $G = (V, E)$, a subset of vertices $X \subseteq V$ is a feedback vertex set if G after removal of X and all edges incident to X is a forest. Show that the problem of deciding whether a graph has a feedback vertex set of size at most k has a kernel with $O(k)$ vertices on regular, undirected graphs.

Problem 1.4 The problem CONNECTED VERTEX COVER is defined as follows: Given an undirected graph G and a positive integer k, decide whether there exists a vertex cover C of G of size at most k, and such that the subgraph of G induced by C is connected.

(a) Where do the kernelization rules for VERTEX COVER used to prove Theorem 2.4 fail in the connected case?

(b) Show that the problems admits a kernel with at most $2^k + O(k^2)$ vertices.

(c) Show that if the input graph does not contain a 4-cycle as a subgraph, then the problem admits a kernel with at most $O(k^2)$ vertices.

Problem 1.5 (): Extend the argument of the previous exercise to show that, for every fixed $d \geq 2$, CONNECTED VERTEX COVER restricted to graphs that do not contain the biclique $K_{d,d}$ admits a kernel with $O(k^d)$ vertices.

Problem 1.6 (): Let $G = (V, E)$ be a graph, and let $(x_v)_{v \in V}$ be an (not necessarily half-integral) optimum solution to the linear programming formulation of the vertex cover problem, LPVC(G). Define $(y_v)_{v \in V}$ as follows:

$$y_v = \begin{cases}
0 & \text{if } x_v < 1/2 \\
1/2 & \text{if } x_v = 1/2 \\
1 & \text{if } x_v > 1/2.
\end{cases}$$

Show that $(y_v)_{v \in V}$ is also an optimal solution to LPVC(G).

Please note:
- Each problem is worth one point. There are no half points.
- You need a third of all points from the problem sets to be admitted to the exam.
- You can hand in assignments in groups of size up to three.

1The degree of the regular graph is not assumed to be a fixed constant.