Multivariate Algorithmics: Problem set 6

Dr. Karl Bringmann, Dr. Holger Dell, Cornelius Brand, Marc Roth http://bit.ly/MulAlg18

Due: Before the lecture on January 08, 2019

Problem 6.1 (\mathscr{D}) Show that the dependency on k in the Excluded Grid Theorem needs to be $\Omega(k^2)$. That is, show a graph of treewidth $\Omega(k^2)$ that does not contain a $k \times k$ grid as a minor.

Problem 6.2 (\mathscr{D}) Give an example of a graph G and sets $A, B \subseteq V(G)$ for which the submodularity inequality

$$\Delta(A)| + |\Delta(B)| - |\Delta(A \cap B)| \ge |\Delta(A \cup B)|$$

is sharp.

Problem 6.3 Show that the following problems are bidimensional: FEEDBACK VERTEX SET, INDUCED MATCHING, CYCLE PACKING, LONGEST PATH and DOMINATING SET.

Problem 6.4 The algorithm for HAMILTONIAN CYCLE presented in the lecture suffers a multiplicative $O(n \log^{O(1)} n)$ overhead in the running time because of performing arithmetic operations on $O(n \log n)$ -bit numbers. Show that one can shave this overhead down to $O(\log n)$ at the cost of getting a one-sided error Monte Carlo algorithm with false negatives occurring with probability O(1/n).

Problem 6.5 Prove that a set function $f: 2^{V(G)} \to \mathbb{R}$ is submodular if and only if

$$f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B) \tag{(*)}$$

holds for every $A \subseteq B \subseteq V(G)$ and $v \in V(G)$. Informally, inequality (*) says that the marginal value of v with respect to the superset B (that is, the increase of value if we extend B with v) cannot be larger than with respect to a subset A.

Problem 6.6 (2) In DIGRAPH PAIR CUT, the input consists of a directed graph G, a designated vertex $s \in V(G)$, a family of pairs of vertices $\mathcal{F} \subseteq \binom{V(G)}{2}$ and an integer k. The goal is to find a set X of at most k edges of G, such that for each pair $\{u, v\} \in \mathcal{F}$, either u or v is not reachable from s in the graph G - X. Show an algorithm solving DIGRAPH PAIR CUT in time $2^k \cdot n^{O(1)}$ for an n-vertex graph G.