Problem 6.1 (◊) Show that the dependency on k in the Excluded Grid Theorem needs to be $\Omega(k^2)$. That is, show a graph of treewidth $\Omega(k^2)$ that does not contain a $k \times k$ grid as a minor.

Problem 6.2 (◊) Give an example of a graph G and sets $A, B \subseteq V(G)$ for which the submodularity inequality
\[|\Delta(A)| + |\Delta(B)| - |\Delta(A \cap B)| \geq |\Delta(A \cup B)| \]
is sharp.

Problem 6.3 Show that the following problems are bidimensional: Feedback Vertex Set, Induced Matching, Cycle Packing, Longest Path and Dominating Set.

Problem 6.4 The algorithm for Hamiltonian Cycle presented in the lecture suffers a multiplicative $O(n \log^{O(1)} n)$ overhead in the running time because of performing arithmetic operations on $O(n \log n)$-bit numbers. Show that one can shave this overhead down to $O(\log n)$ at the cost of getting a one-sided error Monte Carlo algorithm with false negatives occurring with probability $O(1/n)$.

Problem 6.5 Prove that a set function $f : 2^{V(G)} \to \mathbb{R}$ is submodular if and only if
\[f(A \cup \{v\}) - f(A) \geq f(B \cup \{v\}) - f(B) \quad (\ast) \]
holds for every $A \subseteq B \subseteq V(G)$ and $v \in V(G)$. Informally, inequality (\ast) says that the marginal value of v with respect to the superset B (that is, the increase of value if we extend B with v) cannot be larger than with respect to a subset A.

Problem 6.6 (∃) In Digraph Pair Cut, the input consists of a directed graph G, a designated vertex $s \in V(G)$, a family of pairs of vertices $\mathcal{F} \subseteq (V(G))^2$ and an integer k. The goal is to find a set X of at most k edges of G, such that for each pair $\{u, v\} \in \mathcal{F}$, either u or v is not reachable from s in the graph $G - X$. Show an algorithm solving Digraph Pair Cut in time $2^k \cdot n^{O(1)}$ for an n-vertex graph G.